[image: image1.png]486 CHAPTER 10/ADVANCED TOPICS IN COMPLEXITY THEORY

1. Inputstring. The objectiveisto determine whether this string is a member
of some language. In the NONISO example, the input string encoded the
two graphs.

2. Random input. For convenience in makirg the definition, we provide the
Verifier with a randomly chosen input string instead of the equivalent ca-
pability to make probabilistic moves during its computation.

3. Partial message history. A function has no memory of the dialog that kas
been sentso far, so we provide the memory externally via a string represent-
ing the exchange of messages up to the present point. We use the notation
my#mok - - #m; to represent the exchange of messages my through m;.

The Verifier’s outputis either the next message ;11 in the sequence or accept or
reject, designatirg the conclusion of the interaction. Thus V' has the functional
form V: B* x £ x B*— 5* U { accept, reject}

V(w, 7, my#---#m;) = mj;1 means that the input string is w, the random
inputis 7, the current message history is m; through 7m;, and the Verifier’s next
message to the Praver is ;1.

“The Prover isa party with unlimited computational ability. We define it to be
a function P with two inputs:

1. Input string.
2. Partial message history.

The Prover’s output s the next message to the Verifier. Formally, P has the form
JZOT OB =

P(w, mq#- - #m;) = myy1 means that the Prover sends ;41 to the Verifier
after having exctanged messages m, through m; so far.

Next we defire the interaction between the Prover and the Verifier. For par-
ticular strings w and 7, we write (V=P)(w,r) = accep! if a message sequence
my through my, 2xists for some k whereby

1. for 0 < i < k, where i is an even number, V(w, . my#- - - #115) = miy1;

2. for 0 < i < F, where i is an odd number, ke #my) = mysq; and

3. the final messzge my, in the message history is accepi.

To simplify the definition of the class IP we assume that the lengts of the
Verifer’s random inputand each of the messages exchanged between the Verifier
anc the Prover are p(n) for some polynomial p that depends only on the Verifier.
TFurthermore we assume that the total number of messages exchanged is at most
p(n). The folloving definition gives the probability that an interactive proof sys-
tem accepts ar iput string w. For any string w of length n, we define

Pr[VePacceptsw] = Pr[(VerP)(w,r) = accept],

where r is a randomly selected string of length p(n).

10.4 INTERACTIVE PROOF sysTEms 357

DEFINITION 10.24

Say that language A is in IP if some polynomial time function V' and arbitrary
function P exist, where for every function P and string w
L. w € Aimplies Pr[VP accepts w

w > 2 and
2.w ¢ Aimplies Pr[VP accepts w] <

We may amplify the success probability of an interactive proof system through
repetition as in Lemma 10.5 to make the error probability exponentially small.
Obviously, IP contains both the classes NP and BPP. We have also shown thatit
contains the lenguage NONISO, which is not known to be in either NP cr BPP.
As we will next show, IP is a surprisingly large class, equal to the class PSPACE.

IP = PSPACE

In this section we will prove one of the more remarkable theorems in complexity
theory: the equality of the classes IP and PSPACE. Thus for any languzge in
PSPACE, a Prover can convirce a probabilistic polynomial time Verifier about

the membership of a string in the language, even though a conventional proof of
membership might be exponentially long,

THEOREM 10.25
IP = PSPACE.

We break this theorem into lemmas that establish containment in each direc-
tion. The firs lemma shows IP € PSPACE. Though a bit technical, the proof
of this lemma is a standard simulation of an interactive proof system by a poly-
nomial space machine.

LEMMA 10.26
IP C PSPACE.

PROOF Let A be a language in IP. Assume that A’ Verifier V exchanges ex-
actly p = p(n) messages when the input w has length n. We constructa PSPACE
machine M that simulates V. First, for any string w we define

Pr[V accepts w] = E,Wxﬂu_.:wl.v accepts w |

Thisvalueisatleast 2 if wisin Aandis at mos: } if not. We show how to calculate
this value in polynomial space. Let M, denote a message history my# - - - #m;.

