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Abstract

A behavior-based architecture that enables
a simulated agent to exist and navigate in
an artificial environment without any kind of
spatial representation is presented. Hebbian
learning is used to combine reactive behav-
iors that enable the agent to exploit spatial
and temporal regularities in the environment.
The agent is then able to apply its innate be-
haviors in situations that were not initially
designed to trigger these reactive behaviors.
The system can also accommodate changes
in the environment. Simulation results that
measure the performance of the system are
also presented.

1. Introduction

In this project, an autonomous agent is situated in a
simulated continuous 2-dimensional world and obtains
all knowledge about its surroundings from its sensors.
Since the range of the agent’s sensors is limited, all
the relevant features of the environment are not visi-
ble at all times. Thus if the agent is to take advantage
of features it has seen during exploration, but are not
visible through its sensors from its current position, it
has to build some internal representation of the world
around it. Mataric (1992) claims that “any solution
superior to random walk necessitates an internal model
of the robot’s current location, the desired goal loca-
tion, and the relationship between the two”. However,
an “internal model” does not necessarily have to be
a topological model of the environment. The agent
can exploit peculiarities of its world by learning to ap-
ply its innate behaviors in situations that were not
foreseen when these behaviors were created. For in-
stance, if food is always associated with a certain kind
of landmark, then the agent should learn that mov-
ing to a new landmark of the same type will probably

lead to food though the agent might never even have
visited that part of the environment before. This is
particularly useful in environments where it is easier
to recognize locations of landmarks than locations of
food. In this case, no representation of the environ-
ment need be used, but based on its past experiences,
the agent can generate a new method for finding food.

The architecture of the system presented in this report
is connectionist and it uses Hebbian learning to build
new combinations of innate behaviors, thus enabling
the agent to exploit regularities in its environment.
The connectionist nature of the system also enables
the agent to adapt its internal representation to reflect
changes in its surroundings.

2. The Agent and Environment

The simulation environment is similar to that intro-
duced in (Crabbe & Dyer, 2001). The agent is situated
in a two dimensional continuous world, with objects
being colored discs of uniform radius. The discs rep-
resent, entities that are relevant to the agent, such as
“food”, “water”, and “bricks”, and are distinguished
by their color: green, blue, and red respectively.

The agent perceives the world around it through dis-
tance sensors for each color. These are evenly dis-
tributed all around it. Each sensor is directed to a
narrow sector of this field and is sensitive to one par-
ticular color. A sensor has a limited sensing range and
its activation is inversely proportional to the distance
of the nearest disc in its field of vision. The state of
the sensors at any given time may be represented as
a vector of these activations. Small random errors,
proportional to the distance of the disc being sensed,
are incorporated into the sensor readings. Like a real
robot, the agent does not have an accurate picture of
the world due to the inability of a sensor to distinguish
between discs in the same sector, disc occlusions, and
random errors in the sensor activations.
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Figure 1. Architecture of the agent. Activations flow from
left to right: from the sensors to the motor through the
behaviors and the action selection module. Motivations:
Hunger (H), Thirst (T), Avoid (A).

The agent in this world can move forward or turn,
through motor commands that consist of the speed
and the angle of a turn. Agents have inertia and thus
the motors cannot respond immediately to the motor
commands. Therefore, the actual speed of the agent
and the angle of turns will differ from these motor
commands. In particular, even if the motor commands
take discrete values, the speed of the agents will change
smoothly (as in real robots).

To remain alive, the agent must “eat” and “drink”
regularly. Motivations are indicators of the “health”
of the agent and consist of hunger and thirst. When
the internal food or water levels go below a threshold,
these motivations are activated. The agent eats or
drinks by touching the appropriate disc. In addition,
there is an avoid motivation that is always active so
that the agent does not collide with objects.

3. The Architecture

The architecture (figure 1) is behavior-based (Arkin,
1998) in that each of the behaviors accesses the raw
sensory data concurrently and produces a motor ac-
tivation as output. The behaviors are innate to the
agent. One of these motor activations is then se-
lected by the Action Selection module to be sent to
the agent’s motors.

