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Abstract

We report on an under-explored animat learning
problem, that of learning sequences of goals, and
present an algorithm for solving it using observa-
tion and imitation. The presentation introduces
the problem as well as a neural agent control ar-
chitecture we use as a framework in which to use
the algorithm. We demonstrate that, by using
the algorithm, a learning agent can learn to sat-
isfy a sequence of goals by observing the actions
of a teaching agent, and later imitate the teaching
agent.

1. Introduction

For an agent to display interesting behavior and accom-
plish complex tasks, it must be able to select the cor-
rect actions to achieve multiple goals in a sequence. In
this paper, actions are the primitive outputs made by
an agent, and goals refer to the low-level objectives of
approaching or avoiding objects. For example, in order
to complete the task of building a structure, an agent
might need to satisfy the goals: find raw materials, bring
them to the construction site, locate the correct loca-
tion for the building material, and add it to the struc-
ture. The motivation for this work 1s to create agents
that can perform construction tasks while maintaining
their survival in a complex and hazardous environment.
The agents must be able to balance multiple goals, so
that they can pursue survival tasks (such as finding and
eating food when hungry) while still meeting sequences
of goals required for their construction tasks. Agents
that are able to learn to perform these sequences by ob-
serving other agents need not be pre-programmed to the
task. They can acquire the ability much faster than they
would by learning on their own, without observing other

agents. This paper presents VI-MAXSON, a model of
goal-sequence learning by imitation in a neural architec-
ture.

The construction task in this paper is wall building;
the agents must go to a piece of building material, pick it
up, bring it to the wall, move to the correct place at the
end of the wall, and drop the material. The steps in that
sequence are each composed of a single goal that must be
met in the correct order, but the sequence of the individ-
ual actions that the agent makes to meet these goals are
not determined by the task, but rather by the environ-
ment and the goals. These actions can occur in relatively
free order. For example, the first step in building a wall
is always to approach a piece of building material, but
the actions needed to meet that goal depend on the lo-
cations of the agent and building material. The agents
must learn a sequence of goals, not actions.

We use the term goal sequence learning because there
is a wide range of research that falls under the more
general heading of sequence learning. For instance, in
data mining, an area of active investigation is to identify
sequences of data in databases (Zaki et al., 1999). Sim-
ilar efforts in animats research investigate agents that
learn and detect sequences of perceptual input in or-
der to select actions (Ulbricht, 1996). More commonly,
agents learn to perform sequences of outputs. Most of
this work involves learning to produce sequences of ac-
tions (Morén, 1998, Sun and Peterson, 1998). Learning
to achieve sequences of goals differs in that the order of
individual actions is left open, but the order of the goals
these actions achieve are fixed.

The agents described in this paper begin knowing nei-
ther the sequence of goals to be met, nor how to meet
those goals, but they use observation and imitation to
learn both. In VI-MAXSON, one agent (the ‘learner’)
follows a second agent (the ‘teacher’) as it performs a



Interaction-Model
Network

[I\/Iovemem‘ Ou’rpq’r} [In’rgroc’rion Output )<1—(Teocher Interaction Inpu’r}

Key: Policy

J

Goal Nodes ]

Network
Fully
Connected
First-Order

Fully Connected
Second-Order

Network

Sequence

Value Network

Intferaction Network

Detection-Model

-

Detection Nodes Network

One-to-One
Connected

[ Teacher Detection Inpu‘r]

Detection
Network

[Visuol Input Nodes |
[ Reinforcement

Figure 1: VI-IMAXSON agent overview. Ovals represent banks of nodes and arrows represent sets of connections between the
banks. The weights in connection sets represented by bold arrows are learned; the weights in the remaining connection sets

are innate.

task. As the learner watches the teacher, a portion of its
neural network builds a representation of the goals the
teacher achieved. Later, when the learner tries to imi-
tate the teacher, it uses a form of reinforcement learning
to learn how to achieve each goal.

There are many interesting problems involved in 1mi-
tation learning among multiple agents, and we intend to
address the more abstract problems of identifying and
sequencing goals. This will leave a number of areas un-
touched, such as identifying the actions of other agents.
These other problems will need to be solved for com-
plete imitation learning in physical agents, but they are
beyond the scope of this paper.