[image: image2.png]/38 CHAPTER 10/ ADVANCED TOPICS IN COMPLEXITY THEORY

We generalize the definitior of the interaction of V and P to start with an erbi-
trary message stream M;. We write (Ve P)w,r M) = aceept if we can extend
M; with messages 11 through mj, so that

1. for j <i < p, where i is an even number, V(w, 7, M;) = i1

2. forj < i< p,wherciisan odd number, P(w, M) = mi+13 and

3. the final messege My, in the message ‘history is accept-

Further generalizing ovr exrlier definitions we define

Pr[V P accepts w starting at M,] = Pr[(VeR)w M) = accept]

L

for a random string 7 of length p. We then define

F?.mnnowas starting at M; | = max Pr[VP accepts v starting at M; |.

For every 0 < j < and every message stream M let Nay; be defined indue-
tively as follows. “The base case is j = p for every M;.

0 j =pandm, = reject

it j =pand mj, = accept
= PG oddj<p

wt-avg,,, 1 evenj <p

Here, Wt-aVgy,,, VM., MmEANS SR aiy (P [Viw.rs :\\m._HEiL. ZENL.T
where P+, denotes a probability taken over a random 7 of length p. The expres-
sion is the averagz of Nag.s weighted by the probability that the Verifier sent
message Mj+1-

Let M be the empty message stream. ‘We make two claims about value Nz,
Tirst, ar. algorithm car calculate Ny, in polynomial space That algorithm re-
cursively calculates the values Ny, for every j and M;. The depth of the recur-
sion is p, and therefore only polynomial space is needed. Second, Na, equals
Pr[V accepts w ", the value needed in order to determine whether w is i1 A We

prove this <econd claim by induction as follows.

cLamv 10.27
Forevery 0 <j<p and every Mj,

Ny, = Pr_V accepts starting at M)
We prove this claim by induction on j, where the basis occurs at j = P and the
induction proceeds from p down t0 0.

Basis: Prove for j = p- We knaw that m,, is either cept or reject. fmy is
aecepi, Nag, 1s defined to be 1, and Pr[V accepts w starting at M; | = 1becavse
the message stream already indicates acceptance, SO the claim is true. The case

10.4 INTERACTIVE PROOF SYSTEMS 997

Induction step: Assume that the claim is true for some j+ 1 < pand any message
stream 241 Prove that it is true for j and any message stream M;. If j is even.
mp is a messege from V to P. We then have the szries of equalities:

Ny, < M (Pr [V (w, 7, Mj) = min] Nagspn)

byt
P : .
2 5 (Pre V(wyr, My) = mjs1] - Pr V accepts w starting at Mis1))

My
£ Pr[V accepts w starting at M ¢

mmnmm&\ Lis the definition of Ny, Equelity 2 is based on the induction hyporh-
esis. Equality 3 follows from the definition of Pr[/ accepts v starting at M; .
Thus the claim holds if j is even. If j is odd, mij41 is a message from Pto V. We
then have the series of equalities:

1

Vo, = max Nag,, -

mi-1

mex Pr|V acce] i
Dex [V accepts w starting at M;.1 |

2

2 Pr[V aceepts w starting at Mj |

Equality 1 s the definition of Ny, . Equality 2 uses the induction typothesis. We
break equality 3 into two inequalities. ‘We have < because the Prover that maxi-
mmizes the lower line could send the message riz;+1 that maximizes the upper line.
We have > because that same Prover cannot do any better than send that same
message. Sending anything other than a message that maximizes the upper line
would lower the resulting value. That proves the claim for odd 5 and completes
the proof of the theorem.

: Zo_és.m prove the other direction of Theorem 10.25. The oroofof tais lemma
introcuces a navel algebraic method of analyzing zemputation.

LEmma 10.28
PSPACE C IP.

Before getting to the proof of this lemma, we prove a wezker result <hatil-

Justrates the techrique. Define the counting problen for satisfiability to be the
language .

#SAT = {(p, k)| ¢ is a enf-formula with exactly k satisfying assignments}

[image: image3.png]~J CHAPTER 10/ ADVANCED TOPICS IN COMPLEXITY THEORY

THEOREM 10.29
#SAT e IP.

PROOF IDEA This proof presents a protocol whereby the Prover persuadzs
the Verifier that & is the actval number of satisfying assignmients of 4 given enf-
formula ¢. Before getting to the protocol itself let’s consider another m_\o.ﬁoaa
that has some of the flavor of the correct one bu: is unsatisfactory because it re-
quires an exponential time Verifier. Say that has variables z; through .

