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Abstract

A learning algorithm is presented that enables
agents that do not have the ability to sense other
agents to adapt its behaviors (that were learned
in a single agent environment) to novel situations
(deadlocks arising from existing in an autonomous
multi-agent system). This adaptation takes place
as the agent continues to perform its construction
task. When the agents are confined to narrow
spaces, this learned behavior leads to a “bucket
brigade”. The algorithm also learns the pattern
of activations on its spatial map that is associ-
ated with deadlocks and the new behaviors are
exhibited when this pattern is later observed.

1 Introduction

(Chao et al., 2000) described a behavior-based architec-
ture with connectionist action selection that enabled
an agent to rearrange objects in its continuous two-
dimensional simulated world into a pre-specified pattern.
In this work, a learning mechanism is introduced that
enables this architecture to be used in the multi-agent
scenario without extending the sensory capabilities of the
agents. Agents cannot detect other agents and deadlocks
can arise between two agents with interfering paths. The
learning algorithm enables the agents to learn to drop
any “brick” being carried in case of a deadlock so that
the other agent can pick it up and replan its path. The
learning is unsupervised as an agent uses the progress it
has made since trying out an action as reinforcement.

2 Environment and Architecture

The simulated environment is 2-dimensional and con-
tinuous. Distance sensors detect bricks but not other
agents. If an agent tries to move to a location occupied
by another, it will not succeed. Agents can pick up a
brick (carrying it as it moves) and drop the brick. Con-
struction in this world thus involves moving toward a
brick, grabbing it, moving to one of the specified drop
sites and then dropping the brick at that location.
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Figure 1: Construction behaviors and internal state nodes

Egocentric Spatial Maps (ESMs) are used to represent
the location of bricks around an agent. An ESM is a
grid of neurons that divides the area around the agent
into small uniform squares such that the central neuron
represents the square on which the agent is currently
present. Behaviors plan paths to bricks and drop sites
by spreading activation on the ESMs. The output of the
behaviors is sent to the connectionist action selection
module (figure 1) which chooses one of these behaviors
depending on the current stage of the construction task
(encoded by Internal State nodes).

3 Learning Social Behaviors

To recognize deadlocks involving other agents, a new in-
ternal state node, f, that measures the “frustration” of
the agent is added along with weighted links to behav-
iors. If the agent is unable to move in a timestep, the
activation on this node increases. When this activation
exceeds a threshold, 6, then the agent tries to perform
a random behavior (grab, drop, move toward brick or
drop-site). If the agent is able to get out of the deadlock,
then the weights are changed to reinforce this behavior.
If the agent remains deadlocked, then that behavior is
penalized. Since the action selection network is a single
layer network, the Perceptron learning rule is used:

1: At time ¢, if (ay > 6) then
2: with probability p, perform an action o



3: At time (t+9), if |p(t) — PEt+9)| > d

4: then A wi;, =

5: else A w;, = sign(a, —0.5)n a; ekl

where a; denotes the activation of internal state node i.
a, denotes the activation of output node o (representing
some behavior), w;, the weight on the link between ¢ and
o, and 7 is the learning rate. p, in step 2, reduces the
probability that both agents are taking random actions
at the same time. The test whether the random behavior
was successful is carried out at time ¢ + § by checking
if the change in position {7 is over some distance d. The
exponential term is present to bound the weights w;;
and to reduce the rate at which large weights (learned
previously) change.

These learned behaviors are triggered only when the
agent is caught in a deadlock. However, if deadlocks
tend to occur in narrow passageways, then the same set
of ESM neurons will be activated during deadlocks (since
ESMs represent space egocentrically). A simple update
rule is used to learn these map activations, activated
each time the agent is in a deadlock:

sign(0.5 — ao)n a; e kvl

i < Li + i (1 — Ls)e ™

where s; is the activation of neuron 4, [; is the cor-
responding learned value, 7,, is the learning rate and
the exponential term is used to retain values learned
from previous time steps. The agent now activates its
learned behaviors whenever its ESM activations match
the learned weights.

4 Results

Two learning agents: The agents retain the normal con-
struction sequence when f is inactive. When f is active
and an agent is holding a brick, it drops it even if it is
not at a drop site (if the agent is not holding a brick,
no behavior is selected). Learning occurred faster with
increasing p, but behaviors that did not contribute to
breaking the deadlock were also reinforced.

Five learning agents: The weights learned were similar
to that of the two agent case in environments with open
spaces. If there are narrow passageways, more than two
agents are often involved in deadlocks and since the time
to break such deadlocks will depend on the number of
agents, learning occurs slower than in open spaces.

A learner and a previously trained agent: The learner
learns to drop its brick when frustrated and holding a
brick, but continues to attempt the brick navigation be-
havior when not holding a brick. This is because the
trained agent immediately performs the drop behavior
when it is holding a brick, and does not give the learning
agent an opportunity to explore its choice of behaviors.

Bucket Brigade: Five agents (trained in pairs), were
placed in an environment where bricks and drop sites
were separated by a long corridor. When all agents are

within this corridor, a bucket brigade is formed through
a sequence of pair-wise interactions between agents.
Map association: Two learners were placed in an en-
vironment with a narrow corridor. Most deadlocks oc-
curred within this corridor and the agents associated ac-
tivations on neurons close to the center of the ESM with
deadlocks. Agents then drops discs when these neurons
are activated (in any corridor) even with no deadlock.

5 Conclusions and Related Work

The adaptation took place while the agents continued to
perform their construction task. The mechanism does
not require external supervision as it utilizes the feed-
back provided by the environment. The bucket brigade
behavior was learned from purely local interactions.

Learning was faster when there were two agents learn-
ing simultaneously compared to the case when one agent
was already trained. Also, in the experiments with the
learned ESM activations, only one of the agents could use
the learned activations (as otherwise both agents would
try to drop discs within corridors). The issue of hetero-
geneity was not studied here and such conditions were
explicitly satisified by the experimenters.

(Ostergaard et al., 2001) studies the performance of
the “bucket brigade” behavior in different environments.
The use of “frustration” to trigger learning is simi-
lar in spirit to the impasse driven learning in Soar
(Laird et al., 1987) and to the use of progress estimators
to speed up reinforcement learning (Mataric, 1994). The
architecture described here is novel in its use of a connec-
tionist action selection mechanism that enables simple
learning rules to adapt its behaviors, goals and spatial
representation. This connectionist approach can be com-
pared to the action selection mechanism in (Maes, 1991)
that connects behaviors with activation spreading links.
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