We begin in section 2 by describing the environment
the agents are in and the architecture that controls the
agents’ behaviors. In section 3, we briefly describe how
the agents learn to approach or avoid objects such as
building materials. In Section 4 we then describe in de-
tail the algorithm for learning to achieve sequences of
those goals. Experiments demonstrating the successful
operation of the algorithm, where one agent learns to
achieve the sequence of goals necessary to build a wall
from a second agent, appear in Section 5. This is fol-
lowed by discussion of advantages and failure conditions
of the systems, and finally conclusions.

2. Environment and Architecture

The VI-MAXSON agents reside in the two di-
mensional continuous environment of DiscoTech
(Crabbe and Dyer, 1999a), where all objects are cir-
cular (discs). Agents have three kinds of output:

movement actions, interactions, and emotive signals.
An agent’s possible movement actions are: turn left or
right (smoothly up to four degrees at a time), and move
forward up to four units (where one unit is one twelfth
the agent’s size). Turn left and turn right both also
cause some movement forward. Interactions are atomic
actions that an agent performs on a disc. Interactions
include: eating food, drinking water, changing the color
of a disc, picking up a disc, and dropping a carried
disc. The emotive signals are either grins or grimaces,
which can convey an agent’s pleasure or displeasure.
Any or all of an agent’s actions may be carried out
in parallel. For example, if during one time step, the
agent turns right 3.2 degrees, turns left 1.8 degrees, and
moves forward 1.6 units, the result is that the agent
simultaneously moves forward 2.1 units (some forward
motion added by the turns) and turns right 1.4 degrees.

To detect the external environment, the agents have a
primitive visual system. An agent can see in a 180 degree
field in front of it. Vision is broken up into four input sen-
sors for each type of object the agent can see. The agent
is bilateral with two visual sensors on each side for each
type of object. These sensors perceive the closest object
of that type. For instance, the RDL (Red_Distance_Left)
sensor measures the distance to the closest red disc on
the agent’s left side, while the RAL ( Red_Angle_Left) sen-
sor measures the angle of this red disc relative to the di-
rection the agent is facing. The agent can also perceive
the interactions and emotive signals of other agents.

Figure 1 gives an overview of the VI-IMAXSON archi-
tecture (Crabbe and Dyer, 1999b), consisting of seven
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Figure 2: A small portion of a second-order Policy Net-
work. G-nodes (goals) dynamically modulate the influence
of I-nodes (sensors) on O-nodes (actions) via second-order
connections.

distinct networks. The weights in four of these networks
(Policy, Value, Interaction, and Sequence) are learned,
while the weights in the remaining three (Detection,
Interaction-Model, and Detection-Model) are set when
the agent is created. At each time step, actions are se-
lected using the Policy Network, the Sequence Network,
and the Interaction Network. The Value, Interaction-
Model, and Detection-Model Networks are used as aids
to learning. We use this architecture because it has
many of the desired action selection properties as listed
in (Tyrrell, 1993), including balance between multiple
goals, robust sequencing, backtracking, conflict resolu-
tion and opportunism.

2.1 Policy Network

The purpose of the Policy Network (figure 2) is to
generate movement output for the agent. It com-
bines an agent’s visual input with the agent’s cur-
rent goals to determine the agent’s movement out-
put at each time step. Connections from visual
sensor input nodes go straight to effector nodes,
such as Turn_Left or Turn_Right. These connec-
tions are modified by second order connections from
a set of goal nodes (Rumelhart and McClelland, 1986,
Giles and Maxwell, 1987).  Second-order connections
multiply the inputs as well as add them, so that the
equation for the output nodes 1s:

Oo - Z IiGgVVi,g,Oa (1)

icl geq

where [ is the activation of the input nodes, G is the
activation of the goal nodes, O is the output, and W is
the set of weights on the connections. The second-order
connections enable the goal nodes to control how much
effect the connections from the input sensors to output
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Figure 3: A small portion of a first-order Value Network
connecting goal nodes to internal reinforcement. FEach R;
node holds the amount of the reinforcement for the associated
input sensor node (I;).

motors in that sub-network has on the agent’s behavior.
When the activation of a goal node is 0, it turns off all the
connections in its sub-network, eliminating that behav-
ior. An agent’s goal nodes include ones that measure the
agent’s internal states, such as Hunger, Thirst and Pain;
ones that control general approach/avoid goals such as
Approach_Red, or Avoid_Green, and one node used for
learning from other agents, called the Vicarious node.

