
Chianina: An Evolving Graph System for Flow- and
Context-Sensitive Analyses of Million Lines of C Code

Zhiqiang Zuo
∗†

Nanjing University, China

zqzuo@nju.edu.cn

Yiyu Zhang
∗

Nanjing University, China

dz1933033@smail.nju.edu.cn

Qiuhong Pan
∗

Nanjing University, China

mg1733048@smail.nju.edu.cn

Shenming Lu
∗

Nanjing University, China

mf1733041@smail.nju.edu.cn

Yue Li
∗

Nanjing University, China

yueli@nju.edu.cn

Linzhang Wang
∗

Nanjing University, China

lzwang@nju.edu.cn

Xuandong Li
∗

Nanjing University, China

lxd@nju.edu.cn

Guoqing Harry Xu

University of California, Los Angeles

harryxu@cs.ucla.edu

Abstract
Sophisticated static analysis techniques often have compli-

cated implementations, much of which provides logic for tun-

ing and scaling rather than basic analysis functionalities. This

tight coupling of basic algorithms with special treatments

for scalability makes an analysis implementation hard to (1)

make correct, (2) understand/work with, and (3) reuse for

other clients. This paper presents Chianina, a graph system

we developed for fully context- and flow-sensitive analysis

of large C programs. Chianina overcomes these challenges

by allowing the developer to provide only the basic algo-

rithm of an analysis and pushing the tuning/scaling work

to the underlying system. Key to the success of Chianina is

(1) an evolving graph formulation of flow sensitivity and (2)

the leverage of out-of-core, disk support to deal with memory

blowup resulting from context sensitivity. We implemented

three context- and flow-sensitive analyses on top of Chian-

ina and scaled them to large C programs like Linux (17M

LoC) on a single commodity PC.

CCSConcepts: •Computer systems organization→ Spe-
cial purpose systems; Reliability; • Theory of computa-
tion→ Program analysis.
∗
Also with State Key Laboratory for Novel Software Technology at Nanjing

University.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20–25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454085

Keywords: static analysis, graph processing, parallel com-

puting

ACM Reference Format:
Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li,

Linzhang Wang, Xuandong Li, and Guoqing Harry Xu. 2021. Chi-

anina: An Evolving Graph System for Flow- and Context-Sensitive

Analyses of Million Lines of C Code. In Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI ’21), June 20–25, 2021, Virtual,

Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3453483.3454085

1 Introduction
Static analysis plays important roles in a wide spectrum of

applications, including bug detection, compiler optimization,

etc.. Static analysis algorithms that distinguish results based

on various program properties (e.g., calling contexts and

control flow) are more useful than those that do not. For

example, these precise algorithms can uncover many true

bugs and report less false warnings. As a result, there is

an everlasting interest in program analysis community to

develop techniques that are context-sensitive [17, 29, 36, 38,

69, 70, 74], field-sensitive [4, 36, 59, 61], flow-sensitive [23,

24, 29, 52], or path-sensitive [2, 15, 57, 82].

Although these techniques are superior to their (context,

field, flow, or path-) insensitive counterparts, their computa-

tion is much more expensive, requiring CPU and memory

resources that a single machine may not be able to offer.

Given the limited resources to them, it is hard for them to

scale to programs with large codebases such as the Linux ker-

nel. Prior work employs sophisticated treatments that tune

the level of sensitivity [39, 42, 78] or explore different forms

of sensitivity [32, 46, 58], to find sweatspots between scala-

bility, generality, and usefulness. Despite their commendable

efforts, these treatments are specific to the applications they

are developed for and complicated to implement.

This paper is a quest driven by the following question:

given an analysis algorithm — in its simplest form — can

914

https://doi.org/10.1145/3453483.3454085
https://doi.org/10.1145/3453483.3454085
https://doi.org/10.1145/3453483.3454085

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

we run it efficiently over large programs without requiring

any sophisticated treatment from developers? Achieving this

goal possesses a number of advantages: (1) analysis develop-

ment is significantly simplified — because a developer only

writes the basic algorithm without worrying about perfor-

mance, this enables developers without much training in PL

to easily develop and experiment with analyses that used to

be accessible only to experienced experts; and (2) porting

an existing analysis for different clients is significantly sim-

plified because the analysis implementation contains only

the logic necessary to realize the basic functionality, not any

complex tuning tasks.

Insight and Problem. This paper is inspired by a line of

prior work [6, 67–69, 82] that piggybacks static analysis

on databases or large-scale systems — an analysis is imple-

mented by following only a few high-level interfaces while

scaling is delegated to the underlying system, which makes

it possible for the analysis to run on large programs by enlist-

ing the humongous computing power provided by modern

hardware. BDDBDDB [69] and Doop [6] are early examples

where an analysis is expressed as a Datalog program, which

is executed by a low-level BDD-based Datalog engine for

scalability. Graspan [67] is a graph processing system that

leverages disk support to scale CFL-reachability computa-

tion to large programs that cannot fit into the main memory.

This line of work shifts the burden of tuning from develop-

ers’ shoulders to underlying systems, enabling developers to

enjoy both the implementation simplicity and the scalability

provided by the underlying system.

Inspired by these techniques, this paper revisits the prob-

lem of scaling context- and flow-sensitive analyses from a sys-

tem perspective — that is, we aim to develop system support

for scaling the simplest versions of context- and flow-sensitive

algorithms that developers can quickly implement by follow-

ing interfaces. On the one hand, a context- and flow-sensitive

analysis is arguably one of the most expensive analysis tech-

niques because it needs to compute and maintain an analysis

solution for each distinct program point under each distinct

calling context. On the other hand, it enables strong update

and produces ultra precise information at each statement.

For example, it is known in the community [23, 37] that flow

sensitivity is critical for a C pointer analysis to prune away

spurious points-to relationships.

State of the Art. One category of prior work dealing with

context sensitivity focuses on computing and applying sym-

bolic summaries [11, 70, 72, 76], which corresponds to the

bottom-up approach in Sharir and Pnueli’s seminal work [56].

Summary-based approach, while scalable for certain cases,

still suffers from drawbacks. First, it is hard for certain anal-

yses (e.g., pointer analysis) to establish a succinct summary

for each function [2, 70]. Moreover, due to lack of explicit

representation of contexts, it cannot answer queries such

as what objects a variable points to under a particular call

stack. Another category of work is to aggressively clone

functions [36, 59, 69, 74], which corresponds to the top-down

approach in [56]. Cloning-based techniques often use opti-

mizations such as merging, reduction, etc., to gain scalability.

Work that deals with flow sensitivity includes the classical

IFDS [52] and IDE [55] frameworks, which turn a dataflow

analysis into a graph reachability problem over an exploded

graph representation of a program. These frameworks re-

quire a dataflow transfer function to be distributive over the

meet operator (e.g., set union or intersection). However, many

problems do not have this property; pointer/alias analysis

is such an example. To scale flow-sensitive pointer analysis,

researchers employ sparse analysis [23, 24, 26] over an SSA-

based def-use graph that allows pointer information to be

propagated only between statements that define/use same

pointers.

All of these analyses, except those implemented on top of

frameworks such as IFDS and IDE, have complicated imple-

mentations. Designing such an analysis requires a full-set

solution — from the basic analysis algorithm all the way

down to special treatments for efficiency/scalability that de-

part significantly from the basic algorithm. Commonalities

often exist between treatments for different analyses, but are

hard to reuse due to the tight coupling between basic algo-

rithms and scalability treatments. Clearly, it would remain

difficult for these techniques to gain real-world popularity

until (1) their implementation complexity can be significantly

reduced and (2) general frameworks can be developed to sup-

port a wide variety of them (e.g., as analogous to howApache

Spark provides a general data-parallel foundation for various

data analytics and machine learning tasks).

ProblemFormulation. This paper presents a domain-specific

graph system dubbed Chianina, that supports easy devel-

opment of any context- and flow-sensitive analysis (with

a monotone transfer function) for C and that is powerful

enough to scale the analysis to many millions of lines of code.

Chianina makes analysis implementation simple and general

— a variety of flow-sensitive analysis (e.g., analyses of IDE,

IFDS, pointer, alias, type, value, etc.) can be developed with

hundreds lines of code. The developer only specifies dataflow

facts and transfer functions, in their basic form without any

special treatment. Tuning and scaling (e.g., merging, exploit-

ing similarities, reduction, etc.), which used to be tightly

coupled with the analysis, now happen under the hood.

A system-level solution requires simple, mechanized com-

putation over very large datasets. To this end, Chianina uses

aggressive cloning to implement context sensitivity — a

callee is cloned into each of its callers and cloning is done in

a bottom-up fashion from each leaf node on the call graph to

the main function (if it exists). Cloning streamlines the imple-

mentation of any context-sensitive analysis and makes the

analysis highly parallel due to elimination of sharing (§2.2).

Of course, aggressively cloning function bodies can blow

915

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

up the memory usage; Chianina overcomes memory limita-

tions by leveraging out-of-core disk support. Once cloning is

done, we have a complete, context-sensitive-by-construction

program representation for graph computation.

To deal with flow sensitivity, Chianina formulates a flow-

sensitive analysis as a problem of evolving graph process-

ing [27, 48, 65, 66]. An evolving graph contains a set of

temporally-related graph snapshots, each capturing the set of

vertices and edges of the graph at a certain point of time. For

example, a social network graph such as Twitter constantly

evolves. Analytics tasks such as finding popular users (i.e.,

PageRank) are often performed on snapshots of the graph pe-

riodically and results from these tasks are analyzed to under-

stand the evolution of the graph. Two consecutive snapshots

often have large overlap on vertices and edges (i.e., spatial

and temporal locality), which can be exploited for efficiency.

This nature of evolving graph processing matches exactly the

nature of a flow-sensitive analysis — at each program point,

(the most general form of) dataflow facts for variables in

the program constitute a graph snapshot; consecutive snap-

shots, which are captured at consecutive program points,

differ only in a small number of vertices and edges due to

application of transfer function.

Our formulation makes an analysis amenable to many opti-

mization techniques (e.g., auto-parallelization, work-balancing,

locality, etc.) available in the graph system community, tun-

ing and scaling the analysis at a low level without needing

any special treatment from the developer. In fact, many of the

prior analysis-level treatments are essentially equivalent to

certain system-level optimizations (e.g., BDD-based merging

is essentially locality-aware compression). By pushing the

tuning effort down into the system, every analysis running

atop can enjoy these low-level optimizations, while in the

past each analysis only receives a small handful of special

treatments tailored for itself.

Note that our work makes no contribution to the static

analysis algorithms. Our major contribution is building a

scalable system to support a wide variety of static analyses.

By leveraging auto-parallelization and out-of-core support,

Chianina liberates developers from the fear of memory ex-

plosion, enabling straightforward implementations and a

high-degree of parallelism.