Let f; be the function where for 0 < i < manday, ... ,a; € {0,1} we set
filas, ..., 6:) equal to the number of satisfying assignments of ¢ M.& tha: m,»or
a; = a; for j <i. The constant function fg (] is the number of satisfying assign-
ments of . The function [(a1, .. . am) is 1if those a;’ satisfy ¢ otherwise it
is 0. An easy identity holds for every i < mand ay, ... ,a;:

Al a) = fil(en, 0 a0) + fisa(a e L),

The protocol for #SAT begins with phase 0 anc ends with phese m + 1. The
input is the peir (p, k).

Phase 0. P sends f5() 0 V.
V checks that k = fo() and rejects if not.

Phase 1. P sends f,(0) and f1(1) to V.

V checks that fo() = f1(9) + /(1) ard rejects if not.

Phase 2. P sends £,(0,0}, f2(0.1), f2(1.0), and f>(1,1) to V.

V checks that f(0) = f5(0.0)+ f2(C,1) and f1(1) = £2(1,0) + fa(1,1) and rejects
if not.

Phase m. P sends f(ai, ..., an) for each assignment to the ai’s. .
V checks the 2™~ equations lirking f,,_1 with f,, and rejects if any fail.

Phase m+1. V checks that the values f(a1) for each assignment to
the a;'s are correct by evaluating ¢ on that assiznment. If all assignments are

correct it accepts; otherwise it 7ejects. That complete the description of the pro-
tocol.

This protocol doesn’t provide a proof that #S4T is in 1P because the Verifisr
must spend exponentizl time just to read the exporentially long messages that
the Prover sends. Le=s examine it for correctness, anyway, beczuse that helps us
understand the next, more efficient protocol.

Intuitively, a protocol recognizes a language A if 2 Prover can n.ov&bg the
Verifier of the membership of strings in A. In other words, if a string isa member
of A, some Prover can cause the Verifier to accept with high _E.ovm?__nw. If the
string isn’t a member of A, no Prover—not even a Qoowm.m or Cevious one—can
cause the Verifier to accept with more thar low probability. We use the symbol
P to designate the Prover who correctly mo:.c&”m the .E..ono.n& and sﬂa ESWJ.\

10.4 INTERACTIVE PROOF sYsTEMS 361

P o designate any Prover that interacts with the Verifier when the inputisn’t in
A. Think of P as an adversary—as though P were atempting to make 1 accept
when V should re/ect. The notation P is suggestive of a “crooked” Prover.

In the #SAT protocol we just described, the Verifier ignores its rendom input
and operates deterministically once the Prover has been selected. Hence we don’t
need probabiliies to show that the protocol operates correctly. We reed to show
that, if & were the correct number of satisfying assignmer.ts ¢ in the input (¢, ki,
some Prover P would cause V' to accept. This case is obviously true. I k weren't
correct, every Prover P would cause V to reject. We argue that case as follows

If k were not correct and P follows the protocol as described for P, V rejects
outright in phese 0 because f;() is the number of ¢'s satisfying assignments and
therefore fy() # k. Tc prevent V from rejecting in phase 0, P must deviate from
the orotocel by sending an incorrect value for Jol), denoted fo (). Intuitively, £y ()
isa Jie about the value of fy(). As in real life, lies beget ‘ies, and P will be forced
to continue lying about other values of f; in order to avoid being ¢
later phases. Eventually these lies will
checks the values of £,, directly.

Mare precisely, because fo{) # Jo(), at least ane of the valaes f1(0) and £ (1)
that P sends in phase 1 must be incorrect; otherwise 1/ rejects when i checks
whether fo() = f (t I+ /1(1). Let’s say that f; (0] was incorrectand call the value
that was sent instead ,{0). Continuing in this way we see that at every phase
P must end up sending some incorrect value Filar, .. @), or V would have
rejected by that point. But when V checks the incorrect value Tl o ot
in phase m + 1 it will reject anyway. Thus we have shown that i f is incorrect,
V rejects no metter what P does. Therefore the protocol is correct.