3.1. Behaviors

The innate behaviors available to the agent include
Awvoid-z, Approach-z, and Follow-z where z is a color.
The Avoid behaviors take the agent in a direction

away from discs (for obstacle avoidance), while the
Approach behaviors take the agent toward the nearest
visible disc of that color. The Follow behaviors enable
the agent to follow a “trail” of discs. The symbols
used for these behaviors in the figures and equations
are listed below:

Behavior Symbol
Approach-Red AR
Approach-Blue AB
Approach-Green AG

Follow-Red FR
Follow-Blue FB
Follow-Green FG

The input to behavior B; is the vector of sensor
activations and the output is a motor activation,
(mSPeed mA"81e)  In addition, sensory excitation s; is
computed that is a measure of the applicability of that
behavior. s; is greatest when the activation on the
sensors is strong and when the current behavior of the
agent agrees with the motor actions that would have
been taken by behavior B;. The sensory excitation
of a behavior serves two purposes. Firstly, if the sen-
sors are not activated sufficiently, then that behavior
should not be performed. In this case, the sensory ex-
citation is set to zero. Secondly, if the motor outputs
of B; match the current action of the agent, it indi-
cates a correlation between B; and the current behav-
ior. This forms the basis of the learning algorithms.
Thus if the actions match, then s; is set to a high value.
For instance, the Approach-Green behavior produces
a motor output to move the agent toward the closest
visible green disc. Let green sensor j be directed at
angle ; and its activation be S;. Let green sensor k
have the greatest activation: Sy = max;(S;). Then,
the outputs of the Approach-Green behavior are

mig = o,
mspeed _ 1, Sr <0.8
AG 0.2, S > 0.8
1, Sp>08o0r|f—0 <3
SAG = 0, Sk =0
0.5, else

where 6 is the current direction of the agent’s move-
ment. The speed is high when the agent is far from
a green disc (Si < 0.8) and reduces to 0.2 when the
agent is close to a disc as it has to slow down to stop.
If the agent is close to a green disc or if the agent is
facing a disc (|0 — 6] < ), the sensory excitation
saG is set to 1. Similarly, the avoid behaviors out-
put motor activations that direct the agent away from

discs within sensor range.



The Follow behaviors enable an agent to move alonside
a “trail” of discs (figure 2) in a particular direction.
Every set of three discs may be considered as a “trail
marker” with the direction of the trail being from the
two closely spaced discs toward the third disc. If the
sensor data indicates three such collinear discs (imple-
mented procedurally), a Follow behavior outputs mo-
tor activations to take take the agent in the direction
of the trail. The sensory excitation is set to 1 if the
angle between the agent’s direction of motion and the
detected “trail marker” is less than %, and 0.5 oth-
erwise. The Explore behavior (not shown in figure 1)
outputs a random direction and does not depend on
sensor activations.

"trail-markers"

Direction of
trail
Agent

Sensor range -

Figure 2. A trail of red discs leading to a blue disc. Every
group of three discs is a “trail-marker”.

Since the needs of the agent are regulated by its mo-
tivations, the output of a behavior is gated by these
motivations before being sent to the action selection
module, i.e, there are second-order connections (exci-
tatory and inhibitory) between motivations and behav-
iors. Let the activations of excitatory and inhibitory
motivations of behavior B; be mg*¢iter and minhibitor
respectively. Then, the total gating for behavior B;,
9i 18

— excitor inhibitor
9 = m§ x (1 —mj )

a; = 8;Xg;

where a; is the activation of behavior B; that is sent
to the action selection module. Thus, a behavior is
active only if it is activated by the sensors, excited
by some motivation, and not inhibited by any motiva-
tion. (Pfeifer & Scheir, 1997) provides a theoretical ba-
sis for multiplying motivations and activations (called
“deficit” and “cues” respectively). The avoid behav-
iors are excited by the avoid motivation, Approach-
Green is excited by hunger and Approach-Blue is ex-
cited by thirst. The Avoid-Green behavior is also in-
hibited by hunger and the Avoid-Blue behavior is in-
hibited by thirst (figure 1). For example, the Avoid-
Green behavior is active only if a green disc is visible
(sensory excitation), the avoid motivation is present
(excitory motivation), and the agent is not “hungry”
(inhibitory motivation).