Summary of Results. To validate scalability and general-

ity, we implemented, on top of Chianina, the fully context-

and flow-sensitive (1) pointer/alias analysis, (2) null-pointer

value flow analysis, and (3) instruction cache analysis. We

analyzed five large-scale software systems: Linux, Firefox,

PostgreSQL, OpenSSL and Httpd. Our results are promising:

our alias analyses completed on the five systems (4 minutes

– 20 hours) whereas their conventional counterparts (even

without context sensitivity) quickly ran out of memory for

large programs. Chianina’s source code is publicly available

on GitHub: https://github.com/Chianina-system.

2 Background and Overview
We present Chianina in the context of pointer/alias analysis,

which is one of the most sophisticated and expensive analy-

ses in the context- and flow-sensitive analysis family. This

section first offers a gentle introduction to the basic algo-

rithm for a context- and flow-sensitive pointer/alias analysis

for C (§2.1). Next, we provide an overview of Chianina (§2.2).

2.1 Background

AliasAnalysis asGraphReachability. Aflow-insensitive

alias analysis can be easily formulated as a graph-reachability

problem. There are a number of existing formulations, of

which we use the program expression graph (PEG) [80] based

representation as an example to illustrate how Chianina

works. Note that Chianina is a general framework that does

not tie to PEG; other program representations can be used

in Chianina as well.

A PEG represents a program as a graph where each vertex

corresponds to a pointer expression (e.g., a reference variable

x , a dereference expression ∗x , or an address-of expression

&x). Edges are added based upon the following rules for

statements that involve pointer expressions.

Type Stmt Edge

assignment x = y x
a
←− y (1)

store ∗x = y ∗x
a
←− y (2)

load x = ∗y x
a
←− ∗y (3)

address-of x = &y x
a
←− &y (4)

Each statement allocating heap memory (e.g., x = malloc())

is treated the same way as an address-of statement — we

add an edge x
a
←− &O where O represents the allocation

site. Moreover, dereference edges (d) are added (1) from each

pointer variable x to ∗x and (2) from &x to x .
Based on this graph representation, the alias analysis is

formulated as a reachability problem guided by a context-free

language L over an alphabet Σ (i.e., the set of {a, d} in the

context of PEG). Given a PEG whose edges are labeled with

elements of Σ, we say a vertexv is L-reachable from another

vertexw if there exists a path from v tow on the graph such

that the string formed by concatenating edge labels on the

path is a member of language L (i.e., complying with L’s
grammar). A whole-program alias analysis determines all

pairs of such vertices v and w such that w is L-reachable

from v , based on the following context-free grammar:

Value alias V ::= (M? a)∗ M? (a M?)∗ (5)

Memory alias M ::= d V d (6)

The non-terminals V and M represent the value-alias and

memory-alias relations, respectively. Each PEG is a bidirec-

tional graph — for each edge x
a
−→ y with label a, there exists

an inverse edge y
a
−→ x automatically. Two pointer expres-

sions are aliases if they areV- orM-reachable. At the heart

916

https://github.com/Chianina-system

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

of this formulation is finding paths whose edge labels ex-

hibit “balanced-parenthesis” properties (e.g., a and a): if a
pointer value goes from a variable x into a heap location h
and later flows to another variable y from a heap location

i , the two variables x and y are (pointer) aliases if the two

heap locations h and i are (memory) aliases. Given that this

formulation is well-known to the PL community, we omit a

concrete example here to save space.

Flow-Sensitivity. Flow sensitivity is often achieved using

the traditional monotone dataflow analysis framework [31,

33], which consists of the analysis domain, including opera-

tions to copy and combine domain elements, and the transfer

functions over domain elements with respect to different

types of statement in the control flow graph. In the context

of a PEG-based alias analysis, a straightforward way to add

flow sensitivity is to model each domain element as a sepa-

rate PEG and the combination operator as the union of edge

sets. Each transfer function w.r.t. a program statement takes

an input PEG that captures the state of the program before

the statement, and computes an output PEG by adding and

deleting edges according to the semantics of the statement.

Next, a worklist-based algorithm iteratively applies the

transfer function for each statement along the control-flow

graph (CFG). In our setting, two elements IN s and OUT s
are maintained for each statement s of the CFG, representing
the incoming and outgoing PEGs, respectively. Each transfer

function s computes a new PEG OUT s by adding/deleting

edges on IN s . At each control flow join point where a node

s has multiple predecessors p ∈ predecessors(s), the incom-

ing graph IN s of node s is the union of all graphs OUT p of

its predecessors. The algorithm keeps updating these graphs

until seeing the global fixed point [30]. Each transfer func-

tion is characterized as addition (i.e., GEN) or deletion (i.e.,

KILL) of a set of edges based on the aforementioned formula-

tion. The GEN set usually denotes the new assignment edge

(labeled with a) added due to a statement. The KILL set con-

tains edges that must be deleted due to updated assignments.

These deletions enable strong update.

Graph Representation of Dataflow Facts. Relating the

PEG-based formulation of a flow-sensitive pointer analysis

to the traditional monotone dataflow framework, it is easy

to see that our (semi-) lattice here is a partial-order set con-

taining all possible edges over the (finite) set of all pointer

expressions, the meet operation is the set union, and the

bottom element ⊥ is empty set ∅. We use the flow-sensitive

pointer/alias analysis as an example because its lattice is

much more complicated than that of other dataflow analyses

(which is often a small set of single elements rather than a

relation). However, this does not preclude similar graph rep-

resentations of simple lattices — thinking of a single-element

set as a special relation where each element is modeled as

a pair (i.e., edge) ⟨l , ◦⟩ (◦ is a special placeholder element),

any dataflow fact can be modeled as a relation with a graph

representation. Of course, for problems whose lattice is a

set of single elements, graphs for their dataflow facts have a

special structure — all edges have ◦ as their target vertex.

Note that the PEG representation discussed above de-

scribes the basic analysis algorithm without any scalability

treatments. Naïvely running this algorithm will be unscal-

able. Chianina provides scalability with graph optimizations

and disk support.

2.2 Chianina Overview
Chianina consists of a C-based frontend and a language-

independent backend (which can be readily used to analyze

programs in other languages although this paper focuses on

the C language). The frontend is a Clang-based intraprocedu-

ral compiler pass that analyzes each C function to produce a

control flow graph (CFG) of the function where each vertex

of the CFG (i.e., a statement) contains an PEG representing

the dataflow fact at the statement. The initial PEG for each

statement just contains edges induced by the statement itself.

The backend is a graph engine that performs iterative com-

putation over the CFG to update PEGs associated with each

statement. The CFG generation is generic and independent of

client analysis, but the graph representing each dataflow fact

(contained in each CFG vertex) is client-specific and needs

to be provided by the developer. For our pointer/alias analy-

sis, each dataflow fact is a PEG, which will grow/shrink as

computation is performed by the backend.

Note that the developer can also customize the CFG struc-

ture generated for each function. For example, our analysis

implementation actually generates a sparse def-use graph

proposed in [23], which is more efficient than the general

CFG. For generality, we will still use term CFG in the rest of

the paper to refer to the graph representation.

Cloning for Context Sensitivity. Once the CFG for each

function is generated, Chianina relies on a pre-computed

call graph (i.e., constructed by LLVM) to perform cloning

for context sensitivity. The CFG for each function is cloned

and incorporated into that of each of its callers by creating

assignment edges to connect vertices representing formal

and actual parameters. Cloning of a CFG includes cloning of

each PEG contained in each of its vertices.

To handle recursion, we first identify the strongly con-

nected components (SCCs) over the pre-computed call graph.

Functions in each SCC are cloned twice and treated context

insensitively afterwards. In other words, functions not in any

SCC enjoy full context sensitivity while a 2-level call-chain

sensitivity is used for those in SCCs.

It is important to note that although there exists a body of

work on other types of context sensitivity, cloning is the
typemost suitable for a system solution like Chianina.
This is because cloning streamlines a context-sensitive anal-

ysis by generating a humongous global CFG (GCFG) that is

context sensitive by construction. It makes it easy not only to

mechanize analysis implementations but also to make them

917

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

int c, e, *b;

int** y = &b;
int* z = &c;
int** x = y;

*x = z;
int* v = &e;

*y = v;

1
2
3
4
5
6

OUT11

FactsStmts

P0
2 OUT2

OUT33

4’

OUT33’

4 OUT4

OUT55

6 OUT6

P1

s1

s2

s3

s4

s5

s6

(a) Program

int c, e, *b;

int** y = &b;
int* z = &c;
int** x = y;

*x = z;
int* v = &e;

*y = v;

1
2
3
4
5
6

OUT11

FactsStmts

P0
2 OUT2

OUT33

4’

OUT33’

4 OUT4

OUT55

6 OUT6

P1

s1

s2

s3

s4

s5

s6

(b) Partitions

&by a
V

(c) OUT1

&by a

&cz a

V

V

(d) OUT2

&bx ya a

&c

z

a

VV
V

V

(e) OUT3

&bx ya

*x

d
a

&c

z

a

VV
V

V
V

V

a

(f) OUT4

&bx ya

*x

d
a

&c

z

a

&e va

VV
V

V

V

V

V

a

(g) OUT5

&b

*y

x ya
d

*x

d
a

&c

z

a

&e va

a

VV
V

V

V

M

V

V

V
V

V

(h) OUT6

Figure 1. (a) The example program under analysis. (b) The two partitions: each CFG vertex links to a PEG; CFG edges are

stored with their source vertices but not shown in the figure. (c)-(h) PEGs at each program point as iterative computation is

performed by the backend graph engine; inverse edges are omitted for simplicity; The “V” and “M” edges represent transitive

value-alias and memory-alias relationships shown earlier in Equations (5) and (6).

highly parallel as many threads can run the same analysis

code over different parts of the graph without any sharing.

As such, Chianina has near-linear thread-scalability, leading

to superior performance (see §4.1). A high degree of par-

allelism requires (1) little sharing between threads and (2)

overcoming memory limitations (because each thread needs

to maintain its own analysis state and tracking data; running

many threads thus requires large amounts of memory). Exist-

ing analysis implementations are limited by the size of main

memory and hence cannot afford representing code sepa-

rately for distinct contexts. As such, threads often have to

work on a small program graph where code under different

contexts is shared, leading to frequent synchronizations.

Evolving Graph Computation. Figure 1a shows an ex-

ample C program. The dataflow fact associated with each

statement, represented as a PEG, is initialized by the fron-

tend compiler pass as a small PEG containing only edges

induced by that statement. For space efficiency, onlyOUT is

maintained explicitly since IN for a statement can be easily

derived by taking a union of OUT of its predecessors.

As the first step, Chianina divides the GCFG into multiple

partitions. Figure 1b shows such an example with two dis-

joint partitions, containing vertices of the logical ranges [1-3]

and [4-6], respectively. For edges that cross partitions, such

as the one between statement 3 and 4 in Figure 1a, we create

twomirror vertices 3
′
and 4

′
and place them respectively into

the two partitions. Such edges induce dependencies between

partitions. With multiple partitions available on disk, the

Chianina scheduler picks a number of partitions at a time

and loads them into memory for parallel computation. The

number of partitions to load at each time is determined by

(1) memory availability and (2) the number of CPU cores.