2.2 Value Network

The Value Network (figure 3) stores an agents opinion
on the worth of external discs. It is a first-order net-
work that is fully connected from the goal nodes to the
reinforcement nodes (one reinforcement node is associ-
ated with each visual sensor). The function of the Value
Network 1s to store the intermittent external reinforce-
ment the agent receives. It then distributes external re-
inforcement to internal reinforcement nodes. The Policy
Network can then use this internal reinforcement to effi-
ciently learn to approach and avoid discs in the environ-
ment (see section 3).

2.3  Detection Network

The Detection Network takes sensory input and detects
when the agent is in one of various states with respect
to the environment!. In this paper, the weights of
the Detection Network are set when an agent is cre-
ated. A node in the Detection Network becomes ac-
tive when the agent is in the corresponding state for
that node. The states that can be detected (and the
nodes that detect them) are: the agent is touching a
disc (Touching_Red, Touching_Brown, etc.); the agent is
holding a disc, i.e. has picked up and is carrying a disc
(Holding_Red, Holding_Brown, etc.); the disc the agent is
holding has bumped into something (Carry_Bump_Red,
Carry_Bump_Brown, etc.). There is also a default state
for when the agent is neither touching, holding, nor
carry-bumping into a disc. The node for this default

1We will sometimes refer to these as environmental states.
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Figure 4: A portion of both the Sequence Network and the
Interaction Network, showing how the agents perform a se-
quence.

state 1s called Null.

2.4 Interaction Network

The Interaction Network connects the Detection Nodes
with the Interaction Output Nodes (figure 1). The In-
teraction Network controls the agent’s interaction output
when 1t 1s 1n a particular state. For instance, the net-
work might cause the agent to pickup when 1t is touching
a red disc. The weights in the Interaction Network are
learned as part of the sequence learning (see section 4).

2.5 Sequence Nelwork

The Sequence Network connects the Detection Nodes to
the Goal Nodes (figure 1) to control the agent to satisfy a
sequence of goals. When an agent is in a particular state,
the corresponding detection node is active. This acti-
vates one or more goal nodes, thus controlling the agent’s
behavior. Then when goals are satisfied, the agent’s en-
vironmental state changes, resulting in a change in the
detection nodes, and thus a change in the active goal
nodes. The Sequence Network does not explicitly rep-
resent where it is in a sequence, but uses external cues
(such as the color of the disc it is holding) to keep track
of its position in a goal sequence. For example (figure 4),
when a red disc holding agent bumps into a brown disc,
a different detection node, Carry_Bump_Brown, becomes
active, which causes the agent to color the disc 1t is hold-
ing brown via the Interaction Network. This activates
the Holding_Brown detection node, which in turn acti-
vates the Approach_Green goal node. The agents use
color to mark the external world, and thus where they
are in a sequence because the architecture has no ex-
plicit working memory module to keep track of what has
been done before. If detection nodes could include past
sensory information, such as the fact that the previous
environmental state was a Carry_Bump_Brown, then this
coloring would be unnecessary.

3. Goal Learning

This section will briefly cover the aspects of goal
learning that are necessary for understanding the se-
quence learning algorithm. Details of the Goal-learning

algorithm can be found in (Crabbe and Dyer, 1999a,
Crabbe and Dyer, 1999¢).

Learning in the Policy Network uses the Value Net-
work (figure 3), to control the learning. The Value
Network is fully connected from the goal nodes to re-
inforcement nodes associated (one-to-one) with the sen-
sors. Weightsin the Policy Network represent the agent’s
attitude toward a particular type of object for a partic-
ular goal; a positive weight reflects a positive attitude
towards the objects that activate that sensor with re-
spect to that goal; a negative weight reflects a negative
attitude.

At each time step, the Value Network generates a re-
inforcement signal for each sensor based on the change
in activation (temporal difference) on that sensor. If the
weight on the connection is positive and the sensor acti-
vation increases, then the reinforcement is positive, but
if the sensor activation dropped or if the weight was neg-
ative, the reinforcement is negative. For example, if the
weights between the Approach_Green goal node and the
green disc sensors are 1, and the agent moves toward a
green disc so that the Green_Distance_Left sensor node
goes up in activation, then the reinforcement node as-
sociated with the Green_Distance_Left gets positive re-
inforcement. In the Policy Network, the weights on the
second-order connections from all sensors with positive
reinforcement and the maximally responding goal node
to the maximally responding output node are increased
(Bold connections in figure 2). Similarly, weights are
decreased on connections from sensors with negative re-
inforcement and maximally responding goal node to the
maximally responding output node. The overall effect
is that moving closer to objects toward which the agent
has positive weights (or moving away from objects to-
ward which the agent has negative weights) increases
the strength of the connections that caused that move-
ment. Moving toward objects with negative weights (or
away from objects with positive weights) decreases the
strength of the connection that caused that movement.
Thus the sensory reinforcements that are learned by the
Value Network are used to train the Policy Network.