3.2. Action Selection module

The activations and motor outputs of all behaviors
are sent to the action selection module which selects
one of these behaviors and sends its motor output to
the motors (winner-take-all selection). A behavior is
selected based on its priority. Eating and drinking
have the highest priority, followed by avoiding obsta-
cles, and lastly approaching discs. Within the same
priority class, the behavior with the highest activation
is chosen. If all behaviors belonging to a priority class
have zero activation, the action selection module con-
siders the behaviors in the next class. The Explore
behavior will always be active and thus this behavior
is the “default” behavior.

There are no excitatory motivations to the Follow be-
haviors and hence these behaviors will never be se-
lected by the action selection module. The learning
algorithm that is described next introduces weighted
links between behaviors which enable these Follow be-
haviors to be activated even in the absence of direct
motivation.

4. Learning

As described above, the activations of the behaviors
were regulated only by the gating connections from
the motivations. These connections are innate and
do not change over the lifetime of the agent. How-
ever, during exploration, the agent might discover cor-
relations between features in the environment. To en-
able the agent to incorporate these correlations into its
behaviors, weighted second-order links are introduced
between every pair of behaviors except the Avoid be-
haviors. This allows the activation of one behavior to
regulate the activations of other behaviors, in addition
to the motivations.

Let w;; be the weight on the link from behavior B; to
B;. Behavior B; may be excited by motivation mgxcitor
also. Since there are no inhibitory motivations to an
Approach or Follow behavior B;, the total gating g;
and activation a; can be now redefined as (removing
inhibitory motivations and adding second-order links
from other behaviors):
g; = threshold(max(w;; g;), m$**°r), T)
J
1,z >T

threshold(z,T) = { Oz<T
a; = 8; X gi

where T is some threshold. The maximum activation
on the second-order links from other behaviors B; and
the excitatory motivation m$*“*°r is used to gate the



sensory activation s; (earlier, only the excitory moti-
vation could gate the sensory activation). The weights
are learned to enable the agent to change its behavior
to take advantage of the following two kinds of situa-
tions:

1. Spatial proximity: If two features occur together
in the environment, then moving towards one of
the features will take it to the other feature as
well. For instance, if food discs are always present
along with bricks, then an agent when hungry
should move toward a brick even though it might
not initially perceive food near it.

2. Temporal proximity: If a goal is reached by ex-
ecuting a sequence of behaviors, then the agent
should enable all these behaviors if it wants to at-
tain the goal. For instance, the agent may have
stumbled upon food by following a trail of red
discs. Therefore, the agent should enable the
Follow-Red behavior along with the Approach-
Green behavior when hungry.

The agent discovers spatially proximal features of the
environment when the corresponding behaviors are si-
multaneously active. Thus if one of the behaviors is ex-
cited (through some motivation), then it should spread
its activation to the other behavior too. This can be
accomplished by increasing the weight on the second
order link between the two behaviors using a Hebbian
learning rule. Let B; and B; be two behaviors and
the weight of the link from B; to B; at time ¢ that
represents the spatial correlation between i and j be
w;? (t) (wf;”p , the weight that corresponds to tempo-
ral correlations is introduced later). Let the sensory
activations of the behaviors be s; and s;, T' be some
threshold and a®P the learning rate. Then the spatial

proximity learning rule is:
if s;

> T and s; > T then

wPE+1) = wPE) + a” (1 - wl(t)
if s > T and s; < T or

$; < T and s; > T then

wP(tE+1) = wlt) + a” 0 - w?()