The problem with this protocal is that the number of messages doubles with
every phase. This doubling occurs because the Verifier recuires the two values
Siga(---,0)and fi11(... 1) to confirm the one value fil.). If we could find
& way for the Verifie- to confirm a value of f; with only a single value of f.,,
the number of messages wouldn’t grow at all. We can do so by extending the
funcidons f; to nen-Boolean inputs and confirming the single value f;.; (52
for some 7 selected at random from a finite field.

a aught during
catch up with P in phase m + 1 wheze V

PROOF Let ¢ be a cnf-formula with variables 2 through &,,.. In a technique
called arithmetization, we associa‘e with $a polynomial p(a; ,Zom) where p
mimics ¢ by simulating the Beolean 4, V, and = operations with the arithmetic
cperations + and X as follows. If a and 3 are subformulas we replace expressions

aAf by of,
-a by 1-e¢,and
aVB by axB=1-(1-a)1-g).

One observation regarding p that will be important to us later is that he de-
grec of any of its variables is not large. The operations a/f and ax § each prodace
apolynomial whose degrees are at mos the sum of the de grees of the polynomials
s el 2

[image: image4.png]862 CHAPTER 10/ ADVANCED TOPICS IN COMPLEXITY THEORY

Ifp's variables are assigned Boo'ean values, it agrees with ¢ or that assignment.
Evaluating p when the variables are assigned non-Boolean valuzs has no obvious
interpretatior: in . Hawever, the proof uses such assignments anyway to analyze
6, muchas the proof of Theorem 10.12 uses non-Boolean assignments to analyze

read-onze branching programs. The variables range over a finite field F with ¢
elements where g is at least 2.

‘We use p to redefine the functions f; that we defined in the proof idea section
Fer0<i<mandforay,...,a; € Flet

filay, .. @) » plag, i an):

Git1ye,0mE{01}

Observe that this redefinition extends the original defirition because the two
agree when the ;s take on Boolean values. Thus f; (] is still the number of sat-
isfying assignments of ¢. Each of the functions fi(z1, ... ,a;) can be expressec
asa polynomial in 2, tirough ;. The degress of each of these polynomials is at
most that of .

Nextwe present the protocol for #SAT" Initially V" receives input {¢, k) and
arithmezizes ¢ to obtia polynomial p. A comment in double brackets appears at
the stert of the descr:psion of each phase.

Phase 0. [P sends fo).]

P—V: Psends prime g thatislarger than 2" and a short proof of its primality,’
and P sends fo() to V. All further arithmetic is in the field 7 with ¢ elements.
V checks the proof that ¢ is prime and that & = fo(). V rejects if either fail.

Phase 1. [P persuades 1 that () is correct if f1 ;) is correct. |

P—V: P sends the coefficients of m_h:v as & polynomial in z.

V uses these coefficients to evaluate f1(0) and £ (1). It then checks that the de-
gree of the polynomial is at most n m:m that fo() = f1(0) + fi(1). V rejects if
either fail. (Remember that all calculations are done over F.)

V—P: V selects ry atrandor from 7 and seads it to P.

Phase 2. [P persuades V that fi(r) is correct if fa(r1, 72) 's corract. |

P—V: P sends the caefficients of fy(r, 2) as a polynemial in 2

V uses these coeificierts to evaluate f(r1,0) and fo(ry, 1). It then checks that
the degree of the polyromial is at most n and that f; (r1) = fa(r1,0) + f(r1, 1).
V rejects if either fail.

V—P: V selects 73 atrandor from F and sends it to P.

Phased. [PpersuadesV that fi-1{r-, .. ,r_1)iscorrectif fi(r, . ,r:)iscorrect,]
P—V: F sends the caefficients of f;(rq, z) as a polynomial in z.
V uses these coefficierts to evaluate f;(r JELCHAGER T 1)

“Hete we usc the fact that PRIVIES € NP. The proof we give shortly of the stronger

10.4 INTERACTIVE PROOF SYSTEMS 363

It then checks that the degree of the polynomial is at mest n and also that

firtrey oo ymic) = filrn, oo, mie, O) + filrn, oo i, 1),V rejects if ei-
ther fail.

V—P: V selects 7; at random frora F and sends it to P.

Phase m+1. [V checks directly that fou{r, ...) is correct. |
V evaluates p(ry, ... ,r) to compare with the value V has for fo,(r1, ... 7).