The weights in the Value Network are set when there
are large changes in the activation of a goal node. If the
change in the goal node activation coincides with the
perception of an event, weights are changed on the con-
nections between that goal node and the sensor nodes
detecting that event. An event is defined as an inter-
action performed by an agent on an object. The sim-
plest form of this event-based learning is when the agent
senses itself interact with a disc. For example, when an
agent eats food, its hunger goal node goes down. At the
same time, it visually senses the eating event, and in-
creases the weights on the connections from the hunger
goal node to the sensors that sense the food. This way
the agents stores in the Value Network the information



that the food satisfies the hunger goal. Conversely, if the
agent picks up a sharp object, its pain goal node rises,
and the weights from the pain goal node to the sensors
for that object are made negative, indicating that the
object thwarts the goal to avoid pain.

The ability to sense events involving other agents en-
ables the agents to wvicariously learn from the effects of
actions performed by other agents have on those agents.
When an agent performs an act that causes one of its
goal nodes to drop in activation, it instinctively grins,
and when 1t performs an act that causes one of its goal
nodes to rise in activation, it instinctively grimaces. For
instance, whenever an agent (agent A) eats food, its
hunger goal node drops and it grins. The observation
(by agent B) of grins and grimaces causes changes in a
goal node called the Vicarious or Vic-node. When agent
B observes a grin, the activation on the Vic-node falls,
and when agent B observes a grimace, the activation on
the Vic-node rises (this operation is hard wired into the
agent). This change in the Vic-node activation triggers
learning in the Value Network, associating a positive (or
negative) attitude with the object that agent A inter-
acted with. Agent B then can learn in its Policy Net-
work (via reinforcement) as if it had interacted with the
object itself.

In essence, the Policy and Value Networks together
function to convert the delayed reinforcement that comes
from interacting with an object, to constant distributed
reinforcement when observing that object. By convert-
ing touch or taste related reinforcement to reinforcement
connection with vision, the agent is able to learn to ap-
proach or avoid an object whenever it sees that object.
A mechanism similar to vicarious learning is used in the
sequence learning, described below.

4. Goal Sequence Learning

In addition to goal-oriented and vicarious learning,
agents must learn to achieve their goals in a specific se-
quence. For instance, an agent can only color a disc green
and drop 1t at a construction site after it has picked up
a red disc and moved to the construction site. In this
section we address the problem of learning a correct se-
quence of goals from observation and imitation.

There are a number of hard problems to address in
learning sequences of goals by imitation: How does the
learning agent detect what goal the teacher is pursuing
from the actions that the teacher makes? How does the
learning agent associate actions performed by the teach-
ing agent with its own actions at a later time? How will
the learner learn the different kinds of knowledge needed
(i.e. the declarative knowledge of what the steps are and
the procedural knowledge of how to perform the steps)?

4.1 Goal Identification Problem

A difficult problem for learning sequences of goals by im-
itation is the goal identification problem. As the learner
observes the movements made by the teacher, how does
the learner know what goal the teacher is pursuing? If
a teacher is moving toward both a brown disc and a red
disc, how does the learner know which disc is the in-
tended target? One way is to guess the teacher’s goal,
given both the teacher’s action and sensory state, but
this 1s not easy. How can the learner have access to the
teacher’s sensory state without riding on the teacher’s
back (an approach taken by (Cecconi and Parisi, 1993))?
What does the learner do if it isn’t clear what goal is be-
ing pursued; if the teacher could be approaching either
a brown or a red disc, how do we adjust the weights?
What if the learner doesn’t yet know how to achieve the
goal; how will it be able to identify it? We address this
problem with a new technique: instead of guessing what
the teaching agent is doing as it is doing it, we wait until
that part of the task is complete. If a teacher is mov-
ing toward a collection of objects, it is unclear what its
intention is, but when 1t picks up one of those objects,
then it becomes clear which object the teacher intended
to approach. The teacher’s act of picking up the green
disc 1s a clear indication that the teacher was approach-
ing the green disc.