In the case of temporally proximal features, the corre-
sponding behaviors may not be simultaneously active.
Instead, they will be active one after the other. Hence,
the Hebbian learning rules are different for learning
temporal proximity and a different weight, wZ-”p , on
the second order link between behaviors ¢ and j is used
when learning temporal correlations. wZ-”p should be
increased only when behavior j becomes active 7 time
steps after behavior 7. Thus, the activation of behavior

i is delayed before being compared with the activation

of behavior j. The temporal proximity learning rule
is:

if si(t —7) > T and s;(t)
then

wiP(t+1) = wiP(t) + o™ (1~ wi(b)

< T and si(t) > T

if si(t—7) > T and si(t) < T and s; < T then
wiP(t+1) = wi({t) + o™ (0 — wi(t)
The condition s;(t—7) > T and s;(t) < T is true when
the activation of behavior B; is decreasing (activation
of B; was above threshold at time ¢t — 7, but is below
threshold at time ¢). If activation of behavior B; is also
active at time ¢, then the weight wf;-”p is increased, else

decreased. a!™P is the learning rate.

Figure 3 shows the sensory activations of behaviors
B; and B; with time and the period when temporal
learning occurs. The figure also shows how learning
rate is affected by the choice of 7. A larger value of
7 allows for a longer learning period but there is also
a period when the weights are erroneously decreased
(tr = 5 compared to 7 = 1). Thus, as the interval
between the end of the first behavior and the beginning
of the second increases, so should the value of 7. This
also means that learning becomes slower as the interval
between the two behaviors increases (because of the
erroneous decrease in weights involved with large 7).
However, an excessively large value of 7 will lead to
large periods of erroneous decrease in weights as shown
in the figure for 7 = 20.
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Figure 3. Temporal learning with 7 = 1,5,20. The times
when behaviors B; and Bj; are active are shown. The bar
indicates the period when learning occurs. The filled (un-
filled) portion shows weight increase (decrease).

The spatial learning rule is not a special case of the
temporal learning rule for 7 = 0. This is because for
temporal correlation, learning occurs only during the
short period when the activation of behavior B; is de-
creasing. For spatial correlation, learning or unlearn-
ing occurs when the activations of at least one of the
behaviors B; and B; are above the threshold. More-
over, the spatial learning rule is symmetric because

w;? and w3} increase or decrease at the same time. In
tmp
j
. For these reasons, the agent maintains both the
tmp
ij

the case of temporal learning, w is independent of
tmp
ji

weights w;} and w

w
separately on the link between



behaviors B; and B;. To calculate the activation on
the link, the weight used is the maximum of these two
components: w;; = max(w;; ,wf]'-”” ) The maximum is
used because behavior B; can either be spatially or
temporally correlated with behavior B;.

5. Experiments with Learning Rules

We performed simulations that show how the agent
can use the learning rules when it is situated in its en-
vironment and is attempting to fulfill its hunger and
thirst motivations. These experiments also show learn-
ing correlations improve the ability of the agent to
satisfy its hunger and thirst motivations. The use-
fulness is measured by the average number of time-
steps during which the agent was hungry or thirsty
after learning compared to the case when the sensor
range is infinite (optimal situation) and to random ex-
ploration. The world is restricted to 100 x 100 units.
The agent is provided with 60 distance sensors for each
color. A random error of +1% is added to the sensor
activations. The range of the green and blue sensors
are 5 units while that of the red sensors is 10 units.
The threshold T' = 0.6, learning rates a’? = 0.005,
a!™P = (.01 and the delay time for temporal learning,
7 = 5. Initially, only the weights from hunger motiva-
tion to Approach-Green and from thirst to Approach-
Blue are above threshold and all other weights are set
to zero.

Learning temporal associations requires that the cor-
responding behaviors be exhibited in sequence repeat-
edly. For instance, consider an environment where a
green disc is always present at the end of a trail of red
discs. During random exploration, a trail will often not
be followed to its end and thus the temporal learning
rule will decrease the weights to the Follow behavior.
To reduce the effect of random exploration in open
space, an omniscient “parent” (that does not physi-
cally exist in the environment) is used to guide the
learning agent to the nearest green or blue disc when
hungry or thirsty respectively. Note that random ex-
plorations (when the agent is not hungry or thirsty)
still cause the learning agent to follow trails incom-
pletely and that the path followed by the “parent”
does not necessarily follow a trail - the agent moves
along a straight line to the closest food or water disc.
The use of a “parent” just increases the chances that
the correct behavior (following a trail to its end) will
be exhibited.

5.1. Spatial Proximity

To test the spatial proximity learning rule, the agent
was placed in an environment in which a red disc

was always present close to a green disc (figure 4a).
The positions of the discs were set randomly. The
agent’s hunger motivation becomes active every 350
steps. Figure 4b shows the increase in wj; og (aver-
aged over 50 trials). This spatial correlation between
red and green discs can also be learned through pure
random exploration (without the need for a “parent”)
and the increase in weight in this learning scenario
is also shown. The rate of learning is slower com-
pared to the case when the “parent” was present. Once
wy'k ag has increased beyond the threshold, the agent
approaches a red disc when hungry even if no green
disc is within sensor range. The performance after
learning is shown in figure 5 (the actual values are de-
pendent on the environment; the numbers in the graph
are for comparison to each other).

Red sensor range

Green sensor
range

\

Path of .
Agent

Agent

T T
with parent
random exploration -------
threshold --------

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 4. (a) Portion of the world used for learning spa-
tial proximity. (b) Increase of wi’; ,o When “parent” is
available and during random exploration.

5.2. Temporal Proximity

To test the temporal proximity learning rule, the agent
was placed in an environment where a trail of red discs
led to a blue disc as shown in figure 6a. The distance
between the last red disc of a trail and a blue disc is too
large for the Follow-Red and Approach-Blue behaviors
to be simultaneously active. Thus, the spatial proxim-
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Figure 5. Average number of time-steps agent was hungry
with infinite sensor range (optimal), after learning, and
random exploration. Error bars at 1 standard deviation.

ity learning rule is ineffective here. The agent’s thirst
motivation becomes active every 70 steps (the agent is
made to drink more often than eat since temporal cor-
relations are learned slower than spatial correlations).

The link between Follow-Red and Approach-Blue be-
haviors cannot be learned through random exploration
alone (as in the spatial proximity case) because during
a random walk the number of times a trail is partially
followed, without leading to a blue disc, is greater than
the number of times a trail is followed to its end. Fig-
ure 6b shows that only wip’sp increased over thresh-
old (averaged over 50 trials). The weights reach equi-
librium when the rate of weight increase (behaviors ac-
tive sequentially) is equal to the rate of decrease (the
trail is not followed to the end). The agent has learned
to follow a trail of red discs when it is thirsty even if
no blue disc is within sensor range. The performance
after learning is shown in figure 7.

5.3. Spatial and Temporal proximity together

Figure 8a shows an environment where green discs are
always close to red discs and blue discs are present
at the end of a trail of red discs. To take advan-
tage of this layout, the agent has to link the Follow-
Red and Approach-Blue behaviors together (with
temporal learning) and also link the Approach-Red
and Approach-Green behaviors (with spatial learn-
ing). Figure 8b shows that only w3 g and wipisp
increases over threshold (wi s oscillates because
red and green discs appear at periodic intervals on
the trails). The weights between Follow-Red and
Approach-Green also increase since red and green discs
appear together. However, these weights do not reach
the threshold as they decrease when the agent moves
along the trail in a direction opposite to that indicated
by the “trail-markers”. Figure 9 shows those links
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Sensor range

Path of agent

0 10‘00 2(;00 30‘00 40‘00 5(;00 60‘00 70‘00 8000
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Figure 6. (a) Portion of world used for learning temporal

proximity (b) Weights wip’ap, Wi ap, and wippg at
8000 time-steps. Data averaged over 50 trials.
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Figure 7. Average number of time-steps agent was thirsty

with infinite sensor range (optimal), after learning, and
random exploration. Error bars at 1 standard deviation.

whose weights went over the threshold after learning.
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5.4. Dynamic Environments

To test the ability of the agent to adapt its weights to a
changing environment, the positions of the discs were
changed during learning. Initially, red discs were close
to green discs (as in figure 4a). After 2000 time-steps,
the positions were changed so that green discs were lo-
cated at the end of red trails (similar to figure 6a). Fig-
ure 10 shows that wiy A initially increases to reflect
the spatial correlation between red and green discs.
After the environment changes, this weight decreases
and wifﬁ”’ A increases due to the new temporal corre-
lation.Thus, the agent initially learns to move toward
red discs when hungry. But when the world changes,
it learns to follow trails of red discs when hungry.

6. Limitations and Future Work

The learning rules do not create any new behaviors, it
only strings together innate behaviors. (Steels, 1997)
presents a method of creating new behaviors by consid-
ering all combinations of possible perceptions, actions
and the relationship between the two. Each new be-
havior that is created is then tested for fitness and is
retained if it improves the overall health of the agent.
An agent that has learned to exploit correlations in
the environment using the architecture and learning
rules described here will fail to survive in the presence
of exceptions to these correlations. For instance, in an
environment where most, but not all, green discs are
located close to red discs, the agent will learn to move
toward the nearest red disc when hungry even if that
particular red disc happened to be far from a green
disc. A mechanism that enables the agent to detect
when it is not making progress toward satisfying its
goals will be useful to handle exceptions. The learn-
ing rule is incapable of learning inhibitory links. The
addition of a “pain” motivation can be used to learn



inhibitory links. The weights between links settle into
a steady state that is dependent on environmental pa-
rameters. Thus, the threshold used to gate behaviors
is also dependent on the environment. An alternative
to using a threshold is to select only that behavior with
the maximum gating.

7. Related Work

Robots that navigate to locations that are out of their
sensor range often maintain a spatial map. Since
data obtained from exploration is sequential, Tem-
poral Kohonen Maps(Chappell & Taylor, 1993) uses
leaky integrator units for its outputs to capture the
temporal relation between nodes. However, the space
around the agent is still directly encoded into neu-
rons without any attempt to first identify similari-
ties between places. Moreover, applying Reinforce-
ment Learning (Kaelbling et al., 1996) directly on the
sensor/motor state space proves intractable for large
number of sensors and motors (Mataric, 1994). Sug-
gestions to speed up reinforcement learning include
grouping similar states (Mahadevan & Connell, 1992),
partitioning the state space based on discovered fea-
tures (Drummond, 1998), and dividing the task into
sub-tasks (Stone & Veloso, 2000). Thus, it is bene-
ficial to learn correlations in the environment. Rao
and Fuentes (1996) uses sparse distributed memory
to maintain only a sparse subset of the sensor-motor
space (they also use a behavior-based architecture and
a “teaching-by-showing” approach). The work pre-
sented here is also related to the work studying the
temporal correlations between the firing of place cells
in the hippocampus of the rat (O’Keefe & Nadel, 1978)
and the construction of artificial navigation systems
based on such correlations (Gerstner & Abbott, 1997).

8. Conclusions

The spatial and temporal learning rule enables the
agent to build links between innate behaviors. This
enables it to take advantage of regularities in the en-
vironment and achieve goals that are not visible to its
sensors through purely reactive behaviors. The agent
is also able to adapt to dynamic environments. Since
the learning rule is Hebbian, the agent can learn every
time the behaviors are activated by the sensors with-
out any kind of reinforcement. This is important for
agents that have to survive in a real world environ-
ment where positive reinforcement occurs rarely and
negative reinforcement can be fatal.
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