If they are equal, V' accepts; otherwise V' rejects. That completes the description
of the protocol

Now we show that this protocol accepts #SAT. First, if ¢ has k satisfying as-
signments, V' obviously accepts with certainzy if Prover P follows the protocol.
Second, we show that if doesn’t have k assignments, no Prover can make it ac-
cept with more than a low probability. Let P be any Prover.

To prevent V from rejecting outright, P must serd an incerrect value 3@ for
fo() in phase 0. Therefore in Esma 1 one of the va'ues that VV calculates for f, (0}
and f1(1) must be incor-ect, and thus wrm coefficierts that P sent for Si(z)asa
polynomial in z must be wrong. Let f1(z) be the function that these coefficients
represent instead. Next comes 2 key step of the proof,

When V' picks a random 71 in F, we claim that f;(r1) is unlikely to equal
fi(r1). For n > 10 we show that

Pr[Fi(r) = fu(ri)] <

Thatbound on the probability follows from Lemma 10.13: A solynomial in a
single variable of degree at most d can have no more than d roots, unless it alwzys
evaluates to (. Therefore any two polynomials in a single variable of degree at
most d can agree in 2t most d places, unless they agree everywhere.

Recall that the degree of the moqzoa,m_ m& J1isatmost n and that V' rejects
if the degree of the polynomial P sends for f) is greater than n. We have already
determined that these functions don’t agree everywhere, so Lemma 10.13 implies
they car agrez in at most n places. The size of F is greater than 2", The chance
that 1 happens to be one of n places where the functions agree is at most n/2",
which is less than n =2 for n > 10. 4 ¥

“To recap what we've shown so far, if fo() is wroag, fi’s polynorial must be
wrong, and then f;(r1) would likely be wrong by virtue of the preceding claim.
In the unlikely event that f(r;] zgrees with _ (r1), P was “lucky” at -his phase
and it will be able to make V" accept (even though V should reject) by following
the instructions for P in the rest of the protocol

Continuing further with the argument, if f; (ry) were wrong, at least one of
the values V computes for j>(r1,0) and fz(r1, 1) in phase 2 must be wrong, so
the coefficients that P sent for f(ry, 2) as a polynomial ir. 2 must be wrong, Let
f2(r1, 2] be the function these ncwmmﬁn:z represent instead. The polynomials
for E: z)and Q: z) have degree at most n, so as before the probability that
they agree at a random 7y in J is at most =2 Thus, when V" oicks ro at random.

[image: image5.png]~4 CHAPTER 10/ ADVANCED TOPICS IN COMPLEXITY THECRY

The general case follows in the same way to show that for each 1 < i <m

e G

then for n > 10 and for r; is chosen at random in
Pr[firs, o om) = filry, -)] <m 7

Thus, by giving an incorrect value for fo(), P is probably ‘orced to give incor-
rect vauss for f1(1), f2(r1,72), 21d 50 0n 0 f (71, - 7). The probability
that P gets lucky because V' selects an ry, where fi(r1, .. ,7) = fi(r1, ... ,7)
even though fiand f; are different in some phase, is the number of phases m
2 or at most 1 /n. If P never gets lucky, it eventually sends an incorrect
value for fo, (71, ...,). ButV checks that value of fp, dirzctly in phase m + 1
and will catch any error at that point. So if k is not the nurber of sazisfying as-
signments of ¢, no Prover can make the Verifier accept with probability greater
than 1/n.

To complete the proof of the theorem, we need only show that the Verifier
operates ir. probablistic polynorial time, which is obvious from its description.

times 7.~

Next, we return to the proof of Lemma 10.28, that PSPACE C IP. The proof
similar to that of Theorem 10.29 except for an additional idea used here to lower
the degrees of polynomials that occur in the protocol.

PROOF IDEA Let’s first try the idea we used in the preceding proof and de-
termine where the difficulty occurs. To show that every language in PSPACE is
in [P, we need only show that the PSPACE-complete language TQBF is in IP.
Ler ¢ be a quantified Boolean formula of the form

P = Qa1 Qo2 -+ Quatm [4],

where ¢ is a enf-formula and each Q: is 3 or V. We define functions f; as be-
fore, except that now we take the quantifiers into account. For 0 < i < mand
ay, ... am € {0,1} let

1 if Qu@igr - Qutm [#las, ... ,a:)] is true,
0 otherwise.

fila, ... a5) =

where pfa, ... ,u;) is ¢ with a; through a; substituzed for z1 tarough z;. Thus
Jo() is the truth value of 1), We then have the arithmetic identities

Qg7 filas, oo va) = fiafar, o y00,0) - fisa(ar, oo yas,1) and
Qg3 filar, ova) = finlar, o 23,0) 5 fipa (3, o a3, 1).
Recall thar we defired @ y 0 be 1 — (1 — z)(1 —).