4.2 Perspective Problem

Another difficult problem for an agent that imitates an-
other is the perspective problem: how does the learning
agent correspond sensory input and actions of the teach-
ing agent to its own actions? When the learning agent
observes the teaching agent picking up an object, that
sensory input may be entirely different from the input
the learning agent gets on its own sensors when ¢ picks
up an object. We solve this problem by introducing one-
to-one connections between sensors that detect proper-
ties of the teacher, and corresponding sensor and effec-
tor nodes in the learner. There are two banks of these
connections. First, sensor nodes that detect that the
teacher has performed an action, such as grasp or eat,
are connected to the learner’s motor nodes for those ac-
tions (figure 5). Second, detection nodes that detect the
environmental state of the teacher are connected to the
corresponding detection nodes for the learner (figure 6).
This way, sensing the teacher automatically activates the
corresponding nodes in the learner. Note that such an
explicit mapping is common in other imitation systems

(Bakker and Kuniyoshi, 1996).

4.3  Knowledge Problem

As a teacher achieves a sequence of goals, it uses two
kinds of knowledge: the order goals should be achieved
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When a
learner does not know how to achieve a goal it must
learn not only when in the sequence to achieve the goal
but also how to achieve the goal. We solve this problem
by having agents learn the sequence of goals by observa-
tion, but learn how to achieve those goals by physically
pursuing them. This is similar to how people learn many
physical skills, such as sports. They watch an instructor
perform the task and they note the order of the actions,
but they only become proficient at the sport after repeat-
edly performing the sequence themselves.

in, and the method of achieving these goals.

Our learning
algorithm sets the weights in the Sequence Network as
the learner watches the teacher. It also sets the weights
in the Value Network with vicarious learning. Then the
Value Network enables the Policy Network to learn to
achieve a goal.

4.4 Goal Sequence Learning Algorithm

By combining the architecture and learning structures
described in sections 2 and 3, with the ideas listed above,
we developed a neural goal sequence learning algorithm
(algorithm 1).

Initially the learning agent has a bank of un-used goal
nodes. The un-used goal nodes are fully connected into
all the networks, but the weights of the connections in
and out are 0. A procedural mechanism randomly se-

Algorithm 1 : Goal Sequence learning

S is the weight matrix for the Sequence Net,

W A is the weight matrix for the Interaction Net,

G" is the goal vector at the current time step,

G'=1 is the goal vector at the previous time step,

Dt is the detection vector at the current time step,

Dt=1 is the detection vector at the previous time step
and,

A is the interaction output vector at the current time-
step.

g — Select_random_goal_index() (1)
G(g) —1
for each event at time ¢, do:
Gy —0 (2)
for each g € G and d € D do: (3)
if G{ — G'~' < 0and D} — D' < 0 then:
de - Gt 1 Gt
for eacha c A and de D do: 4)
if DY, — Dfi 1> 0 then:
WAd,a — A,
g — Select_random_goal_index() (5)
Gz —1

lects one of these un-used nodes and activates it (step
1). Then, each time the teacher performs an interac-
tion event that is detected by the learner, this detection
triggers learning in the learner. The event causes the
activation on the currently selected un-used goal node
to fall to 0 (step 2). Just as with vicarious learning, this
triggers learning in the learner’s Value Network, so that
the next time the goal node is active, reinforcement will
be generated, causing the agent to learn to approach that
object. The action performed by the teacher changes the
teacher’s state, which is sensed by the learner’s Teacher
Detection Nodes. For example, when the teacher’s state
changes from Null to Holding_Red, the activation of the
learner’s Teacher_Null drops and Teacher_Holding_Red
rises. These nodes in turn change the learner’s detection
nodes (figure 6). In step 3, the weight on the connection
between the detection node whose activation also just
fell and the goal node whose activation just fell, is in-
creased. The agent learns that the previous goal should
be pursued when in the previous state, as detected by
the detection nodes. In step 4, the weight on the connec-
tion from the detection node whose activation just rose
and the act node for the event, is increased. The learner
learns that when it is in the new state, 1t should perform
that interaction. Finally, a new goal node is randomly
selected from the pool of remaining un-used goal nodes

(step ).