Partitioning and scheduling is detailed in §3.3.

Assuming that both partitions are selected for computa-

tion in our example, Chianina loads into memory all CFG

edges that belong to P0 and P1 and dataflow facts (PEGs)

associated with each vertex. The computation engine runs

the iterative algorithm over the subgraph represented by

the partition in a Bulk Synchronous Parallel (BSP) style [44].

For our example, Chianina uses two threads to run the it-

erative computation over the two partitions. The iterative

algorithm, which is the same as the traditional dataflow algo-

rithm, keeps updating PEGs until a fixed point is reached. For

example, when the computation reaches the mirror vertex 4

in P0, it stops because vertex 4 is not present in the partition

and there is no other path to continue the algorithm.

Before Chianina writes all updated PEGs back to disk for

P0, it adds statement 4 into the active list of P1 via a message,

together with the new PEG for this statement computed

in P0. When the current computation for P1 finishes, the

scheduler identifies that P1 has an active vertex (meaning

an updated PEG for the vertex has been computed from

another partition). As a result, it selects P1 for computation

again in the next round. This next round of computation

for P1 is incremental — it starts at statement 4 (known as

frontier in the terminology of graph processing) and only

updates subsequent PEGs that are affected by the change. The

repetitive process stops until a global fixed point is seen — no

partition has any active vertices to process. In our example,

the final OUT PEGs for the statements 1–6 are shown in

Figure 1c–1h, respectively.

Alias Computation. There are two choices as to how to

compute an alias solution (based on Equation 5 and 6) on each

PEG. The first choice is that alias computation is performed

on each PEG after the iterative algorithm finishes globally.

While the approach simplifies the dataflow transfer function

(which only needs to update direct assignment (i.e., a-) edges

during iterative computation), we are not able to perform

strong update (i.e., edge deletion) at each update because the

pointer/alias information is unknown when transfer func-

tions are applied. The second choice is we compute transitive

edges on each PEG on the fly as the PEG is updated. This ap-

proach enables strong updates because the alias information

is available at each update, at a cost of complicating transfer

functions — now each transfer function has to additionally

take care of addition/deletion of transitive (i.e., V- and M-)

edges besides assignment (a-) edges. Due to the importance

of strong update in a flow-sensitive analysis, Chianina adopts

918

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

the second approach, which computes and updates transitive

edges on the fly.

To illustrate, consider statement 6 in Figure 1a where

∗y points to a singleton memory location. A strong update

is performed there — the effect of this is to kill, from the

PEG OUT 5, (1) all direct assignment edges going to ∗y and

expressions that must alias ∗y, as well as (2) all transitive
edges induced by these assignment edges heretofore. In our

example, there exists no direct assignment edge to ∗y, but
our must-alias analysis determines that ∗y and ∗x must alias.

As such, the direct assignment edge z
a
−→ ∗x as well as the

induced edges z
V
←→ ∗x and &c

V
←→ ∗x are deleted. Details

about strong update and edge deletion can be found in §3.5.

&bx ya a

&c

z

a

VV
V

V

(a) д1

x

*x

d

&c

z
V

V

a

(b) д2

P1

FactsStmts

g13’

4 g1

g15

6

g2

&e va
V

g2

g1

*y

x y
d

*x

d

&e va

a

V

M

V

V

V
V

V

(c) Partition 1 after compression

Figure 2. Two frequent subgraphs mined over the PEGs in

Partition P1, with frequency ≥ 2 and size ≥ 3: (a) д1 whose
frequency = 4 and size = 7; (b) д2 whose frequency = 2 and

size = 4; (c) concise representation of P1 based on д1 and д2.

Exploiting Locality betweenConsecutive PEGs. One clear
advantage of our evolving graph formulation is that we can

exploit similarities between PEGs for increased efficiency.

In particular, Chianina extracts frequent common subgraphs

(FCS) among PEGs and composes each PEG by assembling ex-

isting FCSes instead of duplicating these common edges and

vertices in each PEG. In our example, P1 consists of 4 PEGs.
We invoke an off-the-shelf itemset miner Eclat [5] to discover

the frequent edge-sets across these PEGs. Figure 2a and 2b

depict two frequent subgraphs (д1 and д2), mined by using 2

as the frequency threshold and 3 as the size threshold. These

two thresholds determine, respectively, the minimum occur-

rences of a subgraph and the minimum number of edges

for the subgraph to be considered as a FCS. Next, Chianina

de-duplicates PEGs by replacing each instance of д1 and/or д2
in each PEG with a reference. As shown in Figure 2c, OUT 3

is now represented as a reference to д1 and OUT 4 as two

references to д1 and д2. OUT 5 and OUT 6 are stored as a

hybrid set of д1 and д2 references together with residue edges

that do not belong to any FCS. Details of this algorithm is

discussed in §3.4.

Dynamic Edge Pruning. Note that the pre-computed call

graph may contain spurious calls due to the imprecision of

the (inexpensive) points-to analysis used. To improve analy-

sis precision, Chianina enables dynamic pruning of edges if

our client is a pointer or alias analysis. Edge pruning can be

easily done by checking the validity for edges connecting ac-

tual and formal parameters in the cloned control flow graph.

The precise points-to set of the target variable computed by

our system is used on the fly to determine whether such an

edge is spurious. A spurious edge would not be traversed and

hence everything reachable from it would not be traversed.

A potential limitation is that it can be hard to pre-compute

a proper call graph for certain dynamic languages such as

JavaScript [19, 34, 43, 60]. To support such languages, future

work can extend Chianina to explore call edges on-the-fly as

part of the computation model.

Chianina is “Soundy”. Like a typical static analysis [41],
Chianina provides a sound solution if the program does not

perform type casts between pointers and values of other

types, and pointer arithmetic. Unsoundness can result from

these language issues.

3 Chianina Design and Implementation
We architect Chianina as an disk-based, out-of-core graph

system running on a single machine — since static analysis

is our application domain, the desired system should run on

developers’ working machines, providing support for their

daily development tasks. This section first discusses how a

developer can use Chianina and then its design.

3.1 Programming Model
Similarly to the monotone framework [31, 33], implementing

a client analysis on Chianina requires two tasks. First, the

developer needs to create a subclass of an interface called

DataflowFactGraph to specify her own graph implementa-

tion for dataflow facts. In the case of pointer/alias analysis,

this subclass is PEG. Second, she implements two functions

combine and transfer, which are used to merge dataflow

facts at the control join points and propagate dataflow facts

at statements, respectively.

As discussed earlier in §2.2, the frontend is a compiler pass

that generates, by default, the CFG for each function, and

each vertex of the CFG references another graph represent-

ing the dataflow fact at the vertex. The developer can also

customize the format of the CFG. For our pointer analysis,

we actually generates a more efficient sparse def-use graph

proposed in [23].

Applicability. Chianina is a general framework supporting

all context- and flow-sensitive analyses. In this paper, we

implemented three particular analyses, pointer/alias anal-

ysis, null-value flow analysis, and cache-analysis as proof-

of-concept examples. Flow-sensitive pointer/alias analysis

serves as the foundation for virtually all static analyses. The

null-value flow analysis is a representative of IFDS analy-

ses (including value flow analysis, taint analysis, etc.) while

cache analysis is an example of non-IFDS dataflow analysis.

Performance-wise, the heavier an analysis, the more bene-

fit Chianina provides. For example, a fully context-sensitive

analysis benefits the most because it can hardly be done

919

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

on a commodity PC without out-of-core support. On the

other hand, running an analysis that does not require much

memory on Chianina may incur extra overheads.

3.2 Two-Level Parallel Computation
Parallel processing is key to our performance. It is enabled

by cloning, which makes threading straightforward by phys-

ically separating CFGs under different contexts and elimi-

nating most of the sharing between threads.

Algorithm 1 provides Chianina’s iterative computation al-

gorithm. Chianina exploits parallelism at two levels: (1) bulk

synchronous parallel computation (BSP) at the partition level

(Line 7) and (2) asynchronous computation at the CFG vertex

level (Line 20). The loop between Line 5 and Line 16 describes

a typical BSP style computation — partitions scheduled to

process are loaded and processed completely in parallel dur-

ing each superstep (i.e., loop iteration). Each partition Pi
has three data structures: (1) Fi — the active CFG vertices

that form the frontier for the partition, (2) Gi — the set of

dataflow fact graphs, and (3) Qi — the message queue. In the

beginning, Fi contains all vertices in the partition (Line 3).

The partition-level BSP computation is done by the loop

from Line 7–10. Chianina loads the active vertices in Fi and

the dataflow fact graphs Gi of each scheduled partition Pi
into memory (Line 8), processes the partition (Line 9), and

finds and exploits frequent common subgraphs (Line 10).

Function ProcessPartition describes the logic of pro-

cessing of each partition that exploits parallelism at the (sec-

ond) CFG-vertex level. Chianina iterates, in parallel, over

the active CFG vertices in Fi , applying the two user-defined

functions Combine and Transfer on each vertex. The alias

computation logic is done in Transfer. If the resulting PEG

Tempk is not isomorphic to the previously computed OUT k
(Line 24), we record k into changeset and add k’s CFG suc-

cessors into the frontier set Fi . It is clear that this parallel

loop performs asynchronous computation — whenever a new

active vertex is detected, it is added into Fi and immediately

processed by a thread without any synchronization. Locks

(omitted here) are used to guarantee data race freedom — no

vertex will be processed simultaneously by multiple threads.

Asynchronous computation performs faster updates than

synchronous computation at the cost of increased scheduling

complexity. At the vertex level, since all CFG vertices of a

partition are already in memory, asynchronous parallelism

is a better fit as long as we can guarantee the data race

freedom and atomicity of the transfer function execution for

each vertex. However, at the partition level, our scheduler

determines which partitions to load and run based on a

set of already complex criteria, and hence, using BSP-style

parallelism significantly simplifies our scheduler design.

Finally, the loop at Line 29 iterates over all CFG vertices

whose dataflow facts have changed to find mirror vertices

such as statement 4 in Figure 1a. In particular, we find the

partition Pj that contains each mirror vertex s and puts

Algorithm 1: Two-level Parallel Computation.

1 V ← {all vertices in the cloned GCFG}

2 G ← {all initialized dataflow facts}

3 [P0:⟨F0,G0⟩, . . ., Pi :⟨Fi ,Gi ⟩, . . .]← Partition(V,G)

4 repeat
5 scheduled ← Schedule()

6 /*Level 1: BSP computation at partition level*/

7 for Partition Pi ∈ scheduled do in parallel
8 ⟨Fi ,Gi ⟩ ←Load(Pi)

9 ProcessPartition (Fi ,Gi)

10 CompressFCS(Gi)

11 for Each partition Pi do in parallel
12 if Qi , ∅ then Fi ← Qi
13 if Pi ∈ scheduled then /*for loaded partitions*/

14 Write Gi , Fi back to disk

15 Delete Pi from memory

16 until ∀i , Fi = ∅
17 Procedure ProcessPartition(Fi ,Gi)
18 changeset ← ∅

19 /*Level 2: Async. dataflow computation at stmt level*/

20 for each CFG vertex k ∈ Fi do in parallel
21 Remove k from Fi
22 INk ← Combine(k)

23 Tempk ← Transfer(INk)

24 if ¬ IsIsomorphic(Tempk ,OUT k) then
25 OUT k ← Tempk
26 changeset ← changeset ∪ {k}

27 Fi ← Fi∪ Successor(k) \Mirror

28 /* Process CFG vertices with changed dataflow facts*/

29 foreach CFG vertex k ∈ changeset do
30 foreach s ∈ Successor(k) do
31 if s is a mirror vertex then
32 Qj ← {⟨s,OUT k ⟩} ∪ Qj , where s ∈ Pj

its dataflow fact graph OUT k into its message queue Qj
(Line 32). Later, when all scheduled partitions are done with

their processing (Line 11), the synchronization phase starts

(Line 11 – Line 15), updating each partition Pi ’s active vertex

set Fi with the messages in Qi (received from the processing

of other partitions). At the end of each superstep, the updated

Gi andFi are written back to disk and removed frommemory

(Line 13) if partition Pi is currently in memory.

3.3 Partitioning and Scheduling

Partitioning. Chianina uses the vertex-centric edge-cut

strategy [44] for effective partitioning, which assigns CFG

vertices to partitions and cuts certain edges across partitions.

Specifically, vertices of the global control flow graph are

firstly divided into disjoint sets. A partition is then created

by assigning all the edges whose source or destination vertex

belongs to this set. There often exist edges of the form x → y

920

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

that cross two partitions P1 and P2 (e.g., x ∈ P1 and y ∈ P2).
Chianina creates mirror vertices x ′ and y ′, and places the

edges x → y ′ and x ′→ y into P1 and P2, respectively.
For each partition, its space is consumed by its CFG edges

as well as dataflow fact graphs associated with its vertices

(including mirror vertices). Dataflow fact graphs are main-

tained in a separate storage space from CFG edges. As a

result of this partitioning scheme, for any vertex (except for

mirrors) within a partition, Chianina can apply the transfer

function on it by accessing and updating its incoming and

outgoing dataflow facts. For each vertex whose successor is

a mirror vertex, when its associated dataflow fact is updated,

the mirror vertex is marked as active. A message containing

the vertex ID and its updated dataflow fact graph is sent to

its containing partition, as shown in Line 32 in Algorithm 1.

How to split GCFG nodes into disjoint sets determines

the effectiveness of partitioning, which has further impact

on the overall performance. Traditional graph partitioning

schemes [8] minimize the number of cuts across partitions,

with the goal to save communication costs. However, those

schemes do not consider the unique characteristics of our

(flow-sensitive analysis) workload. For example, the com-

putation performed by a flow-sensitive analysis follows the

structure of the CFG. It is well-known in the program anal-

ysis community that the convergence speed of an iterative

analysis is significantly affected by the order in which CFG

vertices are visited [13]. Intuitively, desirable performance

can be achieved if all predecessors of a CFG vertex have

been processed before the vertex itself, because the transfer

function can just use the latest updates from its predecessors.

Based on the insight, we propose a balanced, topology-

based partitioning mechanism. Given the number of par-

titions (specified by the user as a parameter) and the total

number of vertices in theGCFG,we first calculate the average

number of vertices for each partition. Next, the partitioner

traverses the GCFG in a topological order (a.k.a. reverse post-

order of DFS traversal), starting from each entry vertex of

the GCFG. The traversal continues until the number of ver-

tices visited matches (roughly) the average number. Once a

partition is generated, we repeat the same process by using

another unvisited vertex as the root. Eventually, all partitions

are produced with balanced sets of vertices that also follow

the traversal order.

This algorithm works well for CFGs without cycles. To

deal with cycles (induced by loops), we compute strongly con-

nected components (SCCs for brevity) over the GCFG. The

nodes within a SCC are connected to each other. As a result,

the control flow graph with cycles becomes an acyclic graph

with SCCs. The above algorithm can then be conducted over

the acyclic graph to produce balanced partitions.

Scheduling. Similarly to the partitioning scheme, the sched-

uler also needs to take into account topology when deciding

which partitions to load and process. Due to dependencies

induced by inter-partition edges (say x → y), one major

goal of the scheduler is to schedule the processing of the

partition containing x before that of the partition contain-

ing y, so that communication costs can be reduced and the

algorithm can converge quickly. To this end, we devise a

priority queue based scheduling mechanism. We assign each

partition a priority, which is a function of (1) the number

of its active vertices (i.e., the size of Fi) and (2) whether or

not the partition is currently in memory. The more active

vertices a partition has, the more updates can be generated

during computation. Furthermore, if a partition is already in

memory, processing it again in the next superstep can save

the large cost of a memory-disk round trip.

Our scheduler selects a number N of partitions with the

highest priority. The value of N is determined by (1) the

amount of memory each partition is estimated to consume,

(2) the total amount of available memory, and (3) the number

of CPU cores. Our goal is to fully utilize the memory and

CPU resources without creating extra stress.

3.4 FCS-Based De-Duplication
Although Chianina divides the input into many small parti-

tions, partitions are still space-consuming especially because

each CFG vertex carries a dataflow fact graph. These graphs

exhibit both temporal and spatial locality — graphs belong-

ing to connected CFG vertices are processed contiguously

and have large overlap. To exploit such overlaps, we propose

a frequent-itemset-based approach to find frequent common

subgraphs and perform de-duplication by maintaining only

one instance for each FCS and replacing other instances

with references. De-duplication (Line 10 in Algorithm 1) is

conducted before writing dataflow facts back to disk. In par-

ticular, our algorithm models each dataflow fact graph (e.g.,

PEG) as an itemset where each item is an edge. The graph

miner discovers frequent itemsets, each of which occurs at

least N times (i.e., N is a threshold) among dataflow fact

graphs in the same partition.

Once these FCSes are mined, we check each dataflow fact

graph and see if it contains any FCSes. If it does, we replace

each instance of each FCS with a reference, as illustrated in

Figure 2c. Given multiple FCSes, there may exist multiple

ways to conduct the placement. Given that the benefits of de-

duplication are determined primarily by an FCSes’ frequency

and size. The higher these numbers are, the more benefit

can be reaped. As such, Chianina assigns each FCS mined

a priority score, computed as the product of its frequency

and size. A greedy algorithm is then used to apply candidate

FCSes in the descending order of their priority.

In Chianina, we leverage an off-the-shelf frequent itemset

mining tool Eclat [5] to uncover FCSes. Although leveraging

these FCSes significantly reduces the size of dataflow facts,

it inevitably introduces overhead. With the growth in both

the number and size of dataflow facts, the mining cost is

non-trivial — it can take several minutes to run each mining

921

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

task for large partitions in our experiments. To reduce the

overhead, we can focus only on very frequent and/or very

large FCSes by raising the mining thresholds. Moreover, we

randomly sample the dataflow fact graphs in each partition,

selecting no more than 10K graphs as our mining dataset.

These two approaches collectively bring the overhead down

to an acceptable percentage (i.e., less than 5%).

3.5 Strong Update and Edge Deletion
As stated earlier, the dataflow transfer function transfer
needs to be provided by the developer. For pointer/alias

analysis, the transfer function not only applies the logic

of GEN and KILL, but also discovers transitive edges on

each PEG to compute an alias solution. The logic of GEN

is straightforward — Rule 1–4 in §2.1 clearly describes how

new edges should be added. The algorithm of computing the

alias solution from a PEG is based on CFL-reachability [35,

59] (shown in Equation 5 and 6) and well-known to the

community [80]. Hence, we do not include this algorithm

in the paper. The logic of KILL (i.e., edge deletion) involves

strong update, which is crucial for achieving high precision

of flow-sensitive analysis [14, 37, 62]. Since this logic is much

trickier than that for edge addition, here we focus on the

discussion of edge deletion.

Condition for Strong Update. Strong update can be en-

abled on pointer expression x such that x is guaranteed to

refer to a single memory location (i.e., singleton) throughout

the execution. We follow [37] to identify our singleton set.

The detailed algorithm is known and omitted from the paper

to save space. Informally, a local or global variable is single-

ton except for the following cases: (1) dynamically allocated

variables, where one abstract variable may correspond to

multiple memory locations during execution; (2) local vari-

ables of recursive procedures (either directly or transitively

recursive), where each variable may have multiple instances

on the stack; and (3) array variables where usually only one

element is updated.

Edges to Delete. When such an expression (e.g., ∗p = v) is
defined, strong update may be performed because the value

contained in the location l pointed-to by p changes. This

removes the value-aliasing (Equation 5) between ∗p and any

pointer variables that previously receive their values from

the location. On the PEG, two kinds of edges need be deleted:

all (direct and transitive) edges (a) going into and (b) coming

out of any pointer expressions referring to l . For (a), there
are four sub-cases: (a.1) direct assignment edges going to

expression ∗p, added due to a previous statement such as

∗p = x — such a relationship no longer holds; (a.2) direct

assignment edges going to expression ∗q such that p and

q must alias. p and q must alias if they both have only one

and the same memory location o in their points-to set and

o is a singleton memory location; (a.3) transitive (V- or M-)

edges going to expression ∗p — these edges represent aliasing

relationships between the old value inside ∗p and another

Table 1. Characteristics of subject programs.

Subject Version #LoC #Inlines #V-CFG #E-CFG Description

Linux 5.2 17.5M 48.5M 443.5M 668.7M OS

Firefox 67.0 7.9M 22.2M 283.5M 504.9M web browser

PostgreSQL 12.2 1.0M 5.4M 39.3M 80.4M database

OpenSSL 1.1.1 519K 4.5M 49.4M 99.3M protocol

Httpd 2.4.39 196K 293K 2.6M 3.8M web server

pointer expression and thus need to be deleted; and (a.4)

transitive (V- or M-) edges going to expression ∗q such that

p and q must alias; these edges need to be deleted for similar

reasons. We need to remove not only edges going into ∗p,
but also edges coming out of ∗p. For example, a direct edge

coming out of ∗p due to a previous statement v = ∗p needs

to be deleted, since v is not longer related to ∗p which now

contains a different value. Similarly to (a), four sub-cases

exist in (b), which need to be deleted as well.

4 Evaluation
Our evaluation focuses on the following three questions:

• Q1: How does Chianina perform?How does it compare

to other analysis implementations? (§4.1)

• Q2: How effective are our de-duplication, partitioning,

and scheduling? (§4.2)

• Q3: Is the extra precision gained from context- and

flow-sensitivity useful in practice? (§4.3)

We selected five large software systems including the

Linux kernel, Firefox, PostgreSQL, OpenSSL, and Apache

Httpd as our analysis subjects.We implemented three context-

and flow-sensitive analyses on top of Chianina: a point-

er/alias analysis discussed in the paper as an example, a

null-value flow analysis with context-sensitive heap track-

ing, as well as an instruction cache analysis with 512 cache

lines and LRU replacement policy. The null-value analysis

was conducted in parallel with the pointer/alias analysis —

because pointer information is needed to track flows into/out

of the heap, this analysis implements its dataflow fact graph

by augmenting the PEG representation from the pointer/alias

analysis with additional types of vertices representing null

or non-null values. For the cache analysis, we adopted the

same abstract cache model as [71], which represents a pro-

gram as a set of instructions and their associated ages. The

analysis computes a cache model at each program point and

determines whether the instruction at the point leads to a

cache hit or miss.

The Chianina-based implementation for the pointer/alias

analysis has 553 lines of C++ code, most of which are on the

implementation of CFL-reachability and strong update. In

contrast, a context-, flow-insensitive pointer analysis [37]

(that supports strong update) has 2499 lines of C++ code,

while the staged context-insensitive, flow-sensitive analysis

for C [24] has 10,649 lines. The implementations for other

two analyses (null-value flow and cache analysis) have 708
and 436 lines of C++ code, respectively.

922

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

Table 2. Chianina performance: columns shown are numbers of partitions (#Part.), numbers of iterations needed to converge

(#Ite.), total numbers of vertices (#V-PEGs) and edges (#E-PEGs) in the GCFG for alias and null-value flow analysis, total

numbers of cache states (#States) for cache analysis, and analysis times (Time), respectively.

Alias analysis NULL value flow analysis with alias tracking Cache analysis

Subject #Part. #Ite. #V-PEGs #E-PEGs Time #Part. #Ite. #V-PEGs #E-PEGs Time #Part. #Ite. #States Time

Linux 287 339 5.9B 126.1B 20.9hrs 290 355 6.1B 126.2B 22.6hrs 232 4364 18.9B 24.4hrs

Firefox 150 183 3.4B 84.2B 11.4hrs 150 193 3.8B 85.0B 12.5hrs 158 1949 9.6B 10.6hrs

PostgreSQL 34 43 482.1M 13.7B 1.3hrs 42 45 513.6M 13.7B 1.5hrs 30 808 1.3B 2.4hrs

OpenSSL 12 21 442.1M 5.7B 55.3mins 12 22 468.1M 5.7B 59.8mins 31 582 1.1B 2.7hrs

Httpd 1 1 37.6M 585.4M 4.7mins 1 1 41.2M 589.3M 5.0mins 2 17 110.2M 7.3mins

As discussed earlier, context sensitivity is achieved by

aggressive function cloning. Table 1 reports the static char-

acteristics of each subject including its version information,

the number of lines of code excluding whitespace and com-

ments (#LoC), the number of functions inlined (#Inlines), the

numbers of CFG vertices (#V-CFG) and edges (#E-CFG) in

the global CFG after cloning, and the type description.

All the experiments were conducted on a commodity desk-

top with an Intel Xeon W-2145 8-Core CPU, 16GB memory,

and 1T SSD, running Ubuntu 16.04. This resource profile is

consistent with that of developers’ working machines.

4.1 Chianina Performance
Table 2 reports, for the three client analyses, a variety of

performance statistics including numbers of partitions gen-

erated, numbers of iterations (supersteps) needed for con-

vergence, total numbers of vertices and edges in all PEGs

for alias and null value flow analysis, total number of cache

states (i.e., pair of instruction and its age) in the cache models

for cache analysis, and total computation times.

The numbers of partitions for large programs such as

Linux and Firefox are greater than 100. It would not have

been possible to scale the analysis to such large programs

without our disk support. Overall, it took the three analyses

20.9, 22.6, and 24.4 hours to process the entire Linux kernel

in a context- and flow-sensitive fashion. These analyses con-

verged much faster for smaller programs such as Httpd (in

a few minutes), which can be analyzed as only one or two

partitions.

3.5 6.8 3.8 2.4 2.5

5
10.1

6.3 4.4 6.2

88.8
80.1 87.9 89.6 88.1

2.7 3 2 3.6 3.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Preprocess I/O BSP FCS

Figure 3. Performance breakdown of alias analysis: for each

subject, shown bottom-up are fractions of preprocessing, I/O,

BSP computation, and FCS de-duplication.

0

20

40

60

80

100

120

140

1 2 4 8

Figure 4. Alias analysis on Linux: time (in hours) with vary-

ing numbers of threads.

Performance Breakdown. To better understand the perfor-
mance, we further broke down the alias analysis execution

into four phases – preprocessing (i.e., partitioning), disk I/O

(i.e., reading/writing partitions), (in-memory) BSP compu-

tation, and FCS de-duplication – and measured the time

spent on each phase. Figure 3 depicts the time breakdown.

As shown, the in-memory BSP computation dominates the

execution. For example, it takes around or more than 80% of

the time for all five programs, indicating that these analyses

are compute-intensive. This is expected because each iter-

ation updates hundreds of millions of PEGs, each of which

can have thousands of edges. This observation suggests that

more CPU resources (e.g., cores, GPUs, or cluster) should be

enlisted to further improve performance. Time spent on I/O

varies across programs; for Linux, it takes around 6% of the

total execution time. This fraction is reasonably small due

to use of modern SSDs that have much higher bandwidth

and lower read/write latency than HDDs. The cost of FCS

de-duplication is constantly lower than 4%, thanks to the

optimizations discussed in §3.4.

Parallel Scalability. To understand Chianina’s (thread)

scalability, we measured the alias analysis time on Linux for

varying numbers of threads used in the system. As shown

in Figure 4, Chianina scales almost linearly with the num-

ber of threads because cloning eliminates most of the data

sharing between threads. In contrast, most existing analyses

are single-threaded. Even for multi-threaded implementa-

tions [3, 53], it is hard for them to achieve such a speedup

without physical separation of functions under different con-

texts (enabled by cloning).

Existing Analyses. The goal of this comparison is to un-

derstand if our context- and flow-sensitive alias analysis is

923

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 3. Performance comparison for context-insensitive,

flow-sensitive pointer analysis; OOM indicates out-of-

memory; - indicates runtime error.

Linux Firefox PostgreSQL OpenSSL Httpd

Reference[24] OOM OOM 14.7mins OOM 34.7s

SVF[63] - OOM 56.1s OOM 8.3s

Chianina 1.9hrs 4.2hrs 3.9mins 25.7mins 11.5s

more scalable and efficient than state-of-the-art analysis im-

plementations. However, we could not find any available

implementation of the same analysis for C. Yu et al. [77] and

Kahlon [29] reported the context- and flow-sensitive pointer

analyses, but neither of the implementations is publicly avail-

able. Hardekopf et al. [23, 24] and Lhotak and Chung [37]

have both implemented the variations of flow-sensitive but

context-insensitive pointer analysis for C. Although their

implementations are available online, they were developed

a long time ago for deprecated versions of LLVM, which

are incompatible with the subject programs and our OS.

Doop [6] is a context-sensitive analysis framework, but it

only supports Java and does not have a C frontend. The

only available tool we can run is SVF [63], a demand-driven

flow-sensitive analysis tool, which does not support whole-

program context-sensitive pointer analysis.

Since no existing implementation for both context- and

flow-sensitive pointer/alias analysis was available for direct

comparison, we implemented by ourselves the staged flow-

sensitive pointer/alias analysis, by faithfully following the

algorithm described in [24]. The original analysis in [24]

does not consider context sensitivity, and hence, we added

context sensitivity to our implementation by letting the anal-

ysis take as input the cloned GCFG, which is automatically

context sensitive (we cannot do this to SVF due to different

implementation bases). We compared Chianina with this

version in a fully context-sensitive, flow-sensitive manner.

This reference implementation failed to analyze most pro-

grams except for Httpd in our benchmark set — it ran out

of memory quickly in a few seconds. This is not surprising

as holding the GCFG for large programs requires a huge

amount of memory. For Httpd, the reference implementation

(single-threaded) takes more than 20 minutes and is much

slower than Chianina. This is due to the high parallelism

degree in Chianina, which is, in turn, enabled by cloning and

our out-of-core support.

Next, we disabled context sensitivity in Chianina, enabling

direct comparisons between Chianina, SVF, and the refer-

ence implementation of [24]. In this setting, all the three

tools ran context-insensitive, flow-sensitive pointer analysis.

Table 3 reports the analysis times the three tools took to

analyze the five programs. Without context sensitivity, the

reference implementation still failed to analyze Linux, Fire-

Fox and OpenSSL due to out-of-memory errors. SVF ran out

of memory for Firefox and OpenSSL, and crashed on Linux.

For Httpd and PostgreSQL, all the tools successfully ana-

lyzed them. Chianina outperformed [24] thanks to parallel

processing. For PostgreSQL, however, SVF achieved better

performance than Chianina. This is easy to understand —

many optimizations Chianina performs for scalability pur-

poses (e.g., preprocessing, scheduling, disk I/O, and FCS de-

duplication) take time to run; if scalability is not a concern,

these optimizations would only add overhead.

Precision and Correctness Validation. We first compared

the precision of flow-sensitivity among the three analyses in

Table 3 (Chianina is in its context-insensitive version) using

the alias-set metric. Particularly, we examined each pointer

dereference expression in load and store statements of the

program, and measured the average sizes of their alias sets

weighted by the number of times each variable is derefer-

enced — the smaller the better. On Httpd and PostgreSQL, for

which these three flow-sensitive analyses scale, they achieve

almost the same average sizes, with a less than 0.5% variation,

indirectly validating the correctness of our implementation.

We further verified Chianina’s correctness by testing it

over a micro-benchmark set PTABen [1] in both context- and

flow-sensitive settings. Our analysis passed all assertions.

4.2 De-Duplication, Partitioning and Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

#Items #Iterations Time

Figure 5. Percentages in numbers of PEG edges, numbers of

iterations (i.e., supersteps) needed, and total time spent for

Chianina + FCS, using Chianina - FCS as the baseline (100%).

To understand the performance impact of de-duplication,

we compared two versions of Chianina, one with FCS de-

duplication enabled (Chianina + FCS) and another without

(Chianina - FCS). We ran these two versions under the same

configuration and inputs for alias analysis, and collected the

relevant execution statistics. Figure 5 depicts the numbers of

PEG edges, numbers of iterations needed for convergence,

and total time spent for Chianina + FCS, as a fraction of

those of Chianina - FCS (i.e., the baseline). Note that since

Httpd is a small program with only one single partition, we

excluded it from the set for the FCS evaluation. As shown,

de-duplication significantly improved all of these aspects.

For example, the overall time is reduced by more than 30%

on average when FCS de-duplication is enabled.

To understand the efficacy of our partitioning and sched-

uling, we collected the statistics for alias analysis in a similar

manner by running two versions of Chianina, one with our

924

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

#Iterations Time

Figure 6. Percentages in numbers of iterations and total time

for Chianina + PS using Chianina - PS as baseline (100%);

Httpd is not considered here as it has one single partition.

partitioning and scheduling algorithm (Chianina + PS) and

a second that uses default algorithms (Chianina - PS) — in

particular, in the second version, we partitioned the GCFG

using the min-cut algorithm [44] and scheduled random par-

titions (with active vertices) for processing in each superstep.

We use Chianina - PS as the baseline and report the statistics

for Chianina + PS as a fraction in relation to the baseline in

Figure 6. The statistics considered include numbers of itera-

tions needed for convergence, and time spent. As shown, our

partitioning and scheduling algorithms are effective — they

significantly improve the efficiency in all these aspects. For

example, total running time is reduced by more than 40% by

employing our structure-aware partitioning and scheduling.

Table 4. Sizes of alias sets of pointer expressions involved in
load and store statements under three different pointer/alias

analyses – our context-sensitive and flow-sensitive (CF),

context-insensitive and flow-sensitive (F), context-sensitive

and flow-insensitive (C).

Load Store

Subject CF F C CF F C

Linux 0.24 0.54 7.18 0.31 0.95 5.54

Firefox 0.29 0.70 5.08 0.14 1.51 3.80

PostgreSQL 0.44 1.54 14.0 1.11 1.57 18.1

OpenSSL 0.77 4.06 10.38 0.08 0.25 0.61

Httpd 0.38 1.46 11.72 1.97 1.97 10.80

4.3 Usefulness of Gained Precision
To understand the gained accuracy of our context- and flow-

sensitive alias analysis, we used the same alias-set metric

to compare precision among three variants of Chianina–

the full context- and flow-sensitive analysis (CF), a context-

insensitive, flow-sensitive analysis (F), and a context-sensitive,

flow-insensitive analysis (C). Table 4 reports the average sizes

of alias sets for each analysis. Clearly, our flow- and context-

sensitive analysis has the highest precision. The context-

sensitive and flow-insensitive analysis (C) has the largest

number (i.e., lowest precision). This observation demon-

strates that flow-sensitivity is more important than context-

sensitivity for large C programs because analysis precision

loses significantly if strong update is disabled.

Table 5. Checkers implemented including the dataflow

analysis-based null pointer dereference (DF-Null), use-after-

free (DF-UAF), double free (DF-DF) and the belief analysis-

based null pointer dereference (BA-Null), their numbers of

bugs reported by the baseline checkers augmented with our

context- and flow-insensitive analysis (base+CF), context-

sensitive and flow-insensitive (base+C), context-insensitive

and flow-sensitive (base+F) in the Linux kernel 5.2.

Checker DF-Null DF-UAF DF-DF BA-Null total

base+CF 196 647 193 620 1656

base+C 217 1144 212 723 2296

base+F 211 805 200 663 1879

To measure the real-world usefulness of the increased pre-

cision, we implemented four static checkers: (1) a dataflow-

based null pointer dereference checker, (2) a use-after-free

checker, (3) a double-free checker, and (4) a belief analysis

based null pointer dereference checker. The first three check-

ers were commonly used in the program analysis commu-

nity [52, 67] and the last checker was used in the classical bug

study done by Engler et al. [7, 18]. Note that the original ver-

sions of these checkers do not use any pointer information;

they only use heuristics. To understand the effectiveness of

our flow-sensitive alias analysis, we augmented these check-

ers with alias information provided by three analyses — our

context- and flow-sensitive analysis (CF), context-sensitive,

flow-insensitive analysis (C), and context-insensitive and

flow-sensitive analysis (F). We next compared the numbers

of warnings generated by these four checkers when aug-

mented with each of these three pieces of alias information.

The fewer warnings generates, the better (i.e., more false pos-

itives are pruned). Table 5 reports these numbers — a large

number of false warnings are pruned by enabling context

and flow sensitivity. Similarly to an earlier observation, flow

sensitivity seems more important than context sensitivity as

well in pruning false warnings.

5 Related Work
Evolving Graph Systems. Although we formulate flow-

sensitive analysis as an evolving graph processing problem,

the nature of the problem differs significantly from that dealt

with in the graph system community [22, 27, 45, 65]. Sys-

tem design depends on (1) data and (2) computation. On

the data side, each vertex of the graph in Chianina is asso-

ciated with a separate dataflow graph. This kind of graphs

differs significantly from the typical evolving graphs where

no semantic dependence exists between vertices. On the

computation side, the computation in Chianina is defined by

vertex types — each vertex (statement) performs arbitrary

edge addition/deletion based on the statement’s semantics

and client type. This computation model differs from the

computation in existing systems, which is driven solely by

the graph algorithm (e.g., PageRank) and has nothing to do

925

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

with the graph itself. In summary, the semantics of program

analysis makes Chianina distinctive and none of existing

systems are able to perform this type of computation.

Flow-Sensitive Analyses. A common optimization of scal-

ing flow-sensitive analysis is to perform a sparse analysis

preventing redundant values from being propagated [10, 51].

Hind and Pioli [26] adopted the sparse evaluation graph

[12] which eliminates pointer-free statements from the CFG.

Hardekopf and Lin [23, 24] proposed to utilize a semi-sparse

representation by connecting variable definitions with their

uses, allowing dataflow facts to be propagated only to the

locations needing the variable. Sui and Xue implemented

SVF [63], which constructs the sparse value-flow graph and

performs the pointer analysis in an iterative manner. Other

techniques such as [25, 64] use similar ideas to scale flow-

sensitive analysis. To accelerate an interprocedural dataflow

analysis, a few techniques attempt to parallelize its compu-

tation. Rodriguez et al. [53] proposed an actor-model-based

parallel algorithm for IFDS problems. Garbervetsky et al. [20]

developed a distributed worklist algorithm using the actor

model to implement a call-graph analysis. Albarghouthi et al.

[3] parallelize a top-down interprocedural analysis using a

MapReduce-like computation model. Several studies [49, 79]

attempt to parallelize flow-sensitive pointer analysis. Since

they all require large amounts of memory, there is no evi-

dence that these approaches can scale to the Linux kernel.

Context-Sensitive Analyses. Generally, there are two dom-

inant approaches to context-sensitive interprocedural analy-

sis: the summary-based approach and the cloning-based ap-

proach [56]. The summary-based approach [11, 47, 52, 55,

70, 72, 76] constructs a summary (transfer) function for each

procedure, and directly applies the summary to the specific

inputs at the call site invoking the function. Although it is

scalable for certain cases, it does not provide complete alias

information for each particular context due to lack of explicit

representation of calling contexts. Furthermore, it is difficult

for certain analyses (e.g., pointer analysis) to establish a suc-

cinct summary for each function and precisely model heap

effects. The cloning-based approach [17, 69, 73, 74] provides

complete information. However, it requires each procedure

to be re-analyzed under each calling context and hence is

hard to scale. Demand-driven techniques [9, 59, 75] match

call/return edges on the fly for context sensitivity. A body

of techniques have also been proposed to perform selective

context sensitivity [32, 39, 40, 42, 46, 50, 57, 58, 78], so as to

find sweatspots between scalability and precision.

Systems for Static Analyses. BDDBDDB [69] and Doop [6]

are the early pioneers that run sophisticated static analysis

on Datalog engines. These Datalog engines (even including a

recent one Soufflé [28]) do not provide out-of-core disk sup-

port and they are fundamentally limited by the size of main

memory. None of themwere able to scale a fully context- and

flow-sensitive analysis to large-scale systems like Linux on

the commodity desktop we used. Weiss et al. [68] presents

a database-backed static analysis for error propagation. A

recent piece of work Graspan [67] aims to scale context-free

language (CFL) reachability based analyses to large programs

with disk support. Although Chianina is inspired by the same

high-level observation as Graspan, it is impossible to extend

Graspan to support arbitrary flow-sensitive analyses without

re-designing the system from scratch. The simple computa-

tion logic for graph reachability does not work for Chianina’s

complex dataflow semantics. As an extension to Graspan,

BigSpa [21, 81] adapts the same computation model to a

distributed setting. Grapple [82] supports path sensitivity

by concisely encoding path constraints. However, neither

of them process evolving graphs or support flow-sensitive

analyses that we focus on in this paper. Google [54] and

Facebook [16] also deployed their analysis tools in the paral-

lel/distributed setting to analyze their large-scale codebases.

Chianina is another quest in this direction scaling context-

and flow-sensitive analyses to large programs while requir-

ing developers to provide only basic analysis algorithms.

6 Conclusion
This paper presents Chianina, a novel evolving graph sys-

tem for scalable context- and flow-sensitive analysis for C

code. Chianina requires developers to provide only the basic

algorithm while leveraging system-level optimizations for

scalability and efficiency. Using Chianina, a fully context-

and flow-sensitive pointer/alias analysis can scale to modern

large codebase like Linux kernel.

Future work can extend Chianina to analyze other lan-

guages as well. Chianina currently needs a pre-computed

call graph to perform cloning. It can be hard to pre-compute

a proper call graph for certain dynamic languages such as

JavaScript. One potential extension is to add support for

constructing the call graph on the fly based on pointer infor-

mation computed. Moreover, adapting our work to a cloud

setting is also a worthy task so as to further boost analysis

scalability. The architecture of Chianina involving parallel

processing model, partitioning and scheduling, is immedi-

ately applicable to the cluster/cloud settings.

Acknowledgments
We thank the anonymous reviewers and especially our shep-

herd Sandeep Dasgupta for their valuable comments and

feedback. Our thanks also go to Yulei Sui for his feedback on

SVF. This work was partially supported by the National Nat-

ural Science Foundation of China (No. 62032010, 61802168,

and 62002157), the Natural Science Foundation of Jiangsu

Province (No. BK20191247), the Fundamental Research Funds

for the Central Universities (No. 14380065), the US National

Science Foundation under grants CNS-1613023, CNS-1703598,

CNS-1763172, CNS-2006437, and CNS-2007737, and the US

Office of Naval Research under grants N00014-16-1-2913 and

N00014-18-1-2037.

926

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

References
[1] [n.d.]. PTABen: a micro-benchmark suite for pointer analysis. https:

//github.com/SVF-tools/Test-Suite. Accessed: 2020-11-17.
[2] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett,

and Peter Hawkins. 2007. An Overview of the Saturn Project. In

Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering (San Diego, California,

USA) (PASTE ’07). 43–48. https://doi.org/10.1145/1251535.1251543
[3] Aws Albarghouthi, Rahul Kumar, Aditya V. Nori, and Sriram K. Ra-

jamani. 2012. Parallelizing Top-down Interprocedural Analyses. In

Proceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (Beijing, China) (PLDI ’12). 217–228.

https://doi.org/10.1145/2254064.2254091
[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

McDaniel. [n.d.]. FlowDroid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle-aware Taint Analysis for Android Apps. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Edinburgh, United Kingdom)

(PLDI ’14). 259–269. https://doi.org/10.1145/2594291.2594299
[5] Christian Borgelt. 2017. Find Frequent Item Sets with the Eclat Algo-

rithm. http://www.borgelt.net/doc/eclat/eclat.html.

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative

Specification of Sophisticated Points-to Analyses. In Proceedings of

the 24th ACM SIGPLAN Conference on Object Oriented Programming

Systems Languages and Applications (Orlando, Florida, USA) (OOPSLA

’09). 243–262. https://doi.org/10.1145/1640089.1640108
[7] Fraser Brown, Andres Nötzli, and Dawson Engler. 2016. How to Build

Static Checking Systems Using Orders of Magnitude Less Code. In

Proceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems (Atlanta,

Georgia, USA) (ASPLOS ’16). 143–157. https://doi.org/10.1145/2872362.
2872364

[8] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and

Christian Schulz. 2016. Recent Advances in Graph Partitioning. Springer

International Publishing, Cham, 117–158.

[9] Cheng Cai, Qirun Zhang, Zhiqiang Zuo, Khanh Nguyen, Guoqing

Xu, and Zhendong Su. 2018. Calling-to-Reference Context Transla-

tion via Constraint-Guided CFL-Reachability. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Philadelphia, PA, USA) (PLDI 2018). 196–210.

https://doi.org/10.1145/3192366.3192378
[10] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Anal-

ysis of Pointers and Structures. In Proceedings of the ACM SIGPLAN

1990 Conference on Programming Language Design and Implemen-

tation (White Plains, New York, USA) (PLDI’90). 296–310. https:
//doi.org/10.1145/93542.93585

[11] Ben-Chung Cheng and Wen-Mei W. Hwu. 2000. Modular Inter-

procedural Pointer Analysis Using Access Paths: Design, Implemen-

tation, and Evaluation. In Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and Implementation

(Vancouver, British Columbia, Canada) (PLDI ’00). 57–69. https:
//doi.org/10.1145/349299.349311

[12] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. 1991. Automatic

Construction of Sparse Data Flow Evaluation Graphs. In Proceed-

ings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Orlando, Florida, USA) (POPL ’91). 55–66.

https://doi.org/10.1145/99583.99594
[13] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. 2004. Iterative

data-flow analysis, revisited. Technical Report.

[14] Arnab De and Deepak D’Souza. 2012. Scalable Flow-Sensitive Pointer

Analysis for Java with Strong Updates. In Proceedings of the 26th Eu-

ropean Conference on Object-Oriented Programming (Beijing, China)

(ECOOP’12). 665–687. https://doi.org/10.1007/978-3-642-31057-7_29

[15] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, Complete

and Scalable Path-Sensitive Analysis. In Proceedings of the 29th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (Tucson, AZ, USA) (PLDI ’08). 270–280. https://doi.org/10.1145/
1375581.1375615

[16] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.

O’Hearn. 2019. Scaling Static Analyses at Facebook. Commun. ACM

62, 8 (July 2019), 62–70. https://doi.org/10.1145/3338112
[17] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-

Sensitive Interprocedural Points-to Analysis in the Presence of Func-

tion Pointers. In Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation (Orlando, Florida,

USA) (PLDI ’94). 242–256. https://doi.org/10.1145/178243.178264
[18] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000.

Checking System Rules Using System-Specific, Programmer-Written

Compiler Extensions. In Proceedings of the 4th Conference on Sympo-

sium on Operating System Design and Implementation - Volume 4 (San

Diego, California) (OSDI’00). Article 1.

[19] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and

Frank Tip. 2013. Efficient Construction of Approximate Call Graphs

for JavaScript IDE Services. In Proceedings of the 2013 International

Conference on Software Engineering (San Francisco, CA, USA) (ICSE

’13). 752–761.

[20] Diego Garbervetsky, Edgardo Zoppi, and Benjamin Livshits. 2017.

Toward Full Elasticity in Distributed Static Analysis: The Case of

Callgraph Analysis. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE

2017). 442–453. https://doi.org/10.1145/3106237.3106261
[21] Rong Gu, Zhiqiang Zuo, Xi Jiang, Han Yin, Zhaokang Wang, Linzhang

Wang, Xuandong Li, and Yihua Huang. 2021. Towards Efficient Large-

Scale Interprocedural Program Static Analysis on Distributed Data-

Parallel Computation. IEEE Trans. Parallel Distrib. Syst. 32, 4 (April

2021), 867–883. https://doi.org/10.1109/TPDS.2020.3036190
[22] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014.

Chronos: A Graph Engine for Temporal Graph Analysis. In Proceedings

of the Ninth European Conference on Computer Systems (Amsterdam,

The Netherlands) (EuroSys ’14). Article 1, 14 pages. https://doi.org/10.
1145/2592798.2592799

[23] Ben Hardekopf and Calvin Lin. 2009. Semi-Sparse Flow-Sensitive

Pointer Analysis. In Proceedings of the 36th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Savan-

nah, GA, USA) (POPL ’09). 226–238. https://doi.org/10.1145/1480881.
1480911

[24] Ben Hardekopf and Calvin Lin. 2011. Flow-Sensitive Pointer Analysis

forMillions of Lines of Code. In Proceedings of the 9th Annual IEEE/ACM

International Symposium on Code Generation and Optimization (CGO

’11). 289–298.

[25] Rebecca Hasti and Susan Horwitz. 1998. Using Static Single Assign-

ment Form to Improve Flow-Insensitive Pointer Analysis. In Proceed-

ings of the ACM SIGPLAN 1998 Conference on Programming Language

Design and Implementation (Montreal, Quebec, Canada) (PLDI’98). 97–

105. https://doi.org/10.1145/277650.277668
[26] Michael Hind and Anthony Pioli. 1998. Assessing the Effects of Flow-

Sensitivity on Pointer Alias Analyses. In Proceedings of the 5th Inter-

national Symposium on Static Analysis (SAS’98). 57–81.

[27] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.

2016. Time-evolving Graph Processing at Scale. In Proceedings of the

Fourth International Workshop on Graph Data Management Experiences

and Systems (Redwood Shores, California) (GRADES ’16). Article 5,

6 pages.

[28] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé:

On Synthesis of Program Analyzers. In Computer Aided Verification,

Swarat Chaudhuri and Azadeh Farzan (Eds.). 422–430.

927

https://github.com/SVF-tools/Test-Suite
https://github.com/SVF-tools/Test-Suite
https://doi.org/10.1145/1251535.1251543
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/2872362.2872364
https://doi.org/10.1145/2872362.2872364
https://doi.org/10.1145/3192366.3192378
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/349299.349311
https://doi.org/10.1145/349299.349311
https://doi.org/10.1145/99583.99594
https://doi.org/10.1007/978-3-642-31057-7_29
https://doi.org/10.1145/1375581.1375615
https://doi.org/10.1145/1375581.1375615
https://doi.org/10.1145/3338112
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/3106237.3106261
https://doi.org/10.1109/TPDS.2020.3036190
https://doi.org/10.1145/2592798.2592799
https://doi.org/10.1145/2592798.2592799
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1145/277650.277668

Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code PLDI ’21, June 20–25, 2021, Virtual, Canada

[29] Vineet Kahlon. 2008. Bootstrapping: A Technique for Scalable Flow

and Context-Sensitive Pointer Alias Analysis. In Proceedings of the

29th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Tucson, AZ, USA) (PLDI ’08). 249–259. https:
//doi.org/10.1145/1375581.1375613

[30] John B. Kam and Jeffrey D. Ullman. 1976. Global Data Flow Analysis

and Iterative Algorithms. J. ACM 23, 1 (Jan. 1976), 158–171. https:
//doi.org/10.1145/321921.321938

[31] John B. Kam and JeffreyD. Ullman. 1977. MonotoneData FlowAnalysis

Frameworks. Acta Inf. 7, 3 (Sept. 1977), 305–317.

[32] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-

Sensitivity for Points-to Analysis. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (Seattle, Washington, USA) (PLDI ’13). 423–434. https:
//doi.org/10.1145/2491956.2462191

[33] Gary A. Kildall. 1973. A Unified Approach to Global ProgramOptimiza-

tion. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages (Boston, Massachusetts)

(POPL ’73). 194–206. https://doi.org/10.1145/512927.512945
[34] Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. 2015. Prac-

tically Tunable Static Analysis Framework for Large-Scale JavaScript

Applications. In Proceedings of the 30th IEEE/ACM International Con-

ference on Automated Software Engineering (Lincoln, Nebraska) (ASE

’15). 541–551. https://doi.org/10.1109/ASE.2015.28
[35] John Kodumal and Alex Aiken. 2004. The Set Constraint/CFL Reach-

ability Connection in Practice. In Proceedings of the ACM SIGPLAN

2004 Conference on Programming Language Design and Implementation

(Washington DC, USA) (PLDI ’04). 207–218. https://doi.org/10.1145/
996841.996867

[36] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making

Context-Sensitive Points-to Analysis with Heap Cloning Practical for

the Real World. In Proceedings of the 28th ACM SIGPLAN Conference

on Programming Language Design and Implementation (San Diego,

California, USA) (PLDI ’07). 278–289. https://doi.org/10.1145/1250734.
1250766

[37] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to

Analysis with Efficient Strong Updates. In Proceedings of the 38th An-

nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Austin, Texas, USA) (POPL ’11). 3–16. https://doi.org/10.
1145/1926385.1926389

[38] Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-

to Analysis: Is It Worth It?. In Proceedings of the 15th International

Conference on Compiler Construction (Vienna, Austria) (CC’06). 47–64.

https://doi.org/10.1007/11688839_5
[39] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018.

Precision-Guided Context Sensitivity for Pointer Analysis. Proc.

ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages.

https://doi.org/10.1145/3276511
[40] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018.

Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). 129–140.

https://doi.org/10.1145/3236024.3236041
[41] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej

Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer,

Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In

Defense of Soundiness: A Manifesto. Commun. ACM 58, 2 (Jan. 2015),

44–46. https://doi.org/10.1145/2644805
[42] Jingbo Lu and Jingling Xue. 2019. Precision-Preserving yet Fast Object-

Sensitive Pointer Analysis with Partial Context Sensitivity. Proc. ACM

Program. Lang. 3, OOPSLA, Article 148 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360574

[43] Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Prac-

tical Static Analysis of JavaScript Applications in the Presence of

Frameworks and Libraries. In Proceedings of the 2013 9th Joint Meet-

ing on Foundations of Software Engineering (Saint Petersburg, Russia)

(ESEC/FSE 2013). 499–509. https://doi.org/10.1145/2491411.2491417
[44] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.

Pregel: A System for Large-scale Graph Processing. In Proceedings

of the 2010 ACM SIGMOD International Conference on Management

of Data (Indianapolis, Indiana, USA) (SIGMOD ’10). 135–146. https:
//doi.org/10.1145/1807167.1807184

[45] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen.

2015. ImmortalGraph: A System for Storage and Analysis of Temporal

Graphs. ACM Trans. Storage 11, 3, Article 14 (July 2015), 34 pages.

https://doi.org/10.1145/2700302
[46] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-

terized Object Sensitivity for Points-to Analysis for Java. ACM Trans.

Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41. https://doi.org/10.1145/
1044834.1044835

[47] Brian R. Murphy and Monica S. Lam. 1999. Program Analysis with

Partial Transfer Functions. In Proceedings of the 2000 ACM SIGPLAN

Workshop on Partial Evaluation and Semantics-Based Program Ma-

nipulation (Boston, Massachusetts, USA) (PEPM ’00). 94–103. https:
//doi.org/10.1145/328690.328703

[48] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. 2013. Naiad: A Timely Dataflow Sys-

tem. In Proceedings of the Twenty-Fourth ACM Symposium on Operat-

ing Systems Principles (Farminton, Pennsylvania) (SOSP ’13). 439–455.

https://doi.org/10.1145/2517349.2522738
[49] Vaivaswatha Nagaraj and R. Govindarajan. 2013. Parallel Flow-

Sensitive Pointer Analysis by Graph-Rewriting. In Proceedings of the

22nd International Conference on Parallel Architectures and Compilation

Techniques (Edinburgh, Scotland, UK) (PACT ’13). 19–28.

[50] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and

Kwangkeun Yi. 2014. Selective Context-Sensitivity Guided by Im-

pact Pre-Analysis. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation (Edinburgh,

United Kingdom) (PLDI ’14). 475–484. https://doi.org/10.1145/2594291.
2594318

[51] John H. Reif and Harry R. Lewis. 1977. Symbolic Evaluation and the

Global Value Graph. In Proceedings of the 4th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages (Los Angeles,

California) (POPL ’77). 104–118. https://doi.org/10.1145/512950.512961
[52] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interpro-

cedural Dataflow Analysis via Graph Reachability. In Proceedings of

the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (San Francisco, California, USA) (POPL ’95). 49–61.

https://doi.org/10.1145/199448.199462
[53] Jonathan Rodriguez and Ondřej Lhoták. 2011. Actor-Based Parallel

Dataflow Analysis. In Proceedings of the 20th International Conference

on Compiler Construction: Part of the Joint European Conferences on The-

ory and Practice of Software (Saarbrücken, Germany) (CC’11/ETAPS’11).

179–197.

[54] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon,

and Ciera Jaspan. 2018. Lessons from Building Static Analysis Tools

at Google. Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/
10.1145/3188720

[55] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise Interpro-

cedural Dataflow Analysis with Applications to Constant Propagation.

Theor. Comput. Sci. 167, 1-2 (Oct. 1996), 131–170.

[56] M Sharir and A Pnueli. 1978. Two approaches to interprocedural data

flow analysis. New York Univ. Comput. Sci. Dept., New York, NY.

https://cds.cern.ch/record/120118
[57] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and

Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse Value Flow

928

https://doi.org/10.1145/1375581.1375613
https://doi.org/10.1145/1375581.1375613
https://doi.org/10.1145/321921.321938
https://doi.org/10.1145/321921.321938
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/512927.512945
https://doi.org/10.1109/ASE.2015.28
https://doi.org/10.1145/996841.996867
https://doi.org/10.1145/996841.996867
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/2644805
https://doi.org/10.1145/3360574
https://doi.org/10.1145/3360574
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2700302
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/328690.328703
https://doi.org/10.1145/328690.328703
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/512950.512961
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3188720
https://cds.cern.ch/record/120118

PLDI ’21, June 20–25, 2021, Virtual, Canada Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. Xu

Analysis for Million Lines of Code. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (Philadelphia, PA, USA) (PLDI 2018). 693–706. https:
//doi.org/10.1145/3192366.3192418

[58] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick

Your Contexts Well: Understanding Object-Sensitivity. In Proceedings

of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Austin, Texas, USA) (POPL ’11). 17–30.

https://doi.org/10.1145/1926385.1926390
[59] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based Context-

sensitive Points-to Analysis for Java. In Proceedings of the 27th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (Ottawa, Ontario, Canada) (PLDI ’06). 387–400. https:
//doi.org/10.1145/1133981.1134027

[60] Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and

Anders Møller. 2019. Static Analysis with Demand-Driven Value Re-

finement. Proc. ACM Program. Lang. 3, OOPSLA, Article 140 (Oct.

2019), 29 pages. https://doi.org/10.1145/3360566
[61] Y. Su, D. Ye, and J. Xue. 2014. Parallel Pointer Analysis with CFL-

Reachability. In 2014 43rd International Conference on Parallel Process-

ing. 451–460. https://doi.org/10.1109/ICPP.2014.54
[62] Yulei Sui and Jingling Xue. 2016. On-Demand Strong Update Analy-

sis via Value-Flow Refinement. In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineer-

ing (Seattle, WA, USA) (FSE 2016). 460–473. https://doi.org/10.1145/
2950290.2950296

[63] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-

Flow Analysis in LLVM. In Proceedings of the 25th International Confer-

ence on Compiler Construction (Barcelona, Spain) (CC 2016). 265–266.

https://doi.org/10.1145/2892208.2892235
[64] Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. 2006. Efficient Flow-

Sensitive Interprocedural Data-Flow Analysis in the Presence of Point-

ers. In Proceedings of the 15th International Conference on Compiler

Construction (Vienna, Austria) (CC’06). 17–31. https://doi.org/10.1007/
11688839_3

[65] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2016. Synergistic Analysis

of Evolving Graphs. ACM Trans. Archit. Code Optim. 13, 4, Article 32

(Oct. 2016), 27 pages. https://doi.org/10.1145/2992784
[66] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and

Accurate Computations on Streaming Graphs via Trimmed Approxi-

mations. In Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating

Systems (Xi’an, China) (ASPLOS ’17). 237–251. https://doi.org/10.1145/
3037697.3037748

[67] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan

Amiri Sani. 2017. Graspan: A Single-Machine Disk-Based Graph Sys-

tem for Interprocedural Static Analyses of Large-Scale Systems Code.

In Proceedings of the Twenty-Second International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(Xi’an, China) (ASPLOS ’17). 389–404. https://doi.org/10.1145/3037697.
3037744

[68] Cathrin Weiss, Cindy Rubio-González, and Ben Liblit. 2015. Database-

Backed Program Analysis for Scalable Error Propagation. In Proceed-

ings of the 37th International Conference on Software Engineering -

Volume 1 (Florence, Italy) (ICSE ’15). 586–597.

[69] John Whaley and Monica S. Lam. 2004. Cloning-Based Context-

Sensitive Pointer Alias Analysis Using Binary Decision Diagrams.

In Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (Washington DC, USA) (PLDI

’04). 131–144. https://doi.org/10.1145/996841.996859
[70] Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-Sensitive

Pointer Analysis for C Programs. In Proceedings of the ACM SIGPLAN

1995 Conference on Programming Language Design and Implementation

(La Jolla, California, USA) (PLDI ’95). 1–12. https://doi.org/10.1145/
207110.207111

[71] Meng Wu and Chao Wang. 2019. Abstract Interpretation under Specu-

lative Execution. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). 802–815. https://doi.org/10.1145/3314221.3314647
[72] Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Us-

ing Boolean Satisfiability. In Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Long

Beach, California, USA) (POPL ’05). 351–363. https://doi.org/10.1145/
1040305.1040334

[73] Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts

for Scalable Heap-Cloning-Based Context-Sensitive Points-to Analysis.

In Proceedings of the 2008 International Symposium on Software Testing

and Analysis (Seattle, WA, USA) (ISSTA ’08). 225–236. https://doi.org/
10.1145/1390630.1390658

[74] Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-

Reachability-Based Points-To Analysis Using Context-Sensitive Must-

Not-Alias Analysis. In Proceedings of the 23rd European Conference on

ECOOP 2009 — Object-Oriented Programming (Italy) (Genoa). 98–122.

https://doi.org/10.1007/978-3-642-03013-0_6
[75] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-Driven

Context-Sensitive Alias Analysis for Java. In Proceedings of the 2011

International Symposium on Software Testing and Analysis (Toronto, On-

tario, Canada) (ISSTA ’11). 155–165. https://doi.org/10.1145/2001420.
2001440

[76] Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating Pre-

cise and Concise Procedure Summaries. In Proceedings of the 35th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (San Francisco, California, USA) (POPL ’08). 221–234.

https://doi.org/10.1145/1328438.1328467
[77] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing

Zhang. 2010. Level by Level: Making Flow- and Context-Sensitive

Pointer Analysis Scalable for Millions of Lines of Code. In Proceedings

of the 8th Annual IEEE/ACM International Symposium on Code Genera-

tion and Optimization (Toronto, Ontario, Canada) (CGO ’10). 218–229.

https://doi.org/10.1145/1772954.1772985
[78] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok

Yang. 2014. On Abstraction Refinement for Program Analyses in Dat-

alog. In Proceedings of the 35th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (Edinburgh, United King-

dom) (PLDI ’14). 239–248. https://doi.org/10.1145/2594291.2594327
[79] Jisheng Zhao, Michael G. Burke, and Vivek Sarkar. 2018. Parallel

Sparse Flow-Sensitive Points-to Analysis. In Proceedings of the 27th

International Conference on Compiler Construction (Vienna, Austria)

(CC 2018). 59–70. https://doi.org/10.1145/3178372.3179517
[80] Xin Zheng and Radu Rugina. 2008. Demand-Driven Alias Analysis for

C. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (San Francisco, California,

USA) (POPL ’08). 197–208. https://doi.org/10.1145/1328438.1328464
[81] Z. Zuo, R. Gu, X. Jiang, Z. Wang, Y. Huang, L. Wang, and X. Li. 2019.

BigSpa: An Efficient Interprocedural Static Analysis Engine in the

Cloud. In 2019 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). 771–780. https://doi.org/10.1109/IPDPS.2019.
00086

[82] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu,

Kai Wang, Guoqing Harry Xu, LinzhangWang, and Xuandong Li. 2019.

Grapple: A Graph System for Static Finite-State Property Checking

of Large-Scale Systems Code. In Proceedings of the Fourteenth EuroSys

Conference 2019 (Dresden, Germany) (EuroSys ’19). Article 38, 17 pages.

https://doi.org/10.1145/3302424.3303972

929

https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/3360566
https://doi.org/10.1109/ICPP.2014.54
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1007/11688839_3
https://doi.org/10.1007/11688839_3
https://doi.org/10.1145/2992784
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/207110.207111
https://doi.org/10.1145/207110.207111
https://doi.org/10.1145/3314221.3314647
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1390630.1390658
https://doi.org/10.1145/1390630.1390658
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/1772954.1772985
https://doi.org/10.1145/2594291.2594327
https://doi.org/10.1145/3178372.3179517
https://doi.org/10.1145/1328438.1328464
https://doi.org/10.1109/IPDPS.2019.00086
https://doi.org/10.1109/IPDPS.2019.00086
https://doi.org/10.1145/3302424.3303972

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Background
	2.2 Chianina Overview

	3 Chianina Design and Implementation
	3.1 Programming Model
	3.2 Two-Level Parallel Computation
	3.3 Partitioning and Scheduling
	3.4 FCS-Based De-Duplication
	3.5 Strong Update and Edge Deletion

	4 Evaluation
	4.1 Chianina Performance
	4.2 De-Duplication, Partitioning and Scheduling
	4.3 Usefulness of Gained Precision

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