A natural variation of the pratocol for #SAT suggests itself where we extend
the ;% to a finite field and use the identities for quantifiers instead of the identi-

10.4 INTERACTIVE PROOF SYSTEMS 365

quantifier may double the degree of the resu'ting polynomial. The degrees of the
polynomials might ther grow exponentially large, which would require the Ver-
ifier to run for exponential time to process the exponentially many coeficients
that the Prover would reed to send to dzscribe the polynomials

To keep the degrees of the polynomizls small, we introduce a reduction oper-

ation R that reduces the degrees of polynomials without changing their behavior
on Boclean inputs.

PROOF Let) = Q- Quy, '¢] be a quantifiec Boolean formula, where ¢
isa enf-formula. To arithmetize ¢ we introduce the expression

¥’ = Qa1 Ry Qo Ray Ry Qus Rz RryRes -+ Qo Ry - R [0]

Don’t worry about the meaning of Rz for now. It is useful only for defining the
functions f;. We rewritz 9’ as

' = S1y1 Sayz -+ Saun [¢),

where each S; € {v,3, R} and y; € {z1, ...,z }.

For each 7 < k we define the function f;. We define fy (21, ... , 2,) to be the
polynomial p(z1, ... ,2,,) obtained by arithmetizing ¢. For i < k we define j;
in terms of fi41:

S e) e
Si= T = fai (O)
Si=R: fil,0) = 1-aful .., 0+ afiwil ., D).

IfSis v or 3, f; has one fewer input variable than f;; does. If S is R, the two
functions have the same number of input variables. Thus, function f; will not, in
general, depend on ¢ varizbles. To avoid cumbersome subscripts weuse ... ” in
place of a; through a; for the appropriate values of j. Furthermore, we reorder
the inputs to the functions so that input variable ;4 is the last argument.

Note that the Rz operation on polynomials doesn't change their values on
Boolean inputs. Therefore fo() is stll the truth value of /. Howevzr, note that
the Rz operation procuces a result that is linear in . We added Ray - -- Ra; after
Qa; in4)f in order to reduce the degree of each variable to 1 prior to the squaring
due to arithmetizing Q;

Now we are ready to describe the protocol. All arithmetic operations ir: this
protocol are over a field 7 of size at least n*, where 7 is the length of 0. V' can
find a prime of this size on its own, so P doesn’t nezc to provide on.

Phase 0. [P sends fo().]
P—V: Psends fy() o V.
V checks that fo() = 1 and rejects if not.

[image: image6.png]466 CHAPTER 10/ ADVANCED TOPICS IN COMPLEXITY THEORY

Phase d. [P persuades V' that fia(ra) s corzeetif fi(r -+ v} is correct.]
P—V: P sends the coefficients of fi(ry -+ ,z) as a polynomial in z. (Here
i -+ denotes a setting of the variables to the previously selected random val-
VLS Moo h) g i i
V uses these coefficients o evaluate f;(r- -+ ,0] and f;(ry -+ 2 45.. _..n: it
checks that the polynomial degree is at most n and that the identities hold,
namely,

oy [BE 0 G 1
il = filr-,0) filry oo+ (1)

S
S

I
w <C

or

fia(ri)= (L =n)filrs - 0} +rfilra---,1) S=R

If either fails, V' rejects. :
V—P: V picksarandom r in F and sendsitto P. (When S = R this r replaces
the previous .) |

Go to Phase i -+ 1, where P must persuade V' that f(ry - -+, 7) is correct.