Imagine the learning agent observing the teaching
agent when the teacher is in the null state. In the
learner, an unused goal node is active, as well as the sen-
sor nodes that detect that the teacher is in the null state,
and therefore the learner’s own Null detection node is
active. Then the teacher bumps into a red disc and
picks it up. When the teacher bumps into the red disc,
the learning agent’s Teacher_Null loses activation and
the Teacher_Touching_Red becomes active because the
learner sees that the teacher is now touching the red
disc. This changes learner’s own detection nodes, drop-
ping the activation in Null and raising the activation in
Touching_Red. When the teacher picks up the red disc,
the interaction 1s detected as an event on the visual in-
put sensors in the learner. Inside the learner, the unused
goal node falls, causing the weight between the unused
goal node and the Null goal node in the learner to in-
crease. The fall of the goal node also causes the weights
in the Value Network between that goal node and the
sensor nodes for red discs to go up. The increase in the
Touching_Red detection node causes in the learner an in-
crease in the weight from the Touching_Red to Pick_Up
interaction output node. Later, when the learner is try-
ing to perform the sequence, it begins in the null state.
The visual and tactile input makes the Null detection
node active. This will activate the goal node? which will
generate reinforcement to cause the Policy Network to
learn how to approach a red disc, as discussed in section
3. Once an appropriate policy is learned, the agent will
approach a red disc: the visual and tactile input causes
the Null detection node to become active, which in turn
causes the new goal node to become active, which will
(via second-order connections) enable visual input of red
discs to cause motor output that moves the agent to-
ward the red disc. Then, when the agent touches a red
disc, the connection in the Interaction Network causes
the agent to pick up the red disc, thus completing the
first step of the sequence.

5. Simulations

In the simulations, the task is to build a wall out of
scavenged materials. The agents do not have an inter-
nal map, so the location to build the wall is marked in
the environment with its two endpoints, one green and
one brown. The agents’ sensors are too poor to detect
colinearity of objects, so they use a specific technique to
keep the wall straight: the agent goes to where one end
of where the wall should be (the brown disc), and then
turns and moves toward the other end (the green disc),
dropping the material when it runs into part of the wall.
This ensures that the new material is roughly between
the two end points of the wall. As this behavior is re-

2This goal node was un-used up to this point and so has no
name. After the policy network learns to approach red, it can be

called the Approach_Red node.

peated, the wall grows from one end toward the other.
This technique requires the following sequence for the
agents: approach a red disc and pick it up, approach a
brown disc (one end of the wall); when it gets there color
the red disc brown (changing the active detection node);
approach a green disc and when it gets there, color the
brown disc green and drop it.

The teaching agent begins with the goal sequence pre-
coded in its networks. The learning agent begins with
randomly selected weights less than 0.1 in its Policy Net-
work. The weights in its Sequence, Interaction, and
Value Networks are all 0. It also has a separate hard
coded network (not shown here) that causes it to follow
the teacher in order to observe the teacher’s behavior.
During learning, the learner observes the activity of the
teacher. Then we turn off both the learner’s follow-the-
teacher network and the sequence learning, and turn on
its Policy Network. Finally the learner uses the goal se-
quence learned to adjust the weights in the Policy Net-
work as it builds the wall alongside the teacher.

Figure 7 shows a learner following a teacher as it builds
a wall. Tt also shows the weights in the Sequence Network
(connections from detection nodes to goal nodes) and
Interaction Network (connections from detection nodes
to interaction outputs). The weights are increased as
expected, creating networks that enable the learner to
perform the goal sequence. The one unexpected weight
change, which occurred in every simulation, was between
the detection node Carry_Bump_Green and the goal node
that will become Approach_Green. This is not neces-
sary for the sequence and was not programmed into the
teacher, but does not affect the learner’s behavior be-
cause it is already at green when the Carry_Bump_Green
node becomes active.

Figure 8 and figure 9 show the weight values on the
twelve Policy Network connections between the goal
node that eventually learns to approach brown and
the brown visual sensors. Figure 8 shows the learn-
ing over the first 250 time steps, when the agent both
has that goal node active, and sees a brown disc. The
value of the weight on the connection from the sensor
Brown_Angle_Left to Turn_Left (connection #0) and the
value of the weight on the connection from the sen-
sor Brown_Angle_Right to Turn_Right (connection #10)
both rise quickly. Figure 9 shows the same weights from
time step 256 to time step 1800 (still only when the goal
node is active and the agent sees brown). The distance
sensor connection weights also rise to 1, but more slowly
because turning toward a disc is less well-associated with
moving closer to the disc. When an agent turns toward
a disc, improvements in the distance are small. We were
surprised to discover that the weights on the connections
to Move_Forward did not rise. Instead, the agent moved
toward the brown disc by turning back and forth. This
implies that the Move_Forward output was not needed.
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any events.
Goal Nodes Interaction Nodes

Approoch Approqch Approach Color Color

Broy en | Pickup Brown Green Drop
sl el 5" O

Ho@t Touching Hoggng C—Qmp Hoggng C-bump

Red Di%cRed Disc Brown Brown Green Green  Null
The teacher touches and picks up the red disc. The learner
increases the weight on the connections from null to the
goal node that will later learn to approach red. It also
associates touching a red disc with picking it up in the
Interaction Network.

Goal Nodes Interaction Nodes

Approoch Approqch Approach Color Color
L n G<5en Pick-up  Brown %en D(’SD
.I% Holding Touchin: Hoggn C-bump Hoggn C-bump
Red Di%cRed Disg Browng Brown Gveeng Green  Null

The teacher bumps into a brown disc with a disc it is
holding. The learner increases the weight on the con-
nection from Holding_Red_Disc to the goal node that will
eventually learn to approach brown discs. The learner In-
teraction Network associates the environmental state with
coloring the held disc brown.

Goal Nodes Interaction Nodes

Approoch ApproqchApproach Color Color
Green ! PIC .up Brown Green Drop

Tn

Holding Touching Holding C-bump Hoggng C-bump
Red DiscRed Disc Brown Brown Green Green Nul

The teacher bumps into a green disc with the disc it is
holding, and colors it green. The learner increases the
weight on the connection from Holding_Brown to the goal
node that will later learn to approach green. The learner
Interaction Network associates the carry bump green state
with coloring the held disc green.

Interaction Nodes

L L Color (éolor brop
Pick-u| Brown reen
Ly P

Goal Nodes

Approoch Approoch Approach
Red Green

Holding Touching Holding C-bump Holding C-bump

Red DiscRed Disc Brown Brown Green Green  Null
The teacher drops the green disc. The learner associates
the state of holding a green disc with dropping the disc.

Figure 7: Screen shots (left) and diagrams of the learner’s
fully connected Sequence and Interaction Networks (right).
Only connections with weights > 0 are shown. The detection
nodes receive activation from the visual and touch sensors
directly via the detection network. The Interaction nodes are
output nodes, causing the agent to perform the listed action,
and the goal nodes directly cause the agent to achieve the
listed goals by the second order connections in the policy
network, as discussed in Section 2.
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Move; F:Forward

Figure 8: Plot of the weight values on connections from
brown disc sensors and the goal node that eventually controls
approaching brown, to the movement output nodes (from 0
to 250 learning time steps).

Figure 10 shows three different walls built by the
agents. The left wall (case A) was built by the teacher
using the hand-coded network. The middle wall (case
B) was built by the teacher and the learner together.
After observing the teacher place a disc on the wall, we
turned off the follow-the-teacher and the sequence learn-
ing in the learner, and turned on it’s Policy Network.
The learner quickly learned to approach the correct discs
and then aided the parent. The right wall (case C) was
built entirely by the learner. After the learner’s sequence
learning was turned off, the teacher was removed and the
learner completed the wall on its own. Each case (A, B,
and C) was run 10 times and the length of time taken to
build the wall was recorded. The average time for case A
(teacher only) was 10152.5 time steps. The average time
for case B (both) was 6672 time steps and the average
time for case C (learner only) was 15969.6 time steps.

6. Discussion and Future Work

The experiments show that a learning agent can learn
to perform a task that requires the achievement of se-
quences of goals. The architecture and algorithm have
two major advantages: rapid learning, and any-order
learning.

The learning agent is able to learn the order of the
steps in a sequence by observing the teaching agent make
a single pass through the sequence. This is in stark con-
trast with gradient descent methods, which would re-
quire multiple exposures to the input. This is important
when the sequence 1s required for survival or when there
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Figure 9: Plot of the weights from brown disc sensors and
the goal node that eventually controls approaching brown, to
the movement output nodes (from 250 to 1800 learning time
steps). The weights are arranged as in figure 8.

is little opportunity for teaching.