Phase k+1. [V’ checks directly that fi(r, ... ,7m} is correct.]
V evaluates p(r-, ... ,7,,) to compare with the value V' has for f, (r1, ; J:v
Iftheyare equal, V accepts; otaerwise V' rejects. That completes the description
cf the prorocal. e :

Proving the correctness of this protocol is similar to proving the correctness
of the #SAT protocol. Clearly, if ¢ is true, P can follow the protocol and V will
accept. 1f 1 is false P must lie at phase 0 by sending an incorrect value .mo_\ fo(). At
phase 1, if V has an incorrect value for iy (r1 -+), one c.mwrm values f;(ry -+ ,0)
and fi{ry --+ 1) must be incorrect and the polynomial for f; must _uAm incorrect.
Consequently, for 2 random 7 the probabil:ty that P gets E&&w a: this phase be-
cause f;(ry -+ 7} is correct is at most the polynomizl degree &Smmm by the field
size or n/n'. The protacol praceeds for O(n?) phases, so the unovw?,_@‘ that
P gets lacky at some phase is az most 1/n, If P is never lucky, V will reject at
phase ks + 1.

10.5 e

PARALLEL COMPUTATION

A parallel computer is one that can perform multiple operations &E::E..ao&_&
Parallel computers may solve certain problems much faster &».n Rn&«:,n& com-
puters, which can only do a single operation zta time. In practice, the distinction

10.5 PARALLEL COMPUTATION 36

nstructions. We focus here on massive parallelism whereby a huge number (thin
of millions or more) of processing elements are actively pa-ticipating in a singl
computation.

In this section we briefly introduce the theory of paralle] computation. W
describe one model of a parallel comouter and vse it to give examples o certair
problems tha: lend themselves well to parallelization. We also explore the possi
bility that parallelism may not be suitable for certain other problems.

UNIFORM BOOLEAN CIRCUITS

One of the most popular models in theoretical work on pazallel algor thms it
called the Parallel Random Access Machine or PRAM. Tn the PRAM. maodel
idealized processors with a simple instruction set patterned on actral comout-
ers interact via a shared memory. In this short section we can’t deser-be 2RAMs
in detail. Instead we use an alternative model of parallel compurer that we intro-
duced for another purpose in Chapter 9: Boolean circuits,

Boolean circuits have certain advantages and disadvantages s a perallel com-
puzation model. On the positive side, the model is simple to describe, which make
proofs easier. Circuits also bear an obvious resemblance to actual nardware de-
signs and in that sense the madel is realistc. On the negative side, circuits are
awkward to “program” because the individual processors are so weak. Further-
mere, we disallow cycles in our definition of Boolean circaits, in contras: to cir-
cuits that we can actually build.

In the Boolean circuit model of a paralle] computer, we take cach gate to be an
individual processor, s we cefine the processor complexity of z Boolean circuit
to beits size. We consider each processor to compute its function in a siagle time
step, so we define the parallel time complexity of a Boolean circuit to beits 4 epth,
or the ‘ongest distance from an input variable to the output gate.

Any partictlar circuit has a fired number of input variables, so we use cireuit
families as defined in Definition 9.22 for recognizing languages. We neec to im-
pose a technical requirement cn circuit farrilies so that they cozrespond to pas-
allel compatation models such as PRAMs where a single machine is capable of
hand'ing all input lengths. That requirement sca‘es that we can easily obtain all
members i a circui: family, This uniformity requirement is reasonable hecause
knowing tha: a small circuit exists for recognizing certain elements of a laaguage

Isn't very useful if the circuit itselfis hard to find. That leads us to the following
definition.

DEFINITION 10.30

Afamily of circuits (Cy, Cy,

) is umiform if some log space trarsducer T’ out-
puts (C,) when T's input s 1

Recall that Definition 9.23 defined the size and depth complexity of langvages
in terms of families of circuits of minimal size anc denth Here s ramcidar o

[image: image7.png].\R\Wb CHAPTER 10/ ADVANCED TOPICS IN COMPLEXITY THEORY

Let 3 TIME(f(n)) be the class of languages thata 53; alternating Turing ma-
chine can recognize in O(f(n)) time. Similarly defne the class [T TTME f(n))
for IL-alternating Tering machines, and the classes 3,;SPACE(/(n)) and
TLSPACE((i) for space bounded alternzting Turing machines. We define the
polynomial time hierarchy to bz the collection of classes

Z,P = | JSTIME(®*) and
7

ILP = | I TIME(n*)
k

Define PH = J, 5P = J, IL,P.
Cleatly, NP = 1P and coNP = IT,P. Additionally, MIN-FORMULA ¢
ILP.