Another advantage is that the learning agent does not
need to observe the sequence in the order in which it s to
be performed. The learner associates each environmental
state with a goal, so it does not need to know what has
gone before. This is a distinct advantage in more chaotic
environments when the learner may be interrupted while
attending to the teacher. This could occur when it be-
comes hungry or thirsty and stops for food or drink, or
when it sees a predator. If the learner misses some part
of a sequence, it can pick it up later by observing that
part out of order.

One disadvantage of the system is that the learning
agents do not have the ability to invent or modify the
sequences they observe. A learning agent performs the
sequence as 1t 1s demonstrated by the teacher without
modification, even if the task could be performed more
efficiently (faster, or with fewer steps) with some other
sequence.

6.1 Failure and Boundary Conditions

The system has a number of fixed parameters, such as
the weights of the detection networks. This situation can
lead to failures to which the agents are unable to adapt.
One example of this arises directly from the limited de-
tection abilities of the detection nodes. The detection
nodes were wired to detect particular simple states, such
as agent is holding a red disc, but do not represent con-
junctions of these states. For example, if, during the
wall building sequence, an agent that is carrying a red
disc to the brown disc accidentally carry-bumps into a
green disc, the Interaction Network will cause the agent
to color the red disc green and drop it in the wrong
place. This occurs because the detection nodes could
not represent that the true condition for dropping the
disc should have been that both carry-bump green and

A B C

Figure 10: Completed walls built by the teacher alone (A),
the teacher and the learner (B), and the learner alone (C).

holding brown are true. If the detection networks were
not fixed, the agent could learn to adjust to detection
weights to account to this error.

Another failure condition occurred due to the algo-
rithm used for building the wall. Because the straight-
ness of the wall depends on an agent moving toward
a green disc from the brown disc. If the agent is wa-
vers from that line for any reason (e.g. to avoid a col-
lision with another agent), the agent will then end up
approaching the green disc from the wrong direction,
and dropping the disc it is carrying on the side of the
wall rather than the end.

6.2 Future Work

In the future, we intend to both enhance the represen-
tational power of the detection nodes so that they can
represent conjunctions. and develop mechanisms to au-
tomatically learn or evolve the weights in the Detection
Network. We also hope to develop additional learning
algorithms with which the agents can correctly build the
Model Networks on their own by noticing correlations
between their own state and that of other agents.

7. Related Work

We know of very little work in the area of learn-
ing sequences of goals or other higher level behav-
iors built on top of actions. A robotic soccer agent
(Stone and Veloso, 1998) learned low-level behaviors us-
ing actions, and then used those behaviors in learning
higher-level behaviors. It differs from our work in that
it: a) uses supervised learning rather than imitation, b)
learning in each layer is performed as a separate experi-
ment, and c¢) the low-level behaviors to use were explic-
itly given to the learning agents.

Imitation learning usually takes the form of imita-
tion of movements or action sequences, but they do not
identify and imitate the goals of the teaching agent.
(Gaussier et al., 1998, Dautenhahn, 1995) both use imi-
tation to learn trajectories for mobile robots, where what



is learned is to follow a specific path, such as a square
or a star. In (Hayes and Demiris, 1994) a robot learns
to navigate a maze by associating actions with differ-
ent locations in the maze, and (Kuniyoshi et al., 1994)
describes a robot that learns sequences of actions by im-
itation of a human performing an assembly task.

(Morén, 1998) and (Sun and Peterson, 1998) both
use techniques built on top of a Q-learning system
(Sutton and Barto, 1998) to learn sequences of actions.
Morén clusters commonly occurring sequences of actions
into chunks to speed up learning. Sun and Peterson
layer a rule extracting mechanism on top of a Q-learning
mechanism, to extract both procedural and declarative
knowledge. They extract rules matching states to ac-
tions from the Q-learning layer below.

8. Conclusion

In this paper we have presented an algorithm for learn-
ing sequences of goals by observation and imitation, as
part of a robust animat control architecture. The agents
take a wait-and-see approach to solve the goal identifica-
tion problem to learn the sequence of goals, while using
existing goal learning structures in the architecture to
efficiently learn how to achieve those goals. Simulations
show that the sequence learning in VI-MAXSON enables
agents to quickly (in one pass) acquire a skill level rival-
ing that of their teachers.
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