10.4

INTERACTIVE PROOF SYSTEMS

Interactive proof systems provide a way to define a probabilistic analog of the
class NP, much as probabilistic polynomial time algorizhms orovide a probabilis-
tic analog to P. The development of interactive proof systems has profoundly
affected complexity theory and hasled to imporzantadvances in the fields of cryp-
tography and approximation a gorithms. To get a feel for this new conceps, let’s
revisit our intuition about NP.

The lnguages in N are those whose members all have short certificates of
membership that can be easily checked. If you need to, go back to page 247 to
review this formulatior. of NP. Lets rephrase this formuation by creating two
entities: a Prover that finds the proofs of membership and a Verifier that checks
them. Taink of the Prover as if it were convincing the Verifier of w's membersh:p
in A. We requize the Verifier to be a poynomial time bounded machine; oth-
erwise it could figure out the answer itsel’. We don’t impose any computational
bound on the Prover because finding the proof may be time-coasu g.

Teke the SAT problem for example. A Prover can convince a polynomial time
Verifier thata formula ¢ is satisfizble by supplying the sat's ying assignment. Can
aProversimilarly convince a computationally limited Verifier that a formulais 7ot
satisfianle? The complement of SAT is not known to be in NP so we can’t rely
on the certificate idea. Nonetheless the answer, surprisingly, is ves, provided we
give the Prover and Verifier two additionzl features. First, they are permitted to
engagein a rwo-way dialog. Second, the Verifier may be a probabilistic polynomial
time machine that reaches the correct answer with a high degree of, but not abso-
lute, certninty. Such a Prover anc Verifier constitute an interactive proof system.

10.4 INTERACTIVE PROOF SYSTEMS 355

GRAPH NONISOMORPHISM

We illustrate the interactive proof concept through the elegant example of the
graph isomorphism problem, Call graphs G and H isomorphic if the nodes of G
may be reordered so that it is identical to H. Let

IS0 = {{G, H)| G and H are isomorphic graphs).

Although IS0 is obviously in NP, extensive resea-ch has so far failed o demon-
strate either a polynomial time algorithm for this problem or a proof that it is
NP-complete. It is one of a relatively smell number of naturally occurring lan-
guages in NP that haven’t been placed ir. either category.

Here, we consider the language that is complementary o IS0, namely, the
language NONISO = {{c, H)| G and H zre not isomorphic graphs}. NONISO
isnotknown to be in NP because we don't krow how to provide short certificates
that graphs aren’: isomorphic. Nonetheless, when two graphs aren't isomarphic,
a Prover can convince a Verifier of this fact, as we will show.

Suppose that we have two graphs G and Gy, If they are isomorphic, the
Prover can convince the Verifier of this fact by presenting tae isomorphism o
reordering. Burif they aren't isomorphic, how can the Prover convince the Veri-
fier of that fact; Don’t forget: the Verifier doesn't necessarily trust the Prover, so
it isn’t enough “or the Prover to declare that they aren’t isomcrphic. The Prover
must wnvince the Verifier. Consider the following short protocol

‘The Verifier randomly selects either G or Gy and ther. randomly reorders its
nodes to obtaina graph, #, The Verifer sends 7 to the Prover. The Prover must

respond by declaring whether Gy or G was the source of . That concludes the
protocol.

If Gy and Gy were indezd nonisomorphic, the Prover could always carry out
the protocol because the Prover could identify whether H came from Gy or Go.
However, if the graphs were isomorphic, might have come from either &, or
G, s0 even w:th unlimited computationa’ power, the Prover wou!d have no bet-
terthan a §0-50 chance of getting the corectanswer. Thusif the Proveris able 1o
answer correctly consistently (say in 100 repetizions of the pratocol) the Verifier
has convincing evidence that the grephs are actually nonisomorphic.

DEFINITION OF THE MODEL

To define the interactive proof system model formally, we describe the Verifier,
Prover, and their interaction. Yow’ll ind it helpfu! to keep the graph nonisomor-
phism example in mind. We define the Verifier to be a function that computes
its next transmission to the Prover from tae message history sent so far. The fuac-
tion V hes three inputs:

