
1  INTRODUCTION

Agents that reside in complex environments need to
be able to meet their survival goals, often when sever-
al of these goals have hig priority simultaneously.
When the environment is dynamic, or when the
agents cannot be pre-programmed to meet these goals,
they must learn to meet them. 

One of the most common methods of learning for
animats is to use reinforcement from the environment
in the form of Temporal Difference Learning or Q-
Learning (Sutton and Barto, 1998). These methods
use reward from the environment to associate values
to particular actions in particular states in the envi-
ronment.  The standard benchmarks for these tech-
niques are navigation tasks, such as maze learning
(Kaelbling et al., 1996; Dietterich, 1998; Ring, 1992),
which are often situated in a grid-based simulation
environment (Thrun and Schwartz, 1995; Sutton,
1996). Typically, these models take a large number of
iterations before the agent behavior is suitable, and
focus on a single goal at a time (Blumberg et al.,
1996). The number of iterations required can be on
the order of tens of iterations for simple behaviors
(Araujo and Grupen, 1996) to tens of thousands for
more complicated ones (McCallum, 1996). While

maze learning and related tasks are important skills for
animats, we are interested in investigating other skills
that are also important for the survival of an
autonomous animat. In particular we are interested in
the task of learning about objects in the environment
as they pertain to multiple
internal goals, and learning how to move toward or
away from these objects.

This skill is important to a completely uninitial-
ized animat thrust into a novel environment and
forced to adapt to its surroundings, which requires the
learning to be extremely fast. Typically an agent would
get only one interaction with an object before it is
required to act appropriately. For example, if the agent
survives an interaction with a potentially dangerous
object, it should immediately learn that the object is
dangerous, and also begin to learn to avoid objects of
that type. The agent should then be able to simulta-
neously avoid that type of object while pursuing other
goals.

An Extended Braitenberg Architecture (Braitenberg,
1984; Pfeifer and Scheier, 1999) using higher-order
connections (Giles and Maxwell, 1987) is a suitable
architecture for this problem. Braitenberg animats
consist of sensors connected directly or indirectly to
actuators, resulting in reactive behavior. This reactivi-
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ty makes this architecture an excellent starting point
for such an approach/avoid task. Earlier work
(Werner, 1994; Crabbe and Dyer, 1999b) has shown
that extending the architecture, with the addition of
second-order connections, enables the animats to
exhibit behavior that: is goal directed, balances the rel-
ative priority of goals, and exhibits compromise
behavior; that is, selects an action that is a compro-
mise between actions each of which satisfy a different
active goal. It has been demonstrated (Crabbe and
Dyer, 1999b) that agents with this architecture are
able to build nest-like structures, while simultaneous-
ly satisfying survival goals such as consuming food.
Our problem here is to develop learning algorithms
for this second-order architecture that the agents can
use to learn approach/avoid behaviors quickly in order
to ensure their survival.

This paper presents MAXSON, a flexible second-
order neural architecture that: learns faster than any
using traditional reinforcement learning approaches;
is able to generate and apply the reinforcement in a
neurally plausible manner; can balance the require-
ments of multiple simultaneous goals; and is flexible
enough to incorporate extensions to the basic rein-
forcement paradigm. The paper also presents one such
extension that enables agents to learn vicariously (i.e.,
learn about objects in the environment by observing
the reactions of other agents due to their interactions
with those objects) and shows that this change posi-
tively affects the quality of learning. Vicarious learn-
ing is an entirely new class of social learning which can
be explored independently of the architecture. Finally,
this paper discusses the advantages of MAXSON and
compares it to other similar systems.

1.1 Environment and Agent Task

In order to evaluate an agent control architecture,
both an environment and a task are needed. The env-
iron- ment includes the agent's body (sensors, effec-
tors, and any physiological mechanisms) as well as the
external world. The task allows for a metric to meas-
ure the relative success of the control architecture.

For the purposes of this paper, an agent lives in a
two-dimensional, continuous environment. The
objects in the environment are food, water, and poi-
son. To survive, the agent needs to eat the food, drink
the water, and avoid the poison. The agent receives

goal input in the form of hunger, thirst, and pain1.
Each goal input is a single value between 0 and 1. As
an agent’s store of food and water goes down, its
hunger and thirst rises. When the agent eats a poison,
its pain input rises.

This environment is dynamic due to the actions of
the agents in it. When an agent eats food, it changes
the location of that piece of food as well as the overall
distribution of food in the environment. A large num-
ber of agents eating food can drastically alter the
nature of the environment from food-rich to food-
poor in a short time. In work not discussed here,
agents can also relocate objects (used as building
materials) and as a result create new barriers and
remove old ones (Crabbe and Dyer, 1999b).

In order to detect external objects, the agent has a
primitive visual system for object detection. The agent
can see in a 180 degree field in front of it. Vision is
broken up into four input sensors for each type of
object the agent can see. Since the world contains
three types of external objects, the agent has twelve
visual sensors. The agent is bilateral with two visual
sensors on each side for each type of object. These sen-
sors perceive the closest object of that type. For
instance, the FDL (Food Distance Left) sensor meas-
ures the distance to the closest food on the agent’s left
side, while the FAL (Food Angle Left) sensor measures
the angle of this food relative to the direction the
agent is facing.

An agent’s possible actions are: turn left or right
smoothly (up to four degrees), and move forward up
to six units, where one unit is one twelfth the agent’s
size. The agent automatically consumes any object
with which it comes into contact. Any or all of an
agent’s actions may be carried out in parallel. For
example, if the agent turns right 3.2 degrees, turns left
1.8 degrees, and moves forward 4.6 units, the result is
that the agent simultaneously moves forward 4.6 units
and turns right 1.4 degrees.  

2 MAXSON ARCHITECTURE

Our agents use an architecture, called MAXSON
(Figure 1), (Crabbe and Dyer, 1999a), that is made up
of two sub-networks: a second-order policy network,
and a first-order value network. The policy network is
used to dynamically create the agent’s actions at each
time step, while the value network is used to generate
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and apply reinforcement to the policy network.  At
each time step the following occurs: (1) the policy net-
work determines the agent’s action, (2) the action is
performed in the environment, (3) the value network
calculates reinforcement for the policy network, (4)
the weights on the policy network are adjusted based
on that reinforcement, and finally, (5) the weights of
the value network are adjusted based on the external
reinforcement.

In order to behave intelligently, an agent needs to
be able to act based upon its goals, not only immedi-
ate survival goals such as eating, but also other goals
involved in more sophisticated behavior. This can
result in an agent having multiple, possibly conflicting
goals that fluctuate in urgency over time (the task
environment in which a MAXSON agent is designed
to learn). The second-order connections in the policy
network help the MAXSON agent satisfy these multi-
ple simultaneous goals.

Reinforcement from the external world appears
intermittently, upon the satisfaction of or failure to
satisfy some goal. Multiple satisfactions of a goal could
be for an agent to learn correctly. The MAXSON
agent should be able to learn from a single interaction
with an object in the environment, so that an agent

needs to eat a poison only once before it begins to
avoid poisons. The value network serves this purpose
by converting the intermittent reinforcement to rein-
forcement at each time step for the policy network.

2.1 Second-Order Networks

A MAXSON-based agent uses the second-order poli-

Figure 1. A small-scale MAXSON network. I-nodes receive external input. Associated with each I-node is a reinforcement node
R. G-nodes receive internal goal input, and O-nodes perform motor actions. Each black triangle (joining two input connections)
is a second-order connection with a weight W.
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Figure 2: A second-order policy sub-network. G-nodes (goals)
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(actions) via second-order connections.
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cy sub-network (Figure 2) to choose what actions to
take at each moment.  Second-order connections mul-
tiply pairs of inputs to nodes before the inputs are
summed (Giles and Maxwell, 1987; Werner, 1994).
In the policy network, the sensor nodes are broken
into two groups: the external input and the internal
goal sensors. The set of external input sensors I consist
of all the visual sensors (for food, water, and poison
objects); the goal sensors G consist of hunger, thirst,
and pain. When the agent receives input              , the

associated sensor nodes are activated (activation
between 0 and 1). Then, activation from each external
input sensor Iiis multiplied with activation from each
goal sensor Gg and a weight Wi,g,o (weights between 0
and 1), via second-order connections, and then
summed at anoutputnodeOo, as showninEquation 1:

If there were two external sensors (food_left and

O I G Wo
i I g G

i g i g o=
∈ ∈
∑

,
, , .

( )I G∪

 

algorithm 1 :

for each  in  do :

     

 .

 ,

 ,

 ,

 ,

 ,

 .

argmax

argmax

,, , , ,

adjusts the second order policy network weights

is the 3D weight matrix

is the network output vector

is the reinforcement vector

is the external input sensor vector at the current time step

is the external input sensor vector at the previous time step and

is the goal sensor input vector at the current time step

 where :

                                                  

−

←

←

← + × × ×

=

−

W

O

R

I

I

G

o O

g G

w w R O G

t

t

o

g

i g o i g o i o g

r

r

r

r

r

r

r

1

1

1

1

i I

δ

δ
,,

,

  if

  otherwise.  

I Ii
t

i
t− − <






1
1

0

θ

I2I
1

G1 G2

R1 R2

V2,2

V2,1
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food_right), one internal sensor (hunger), one output
(turn_left), and two weights(W1 = Wfood_left;hunger;turn_left

and W2 = Wfood_right;hunger;turn_left) the activation of
turn_left would be: Oturn_left= (Ifood_left x Ghunger x W1+
Ifood_right x Ghunger x W2).

2.2 Policy Network Weight Adjustment

The agent learns to approach food and water while
learning to avoid poison by adjusting the second-
order weights based on immediate distributed rein-
forcement. By immediate, we mean that reinforcement
is given to the agent at each time step, rather than only
when the agent satisfies some goal. By distributed, we
mean that each external sensor generates a separate

reinforcement signal, rather than having a single rein-
forcement signal for the whole organism. The rein-
forcement Ri at external input sensor node Ii is con-
tinuously re- calculated by a function of the difference
between the activation on Ii at the current time step
and the activation on Ii at the previous time step:

.  We describe the neural mechanism
that dynamically generates this distributed reinforce-
ment signal in the next section. The second-order
weights in the policy network are adjusted as shown in
algorithm 1.

First, the maximally responding output node Oo

and the maximally responding goal sensor node Gg are
identified2 (these are highlighted via dark circles in
Figure 2 as O1 and G2). Then the weight on each sec-
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ond-order link from Gg to Oo (dark lines in Figure 2)
is adjusted by the product of the activation of Oo, the
activation of Gg, and the reinforcement Ri from the
external input sensor node for that weight. 

2.3 Reinforcement Calculation
by Value Network

In MAXSON, a first-order single layer network
(called the value network) re-calculates the reinforce-
ment for the policy network at each time step. It con-
sists of connections from the goal sensors to the rein-
forcement nodes associated with the external input
sensors (Figure 3).  The reinforcement is calculated as
shown in algorithm 2. Activation on the maximal goal
sensor Gg (dark circle G2 in Figure 3) is multiplied by
the weights Vg,i on the links from Gg (dark lines in
Figure 3) and propagated to the reinforcement nodes.
Each external input sensor multiplies its input from
the value network by the change in its activation over
time                to generate the local reinforcement
value (Ri).

2.4 Value Network Weight Adjustment

The value network uses Hebbian style learning (Hebb,
1949) to update its weights V based on the temporal
difference at the goal sensor nodes (algorithm 3).
When the change of activation at any goal sensor node
Gg is greater than a constant threshold    , then the
weight Vg,i on the link (dark lines in Figure 4 from
both goal nodes) from that goal sensor node to the
external input sensor node (dark circle I1 in Figure 4)
that was maximally responding at the previous time
step      , is modified by the difference
times the activation of the external input sensor node
at the previous time step.

2.5 Architectural Design Features

The unique features of the architecture described
above were developed in response to the requirements
of an efficient neural mechanism for learning the
multi-goal task. This section describes these require-
ments and how they were met.

2.5.1 On-the-fly management of multiple goals

The second-order connections (combining the goal
and external input sensor input) give a MAXSON
agent the ability to properly achieve multiple fluctuat-
ing goals.  The second-order network enables changes
in the goal input to radically affect the overall behav-
ior. If a goal changes, a distinct portion of the policy
network is given more (or less) control over the out-
put. Using second-order learning (algorithm 1), dif-
ferent sub-networks are modified automatically, one
for each goal sensor. When a goal sensor becomes
active, the portion of the policy network that meets
that goal becomes more active, and when that goal
node becomes

Figure 5. A value network example. PN is the pain input node,
IPis the visual node that receives input about a poison object.
RP is the reinforcement node for IP.

inactive, the portion of the network that meets that
goal is turned off. For example, imagine an agent with
moderate hunger, no thirst, food to the left and water
to the right. The thirst input is 0, thus turning off the
connections from the water sensors to the output
nodes that would make the agent move toward the
water.  Thus the agent moves toward the food. But if
the agent suddenly becomes extremely thirsty, the
“approach water” sub-portion of the policy network
becomes very active, and, all other things being equal,
the agent approaches the water.

2.5.2 Delayed Reinforcement Converted to
Immediate Reinforcement via

Cross-Modal Learning

The second-order policy network requires immediate
reinforcement in order to learn. Unfortunately for the
agent, reinforcement is only available when an object
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is eaten or drunk and this lasts for just a single time
step. The value network solves this delayed-reinforce-
ment problem. The function of the value network is
to convert short duration delayed reinforcement into
the continuous immediate reinforcement used in the
second-order learning algorithm. A weight (Vg,i) on
the value network reflects the agent’s positive or nega-
tive reinforcement attitude toward the external object
represented by the external input sensor (Ii) when the
goal sensor (Gg) is active. By associating the input that
immediately led to a large positive reinforcement with
that reinforcement, the agent is able to adjust the
value of that object. Later, when the agent moves rel-
ative to the object, the value network can generate
more appropriate immediate reinforcement. The
cross-modal association of one input with another
converts the delayed reinforcement into immediate
reinforcement.

For example (Figure 5), when the agent eats poi-
son, the activation on the goal pain sensor rises (1).
The change in activation on that sensor triggers the
downward weight adjustment (2) between the pain
sensor and the reinforcement node of the external
input sensor that detects the poison. Later, when the
agent moves toward a unit of poison, the activation on
the poison visual sensor changes (3) from time t - 1 to
time t. That temporal difference combines with the
value network (G x V ) to generate an immediate neg-
ative reinforcement (4) at that external input sensor
node. The policy network can now use the resulting
immediate vision-based negative reinforcement to
learn how to avoid the poison. Thus an intermittent
negative gustatory experience has caused the agent to
experience negative reinforcement from more com-
mon visual experiences.

In the case when the agent eats food (Figure 6), the
activation on its goal hunger sensor goes down (1).
The change in activation on that sensor triggers the
upward weight adjustment (2) between the hunger
sensor and the reinforcement node of the external
input sensor that detects the food. Later, when the
agent moves toward a unit of food, the activation on
the food visual sensor changes over time (3). That
temporal difference combines with the value network
to dynamically generate an immediate positive rein-
forcement (4) at that external input sensor node. Thus
the intermittent positive gustatory experience has
caused the agent to experience a positive reinforce-

ment from more common visual experiences. The pol-
icy network can use this immediate visual reinforce-
ment to learn how to approach the food.

Figure 6: Another value network example.  H is the hunger
goal input node, IFis the visual node that receives input about
a food object. RF is the reinforcement node for IF. The agent
has no a priori knowledge that food satisfies hunger.

2.5.3 Using MaximumNodes for
Focus of Attention

During second-order learning, attempting to adjust all
the weights at each sense/act time step resulted in
problems in assigning credit to individual weights.
Here are two example problems: (1) When an agent
outputs a large activation for “turn_left”, and a medi-
um activation for “turn_right”, the agent’s resulting
action is to turn left. If the agent receives a positive
reinforcement, and the algorithm were to adjust
weights to all the output nodes, then the agent would
adjust weights to both “turn_right” and “turn_left”.
Because the weights are capped at 1 (to prevent
unbounded growth), enough of these errors would
cause the weights on both links to grow to 1. (2)
Suppose that the agent is thirsty but even more hun-
gry; it sees food to the left and turns left, causing the
“food_left” sensor to receive positive reinforcement. If
the weight between the “food_left” sensor node, the
“thirst” goal node, and the “turn_left” output node
were to be adjusted based on the positive reinforce-
ment, then the agent will learn to incorrectly
approach food when thirsty.  The credit for the posi-
tive reinforcement would be improperly given to that
link. 

Experimentation showed us that in sufficiently
complicated environments, these errors occur often
and are not compensated for, thus resulting in the
agents learning bad policies. In order to focus the
attention of the second-order learning algorithm on
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the appropriate weights, we introduced the idea of
only adjusting the weights associated with the maxi-
mum nodes of a particular group. By only adjusting
weights connected to the maximum output node, the
credit assignment problem in problem 1 was alleviat-
ed. Since the “turn_left” node is the maximum output
node, only the weight causing the agent to turn left is
the one that is increased.  Similarly, by only adjusting
the weight connected to the maximum goal sensor,
the agent does not learn to approach food when
thirsty. Since, in this case, hunger is the maximum
goal sensor, only the weights on the links emanating
from hunger are modified, thus handling problem 2.

2.5.4 Temporal Difference Based Sensor
and Goal Threshold

Sometimes an atypical event occurs and it interferes
with the agent’s learning how to behave in the typical
case. For example, if an agent that sees food on the left
turns to the right, normally it should get a negative
reinforcement. But if, while it is turning to the right,
a new piece of food happens to come into view, then
the agent would get a positive reinforcement. In this
case, the agent might learn that when there is food on
the left, turning to the right is a good idea. The same
sort of situation can occur when an occluded object
suddenly comes into view.

In order to filter out the effects of these discontin-
uous events during learning, we use the threshold

shown in algorithm 1. If the change of input at any
sensor is greater than a threshold, no change is made
to the weights on the links emanating from that sen-
sor. So, if an object comes into view at some point,
the large change in the sensor input causes that data
not to be used for learning. Thus      acts as a filter to
disregard non-smooth sensor fluctuations.

Because the reinforcement signal is generated by
any large change of an agent’s internal goal sensors,
the value network must detect when an event has
occurred that should warrant a change in the agent’s
reinforce-ment attitude toward some object, and the
goal to which this change relates. To select the appro-
priate goal to associate with that external reinforce-
ment, we choose a goal Gg whose change is greater
than a threshold      .  The rationale for this threshold
in algorithm 3 is that, when a goal sensor such as

hunger changes gradually, it is a part of the normal
process of hunger increasing over time, but when it
drops suddenly, something special has occurred to sat-
isfy the hunger. It is at these times that the agent
should take note of its surroundings and perform
cross-modal reinforcement learning.

Both these thresholds are a function of properties
outside the MAXSON architecture: i.e., the sensors
and physiology of the agent, as well as the physics of
the world. We posit that such factors are naturally
part of any situated system, and would be set in
nature as a product of evolution. We found, by our
own experimentation, that given the nature of the
simulated environment, both thresholds worked best
at 0:02.  Genetic Algorithm experiments (Crabbe and
Dyer, 2000) demonstrated     indeed converging on
0:02, while      stabilizes in the range between 0.18
and 0.3.

3 MAXSON EXPERIMENTAL METHOD

To test the MAXSON architecture, we ran three
experiments.  In the first experiment, the environ-
ment contained 10 food units and 10 water units.
The task was to gather as much of the food and water
as an agent could in 20,000 time steps. A single agent
was placed in the environment, and that agent
received external visual inputs, but the connections
from the goal nodes in the policy network were
lesioned; thus the MAXSON policy network became
a first-order network. We lesioned these links because
agents that were not hungry or thirsty would not eat
and drink as fast as possible, and we wanted to meas-
ure the agent’s performance when always eating and
drinking.  We measured the agent’s performance by
counting the number of objects the agent ate and
drank, allowing a maximum score of 20. In the sec-
ond experiment, the environment contained 10 food
units, 10 water units, and 10 poison units, with the
goal input still lesioned.  The task was still to eat as
much food and drink as much water as the agent
could, but also to eat as little poison as possible. We
measured an agent’s performance by subtracting the
number of poison units eaten from the total number
of food units eaten and water unite drunk. In the
third experiment, the environment was the same as in
the second experiment, but the links from the goal
nodes in the policy network were left intact. In this

θ2

θ2

θ1

θ1
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experiment, an agent should no longer eat and drink
as much as it could, but only eat and drink when
hungry or thirsty, respectively. The agent should still
refrain from eating poison. Each agent was given a
maximum food and water storage capacity, and any
amount eaten beyond this capacity was lost.  We
measured an agent’s performance by measuring how
long it survived in the environment. The maximum
time an agent could survive was 60,000 time steps
because of the limited amount of food and water.

In each experiment, we compared the MAXSON
agent with three other agents: random, table-based Q-
learner, and linear function Q-learner. The random
agent selected its action from amongst “turn_left”,
“move_forward”, and “turn_right”, with equal proba-
bility. Q-learning was selected because it is a popular
reinforcement learning technique for agents in similar
environments. In Q-learning, the system maintains
an estimate of how “good” it would be for the agent
to perform a particular action when it is in a particu-
lar world state. These estimates are called Q-values.
Each time the agent performs an action, it updates the
Q-values for the state it was in based on any reward it
gets and its prediction of future reward. In the first
two experiments, reinforcement of +1 was given for
eating food, -1 for eating poison and 0 otherwise. In

the third experiment, the reward for eating food or
drinking water was the value of the agent’s hunger or
thirst at that moment. The reward for eating poison
was -1 x the agent’s pain at that time.

The table-based Q-learner is based on the Q
learner presented in Sutton and Barto (1998).  This
Q-learner keeps an explicit table of all possible world
states. Each state is defined directly by the agent’s sen-
sory input. The continuous input to the agent was
discretized into a 3 x m table, where m is the number
of inputs (12 or 15, depending on experiment) and
there are 3 possible discretizations (Table 1). This
results in a state space with 315, or 14,348,907 possi-
ble states.

The linear function Q-learner is also a version of
Q.  It uses a linear function of the inputs as an

approximation of the table of Q-values. There was a
separate function for each action ai, that is, a separate
equation to calculate the Q-value for each possible
action, such as “turn_left”. The equation is shown in
Equation 2.

Q(s, ai) = w1E1+ w2E2+ ... + w15I3. (2)

The weights were adjusted using gradient descent
(Sutton and Barto, 1998).

( )λ

( )λ

between 0.0 and .33 between 0.33 and .66 between 0.66 and 1.0
FAL 1 0 0
FAR 0 0 1
FDL 0 1 0
FDR 0 0 1
WAL 1 0 0
WAR 0 1 0
WDL 1 0 0
WDR 1 0 0

PAL 1 0 0
PAR 0 1 0
PDL 0 0 1
PDR 0 0 1

T 1 0 0
H 0 0 1

PN 1 0 0

Table 1. A possible discretization to form the table for the table-based Q-learner. P = poison, F= food, A = angle, L = left,
R = right, H = hunger, T = thirst, and PN = pain.



154 CRABBE & DYER

The MAXSON agent consisted of the policy and
value networks as described in the architecture section
above. In the third experiment we ran two versions of
MAXSON: one with the links from its goal nodes
lesioned (as in experiments 1 and 2), and one with the
links from its goal nodes intact, thus using goal input.

For each type of agent, we ran 10 training sessions
and report the average of the 10. In each training ses-
sion, the agent was trained over 180,000 time steps.
Periodically, learning was halted and the agent was
tested for 20,000 time steps in 10 environments with
different starting configurations. One of the random
starting configurations is shown in Figure 7.  We
hypothesized that in the first experiment: (a) the
table-based Q-learner would not perform well
because its simple method of generalizing the input
would not adapt to the continuous environment; (b)
the linear function Q-learner would learn better; and
(c) the MAXSON agent would learn as well as the lin-
ear function Q-learner, but do so faster as a result of
the conversion of intermittent gustatory reinforce-
ment to continuous visual reinforcement.

We hypothesized that in the second experiment:
(a) the table-based Q-learner would continue to do
poorly; (b) the linear function Q-learner would learn
the function, but more slowly; and (c) the MAXSON
agent would learn at roughly the same speed as before,
since learning about the poison happens in parallel
with learning about the food and water.

We hypothesized that in the third experiment the
MAXSON agent with goal input would out-live all of
the other agents because it could conserve food and
water while avoiding the poison.

4 MAXSON RESULTS

The results of the first experiment (food and water
only) are shown in Figure 8. The MAXSON agents
performed the best, converging on a score of nearly 20
by 10,000 time steps.  Once a MAXSON agent inter-
acts with all of the different types of objects, it quick-
ly (within a few thousand time steps) learns to con-
sume almost all the food and water. The linear func-
tion Q-learner converges in 60,000 time steps to a
score around 18, slightly less than the MAXSON
agent. The difference between the maximum scores of
the linear function Q-learner and the MAXSON
agent is statistically significant at 99.92% using a

Mann-Whitney U-test. The table-based Q-learner
fails to learn any good policy within the time frame of
the experiment.

Figure 9 shows the results for the second experi-
ment (food, water and poison). Again, the MAXSON
agents had the best performance, converging to a
score of 18 in 20,000 time steps. Much of the extra
time taken to learn this task is time taken by the agent
to randomly consume all three types of objects. The
performance of the linear function Q-learner was also
similar to its performance in experiment 1. It learns
more slowly and converges to a score of 16. The table-
based Q-learner again fails to learn a viable policy in
the time given.

Figure 10 shows the results for the third experi-
ment (conserve food and water while avoiding poi-
son).  The MAXSON agents that take advantage of
their goal input have the longest survival time. They
are able to approach food and water, but only do so
when hungry or thirsty, saving resources for later on.
As expected, the MAXSON agent that ignores its goal
input does not survive as well. It can eat and drink
while avoiding poison, but it consumes all of its
resources quickly, and dies by the 15,000th time step.
The linear function Q-learner performs about as well
as the MAXSON agent that ignores its goal input. As
the linear function Q-learner gets better at avoiding

Agent
Poison

Food Water

Figure 7. One of the random initial positions.
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poison and at collecting food and water, its survival
time goes up; but it fails to account for its goal inputs
properly, over-consumes, and dies from starvation.
The table-based Q-learner performs comparatively
better in this experiment. While it does not have a
policy any different from that of the the previous
experiments, its “strategy” of consuming very little
food or water succeeds about as well as a strategy that
involves eating too much.

5   MAXSON DISCUSSION

5.1  Comparison to Q-learning

Q-learning was developed as a very general method
for learning arbitrary functions. Often, general meth-
ods do not work as well in a particular domain as
methods designed for that domain. Q-learning has
been shown to have particular difficulties when the
input to the agent is from the agent’s point of view,
rather than from a global location (Sun and Peterson,
1999). MAXSON was designed for mobile agents
that balance multiple goals in a continuous environ-
ment. Because of this, MAXSON shows much better
performance in our experiments. Not only do the
MAXSON agents surpass the Q-learning agents in
performance, they also reach the Q-learners’ maxi-
mum performance an order of magnitude faster.  

There are a number of reasons for the failure of
both types of Q-learners in the various experiments.
The discrete table entries of table-based Q-learning
generalizes poorly in a continuous environment.
Imagine an agent in a state where food is nearby, and
slightly to the right. The agent is unable to notice the
similarity between this state and one in which it sees
food nearby to the right and poison distantly to the
left. From the point of view of the table-based Q-
learner, this is an entirely different state, about which
it knows nothing.  Similarly, when the agent sees food
that is distantly to the right, that too is an entirely dif-
ferent state. The table-based Q-learner ignores the
fact that distant food is similar to near food, which is
also similar to near food with other extraneous input.
A table-based Q-learner should be able to overcome
this difficulty given enough time. Note that often the
speed of Q-learning is reported in terms of iterations
of the algorithm, where each iteration ends with an
achievement of the goal. In the 180,000 time steps

the table Q-learner was run, the agents interacted
with food or water roughly 30 times, resulting in 30
iterations of the algorithm. Given the size of the state
space, this is insufficient time for the table Q-learner
to learn the correct behavior.

In experiment 3 the linear function Q-learner did
receive goal input but was unable to form a good pol-
icy, instead behaving as it did in experiment 2.
Between 40,000-60,000 time steps, the agent eats and
drinks while avoiding poison, but without regard to
the goal input. At that stage, it consumes all the food
and water within a few thousand time steps, and then
starves to death in 15,000 time steps. The reason the
goal input had so little effect was that it was over-
whelmed by the rest of the input. Small changes in the
goal input should have large effect on the behavior of
the agent, resulting in a non-linear target-function
that cannot be represented by a linear Q-function.

A different way of introducing goals to the Q-
learner would be to use three different Q-functions,
one for each goal, and then use the Q-function that
corresponds to the current maximal goal at each time
step.  Aside from lengthening the learning time, this
approach prohibits the agent from exhibiting any
compromise behavior. This can be detrimental to the
agent, since when it is acting on one goal, it com-
pletely ignores the other goals. For example, if an
agent’s maximal goal is to approach an object, it will
do so even though it might pass close to another
object which it has a strong goal to avoid. The lack of
the ability to consider and react to multiple goal input
limits the abilities of such an agent.

To preserve the ability to perform compromise
behaviors, while introducing non-linearity, a func-
tion- based Q-learner could multiply the goal and
external input together as in Equation 3.

This equation is non-linear, computing the same
function as MAXSON does. Because each term com-
bines both external and internal input, small fluctua-
tions in internal goal input can have the needed large
effects on the output.

MAXSON combines six features to enable it to
perform well in comparison to standard Q-learning:
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Figure 8. Experiment 1. The x-axis is the number of time steps and the y-axis is the score. The MAXSON agents converge six
times faster than the linear function Q-learner and obtained a higher score (99.92% significance on a U-test). The horizontal
line represents the score of a random agent performing the task.
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er reaches converges on a score of 16.4.
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• Firstly, it implicitly takes advantage of the conti
uous spatial nature of this mobile robotic task.
The reinforcement at each sensor node generat-
ed by the change in input over two time steps
works because motion in a continuous environ-
ment changes the input continuously.  Actions
that move the agent closer to its goal make the
goal appear closer to the agent. This would not
be true if the input were an arbitrary function,
where moving toward an object could cause the
input at a distance sensor node to go down or
fluctuate.

• Secondly, a MAXSON agent uses credit assign-
ment in the form of distributed reinforcement
across all the sensors. By distributing the rein-
forcement, it becomes easier to pick out which
part of the network affects the actions with
respect to the external objects in view.

• Thirdly, the weights associated with only the
maximum nodes are adjusted. By adjusting only
the weights associated with the maximum nodes,
the system can concentrate on learning one
thing at a time and reduce misplaced credit. By

reducing the errors in credit assignment, the net-
work learns more rapidly and avoids learning
incorrect associations.

• Fourthly, the cross-modal association that occurs
in the value network converts a single gustatory
reinforcement event, such as eating a unit of
food, into immediate visual reinforcement that
is active over a period of time. With Q-learning,
learning takes place only when the food is eaten,
while in MAXSON, after the food is eaten, the
agent learns about approaching food during each
time step that it is observing food at a distance.

• Fifthly, the input is separated into goal sensors
and external input sensors. By separating out the
goal sensors from the external input sensors, the
system can treat then differently during learning.

• Lastly, the second-order connections allow the
goals of the agent to have an important major
influence over its behavior. An agent does not
waste its resources by consuming them when it
does not need them.
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Figure 10: Experiment 3. The MAXSON agents that use their goal inputs survive the longest. Here, the y-axis is the survival
time in number of time steps. Each data point indicates when an agent died (averaged over 10 trials).
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5.2  How MAXSON Networks Self-Organize

Figures 11,12, and 13 illustrate how a typical MAX-
SON network self-organizes as a result of the multi-
goal approach/avoid task. The agent starts out ran-
domly connected and with no knowledge of objects in
its environment.  The only innate structure (besides
the architecture itself ) is that eating poison will cause
the pain input to increase while eating food/water will
cause hunger/thirst to diminish.  Over time, the
MAXSON agent learns the following through inter-
action with its environment:

1. It learns which sensory input should control
which action output. For instance, it learns that
the sensor for food on the left side should drive
the “turn_left” output while poison on the left
should drive the “turn_right” output.

2. It learns which goals should modulate which
external sensor-to-action connections, via the
second- order connections. For instance, it
learns that the sensation of Thirst (T) should
control connections between the water-sensors
and the motor outputs while the sensation of
Pain (PN) should control the connections
between the poison-sensors and the motor out-
puts.

3. Through adjustments in V weights (e.g., due to
experiencing pain when eating poison) it learns
to become negatively reinforced merely by the
sight of poison at a distance and positively rein-
forced by the sight of food/water at a distance.

There are three ways in which the MAXSON archi-
tecture and learning algorithms are neurally inspired:
(1) the second-order connections approximate axo-
axonal neural connections, (2) the update rule is
Hebbian- like, and (3) the network begins as a fully
connected network and connections are pruned dur-
ing development.  Figures 12 and 13b show only the
strongest connections after learning. All weights tend
toward extremes: in the policy network, weights are
either close to 0, or close to 1. In the value network,
the weights are close to 1, -1, or 0, but not in
between. Links with a weight of 0 are effectively
pruned from the network. Thus, a structured connec-

tionist network self-organizes out of a distributed
fully connected network (Figure 11). The pruning of
excessive connections is common during neural devel-
opment (Oppenheim, 1985; Edelman, 1987;
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Figure 11. Initial policy network architecture with full con-
nectivity and random weights in range of [0; 0:01].  TL =
turn-left, TR = turn-right, PN = pain sensed, H/T =
hunger/thirst sensed, FAL = angle to food object sighted on
left, PAR = angle to poison object sighted on right, and so on.
The distance visual sensor nodes were left out for clarity. Only
connections from the hunger goal input node are shown.
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Figure 12. Simplified structure of a high-performance policy
network after learning. All links from both hunger and pain
with a weight greater than 0.01 are shown to highlight the
learned structure. All links shown have weights greater than
0.5. Connections from thirst are omitted for clarity.
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Churchland and Sejnowski, 1992) and is theorized to
improve the precision of of neural circuits
(Landmesser, 1987).

6  V-MAXSON

In previous sections, we showed that MAXSON is a
viable architecture to control an agent to act in an
environment and to learn from its experiences.
MAXSON’s modular nature also makes it extensible
to other types of learning, such as vicarious learning.
The goal of the vicarious learning system is for one
agent to learn from observing both another agent’s
actions and the results of those actions. For example,
suppose agent A sees agent B eat a poison object and
agent A sees B grimace, indicating that it did not like
the poison. As a result A learns to avoid the poison
without having experienced it itself. The ability to
learn vicariously could be an advantage to an agent
that has not yet explored its entire world.

Vicarious learning requires a number of features.
The agents need to be able to signal their pleasure and
displeasure with the environment, and the agents
need to be able to perceive these signals from others.
The agents need to reliably associate actions they see
other agents performing with the signals these agents
emit.  The agents also need to keep vicariously learned
knowledge separate from other knowledge because it
is less reliable than direct experience, and it does not
indicate what goals particular actions satisfy. To
include these features, a small number of changes
needed to be made to MAXSON.

To learn vicariously, the agents must be able to sig-
nal their reaction to objects they interact with, and
they must be able to receive those signals. V-MAX-
SON (Crabbe and Dyer, 1999c) agents signal by ges-

turing positively (e.g., grin) or negatively (e.g., gri-
mace). They also have new input sensor nodes to
receive those signals.  Because the signals are gestural,
the agent only perceives the signal if it is turned
toward the signaling agent.

V-MAXSON agents also have a small number of
innate connections to and from these new sensors and
output motor nodes.  Whenever a goal node’s activa-
tion falls more than a fixed amount, the agent auto-
matically grins. Conversely, if one of the agent’s goal
nodes rises more than a fixed amount, the agent auto-
matically grimaces. For example, if the agent eats food
when it is hungry, its hunger will fall, causing it to
grin.

The agents also need a new goal node to control
vicariously learned behavior. This vicarious goal node
(or Vic node) has innate connections from the agent’s
grin and grimace sensors. Whenever an agent A per-
ceives a peer’s grin, the activation on A’s Vic goal node
falls, and whenever A perceives a grimace, the activa-
tion on its Vic node rises. Change in the activation of
the Vic node triggers learning in the value network.
The vicarious goal node is different from the other
goal nodes in that it normally has a activation of 0.2,
and once it is changed, either up or down, it slowly
returns back to 0.2.

6.1  Phase-based Vicarious Learning

In a MAXSON agent, the value network learns the
association between a goal node and the maximal
input node, but because we now want the agent to
learn vicariously from agents that are far away, this
mechanism will not always work. For Example, if
agent A sees agent B eat food, but the closest object to
A is poison, then the MAXSON net will associate the
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Figure 13. Value network before and after learning. Initially it has full connections, but it learns which sensors are more likely
to be related to the achievement of appropriate goals.
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positive signal emitted by B with the poison. To pre-
vent this crosstalk, agent A must determine which
objects are significant with respect to the change in its
vicarious goal input. This is accomplished by binding
events in the environment using temporal synchrony
(Gray et al., 1989; Shastri and Ajjanagadde, 1993).

V-MAXSON input is split into a two-phase
process. The first phase (the object phase) is exactly
the same as the input to the MAXSON network. In
the second phase (the event phase), only the input
nodes that correspond to the closest event are active.
An event is defined as an agent taking an action on
another object. For example, if at a time step an agent
can see a food object to the left and another agent eat-
ing a poison object to the right, then in the object
phase, the FAL (Food Angle Left), FDL (Food
Distance Left), AAR (Agent Angle Right), ADR
(Agent Distance Right), PAR (Poison Angle Right),
and PDR (Poison Distance Right) sensor nodes are
active. In the event phase, only the AAR, ADR, PAR,
and PDR node are active, indicating that these objects
were involved in an event.

In V-MAXSON, all the connections in the value
net adjust their weights during this event phase. By
temporally separating the event from the rest of the
input, it is made clear to the network which objects
are important and should be used for learning.

6.2  Delayed Vicarious Learning

Realistically, it would be desirable to allow for some
delay between when an agent performs an action and
when it signals with a grin or a grimace (e.g., if an
agent eats poison, it may take several moments before
the agent begins to feel ill). We account for this delay
by allowing the activations in the event phase to decay
slowly over time. If an agent sees an event, the input
during the event phase corresponds to the event seen.
If, at the next time step, the agent does not see an
event, then its input during the event phase is the lin-
early decayed activations corresponding to the event
in the previous time step. This decay continues until
it reaches 0, or a new event is observed, replacing the
event input. So if agent A sees agent B eat food, then
agent A will receive input during the event phase cor-
responding to the food. If over the next few time
steps, agent A sees no other events, the input during
its event phase will still be food, but with decayed
activations. Finally, when agent A sees agent B grin,

agent A will still be receiving input in its event phase
representing food, and the agent can associate a drop
in the Vicarious node with food.

The introduction of decay makes the agent more
flexible with respect to time delays in vicarious learn-
ing, but introduces a problem of confusion. If an
agent A observes agent B eat food, then shortly later
observes B eat poison, and then observes B grin
because of the earlier food, then agent A would vicar-
iously confuse poison with the grin. 

Because an agent perceives its own actions as
events, the V-MAXSON agent still performs rein-
forcement learning as the MAXSON agent does. But,
the V-MAXSON agent can also learn vicariously from
other agents, such as when agent A observes agent B
eating food. B eats the food and B’s hunger goes
down. This causes B (by an innate connection) to
grin. If agent A is facing B, then A will perceive the
grin, which will cause (also via an innate connection)
A’s vicarious goal node to drop to zero. At the same
time, in A’s event input phase, A sees agent B eating
the food. As the activation on A’s Vic node begins to
rise, A’s policy network begins to learn how to
approach the food (Figure 14). Once A actually eats
food, its hunger drops, and A thus learns to associate
food with hunger. Thus through the process of vicar-
ious learning followed by reinforcement learning,
agent A learns that to satisfy hunger, it should
approach food.

Figure 14. Portion of a V-MAXSON net learning vicariously.
(a) Weights between Vic node and food sensor nodes are
increased due to perceived grins, causing positive reinforce-
ment to be generated at relevant sensor nodes.  Perceived gri-
maces cause poison objects to become negatively reinforcing.
(b) Reinforcement at sensor nodes causes learning on higher-
order connections between sensor and motor nodes.

RFood

I2 Vic (vicarious)
Poison

Food

(a)

Output Nodes

(b)

RPoison

-+



161Goal Directed Adaptive Behavior in Second-Order Neural Networks

Table 2. V-MAXSON experiment 1, vicarious learning in an
unforgiving environment.  The left column contains the
results for MAXSON agents and the right column contains
the results for V-MAXSON agents.  The first row is the aver-
age survival time of all the agents of that type. The second row
shows the average survival time of the best agent in each run.
Best V-MAXSON agents can still die because they run into
poisons hidden behind food or water.

7 V-MAXSON EXPERIMENTS/RESULTS

To test V-MAXSON, we ran three experiments. In
the first experiment we compared the average survival
time of a group of V-MAXSON agents with the aver-
age survival time of a group of MAXSON agents in
the same environment. The environment was “unfor-
giving” in that when an agent ate a poison, it would
be removed from the environment (killed). The
agents still had to eat the food and drink the water to
stay alive. In each run, four agents of the same type
were placed in an environment with 20 food units, 20
water units and 20 instant-death poison units. The
simulation was run until all the agents were dead.
There were 5 runs for each type of agent, varying the
initial position of objects each time. 

We hypothesized that, because the MAXSON
agents needed to sample the deadly poison to learn
about it, they would die more quickly than the V-
MAXSON agents, which would have the advantage
of learning vicariously from the fatal mistakes of their
peers. Table 2 shows the results of the first experi-
ment. As expected, the average survival time of the V-
MAXSON agents is several times longer than the
average survival time of the MAXSON agents. When
looking at the best-surviving agent of each run, the
difference is even greater.

In the second experiment, we wanted to test the
speed of learning in groups of MAXSON agents and
groups of V-MAXSON agents. The environment was
made more forgiving in that, while poison harmed an
agent that ate it, it did not kill it. Because the higher-
order connections in the policy network prevent the
agents from eating and drinking when already satiat-
ed, we disconnected the inputs from the goal nodes in

the policy network, causing the agents that have
learned to approach food/water to always approach
food/water regardless of their hunger/thirst. This
“greedy” technique decreased simulation time and
emphasized learning speed. Each run consisted of
alternated learning and testing. Four greedy agents of
a single type (MAXSON vs. V-MAXSON) were
placed in an environment with 20 food units, 20
water units and 20 weak poison units. The agents
were then allowed to learn about their environment.
Periodically the learning was stopped and the agents
were tested. Testing was done after 500, 1,000, 2,000,
3,000, 4,000, 5,000, 10,000, 15,000, 20,000, and
25,000 time steps.

When testing, each agent was placed in a smaller
environment by itself with learning turned off. The
testing environment had 10 food units,10 water units
and 10 poison units. The agent was allowed to inter-
act with the testing environment for 20,000 time
steps, and then given a score (the number of food
units eaten plus the number of water units drunk,
minus the number of poison units eaten). Testing was
performed on each of the four agents. Afterwards, the
four agents were placed back in the learning environ-
ment and the agents were allowed to learn until the
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Figure 15. V-MAXSON Experiment 2, vicarious learning in a
forgiving environment. The graph compares the performance
of vicarious learning agents with non-vicarious agents. The x-
axis is the number of time steps the agent spent learning and
the y-axis is the score. The average score of the vicarious learn-
ing agents is significantly higher than their non-vicarious
counte parts.
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next test point. After 25,000 time steps, the testing
was done once more, and then the run was complet-
ed. There were five runs for each type of agent (MAX-
SON or V-MAXSON), varying the initial positions
of agents and objects in the environments.

We hypothesized that the vicarious learning agents
would learn faster than their non-vicarious cousins
because the vicarious learning would allow the agents
to experience the effects of the objects at a distance
and thus learn about them earlier in the training.
Figure 15 shows the results of the second experiment.
Instead of learning faster, the vicarious learning agents
learned better on average. The difference between the
final average scores of 14:81 for non-vicarious learn-
ers and 17:56 for vicarious learners is statistically sig-
nificant with a 99.98% confidence interval using a U-
test.

In the third experiment, we tested the robustness
of the vicarious agents by examining their ability to
recover from the effects of confusions. We initialized
the value networks of individual agents as if they had
incorrectly associated the satisfaction of (or failure to
satisfy) a goal with the wrong type of object. For
example, the weights on the connections between the
vicarious node and food were set to -1, causing the
agent to build a policy to avoid food. We compared a
regular V-MAXSON agent to two types of agents
with built-in incorrect biases. One type of agent,
described above, had weights of -1 on its value net-
work links between the vicarious node and food; the
other type of agent had the weights on the links of its
value network between the vicarious node and poison
set to 1, causing the agent to build a policy to
approach poison. We ran the agents alone in their
environment so as not to introduce any other vicari-
ous experiences.  There were 10 food, 10 water, and
10 poison units. The simulation was run for 25,000
time steps, and tested at 500, 1,000, 2,000, 3,000,
4,000, 5,000, 10,000, 15,000, 20,000, and 25,000
time steps. There were 5 runs for each type of agent
and each test was repeated 5 times.

We hypothesized that the agents with the mis-ini-
tialized value networks would perform similarly, but
not as well as the control agent. We expected that
eventually the initialized agents would experience the
objects for themselves, and the weaker input from the
vicarious node would yield to the stronger input from
the other goal nodes. Figure 16 shows the results of

the third experiment. As expected, an age with no
improperly initialized weights performs better initial-
ly, scoring significantly better (99.58% on a U-test) at
time 4,000. But the difference at time 25,000 is not
significant (15.06% on a U-test). The two mis-initial-
ized agents have no significant difference at any time
during learning.

8 V-MAXSON DISCUSSION

Vicarious learning is clearly advantageous in unfor-
giving environments for the reasons stated above. If
an agent is able to learn to avoid catastrophic situa-
tions without putting its life in danger, it has an
advantage over an agent that is forced to risk its neck
to learn this same information.  By sacrificing a few
agents initially, the vicarious agents were able to sur-
vive much longer.

In the forgiving environment, the situation is more
complex. The vicarious learning agents do not learn
faster initially because even though they vicariously
experience the objects in the environment sooner, it
still takes time to learn to approach or avoid the
objects. By the time the agents have spent enough
time in the env ronment to set their policy networks
properly, they tend to have had an opportunity to
directly encounter most of the objects.

What was more surprising is that the performance
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Figure 16. V-MAXSON Experiment 3: Vicarious robustness.
This graph compares a V-MAXSON agent with V-MAXSON
agents with initial confusions. The confusions hinder learning
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163Goal Directed Adaptive Behavior in Second-Order Neural Networks

of the V-MAXSON agents was much better than that
of the MAXSON agents. Early in the learning runs of
the MAXSON agents, one agent would interact with
the food and water first. This agent would immedi-
ately begin to learn how to approach food and water,
while the remaining agents had yet to discover these
objects. The first “lucky” agent would begin to con-
sume all the food and water as fast as it could, and
leave none for the remaining agents. In the testing
phase, the lucky agent would score very well, but the
rest of the agents would score poorly, thus dropping
the average score. The actions of peer agents made the
environment dynamic, and necessitated faster learn-
ing.

In the V-MAXSON runs, the effect of one agent
getting everything was avoided.  When the lucky
agent ate the food and water, it implicitly shared
information about it with the rest of the agents. Thus,
vicarious learning evens out the playing-field. It pro-
vides the less lucky agents with vicarious experience
which enables them to catch up to their lucky peers,
thus raising the total group score. This could be criti-
cal in environments that require cooperation for later
tasks where a group of agents needs to survive, such as
for later pack-hunting to bring down large prey.

With the introduction of vicarious learning, it is
possible that an agent could incorrectly learn associa-
tions in the value network. The experiments show
that this negatively impacts the agents initially, but
that the agents can overcome the handicap.
Furthermore, if the agent later vicariously learns the
opposite of its incorrect earlier learning, the agent
would proceed to learn a correct policy. One possible
solution for this confusion is to allow the weights
associated with the vicarious node to decay back to 0
over time, letting the agent forget the incorrect learn-
ing. This would be less optimal in unforgiving envi-
ronments, since the agent would forget what it
learned about the deadly poison and might eat it any-
way. Otherwise, there is a trade-off in the speed of the
decay of the event input. With a faster decay, there are
fewer time steps available for confusion to occur. But
if the decay is too fast, such that events always decay
to 0 before the delayed reactions of the agents to food
and poison, then the agents could never learn vicari-
ously.

9 RELATED WORK

Work related to MAXSON falls into three categories:
second-order networks as agent controllers, neurally-
based reinforcement learning, and imitation learning.

9.1  Second-Order Controller Networks

Braitenberg (Braitenberg, 1984) first showed that an
agent with direct connections from left and right sen-
sors to left and right wheels could be made to
approach and avoid objects in its environment.
Werner (Werner, 1994) noted that second-order con-
nections combining Braitenberg-like connections
with goal input have advantageous properties for con-
trolling agents. He noted that the combination of goal
and sensory input enables an agent to pursue goal-
directed behavior, as well as to interrupt such behav-
ior to avoid a danger or to take advantage of an
opportunity to satisfy a less important goal. Once an
agent has begun a consummatory behavior, it persists
at it because the proximity of the object to be con-
sumed dominates the behavior. The agents can prior-
itize based on the activations of the inputs as well as
the weights on the links. Finally, the agents can per-
form simultaneous actions, and do not need to exclu-
sively choose a single action at each time step.

Werner (1994) hand-designed the structure of his
second-order networks and then used a genetic algo-
rithm to set the weights. MAXSON’s learning from
fully connected networks results in both a structure
(Figure 12) similar to Werner’s hand-designed struc-
ture, and weights that provide the agents with the
above desirable properties. We are unaware of any sys-
tems that extend Hebbian learning to learn the
weights on second-order or higher-order connections
as we do in algorithm 1.

9.2  Neural Reinforcement Learning

Often, neural networks are used within a reinforce-
ment learning system as a function approximator for
the value, policy, or Q-values function (Sutton and
Barto, 1998).  These networks replace a lookup table
of values to scale up to large or continuous problem
spaces, while the agent selects the single maximum
score action (based on the network output) at each
time step. In contrast, MAXSON takes the maximum
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of input for learning, but can output multiple simul-
taneous actions. A Q-learning system with an embed-
ded neural network still has all the difficulties of Q-
learning described above.

The complementary reinforcement backpropaga-
tion algorithm -(CBRP)- (Ackley and Littman, 1990)
is an example of a neural network that specifies the
output directly, making it more similar to MAXSON.
CBRP, however, requires that the agent receive imme-
diate reward after each action, as opposed to the
delayed reinforcement of the MAXSON environ-
ment. CBRP has no way of converting delayed rein-
forcement to visual immediate reinforcement.

Araujo and Grupen (1996) described an agent
architecture made up of a collection of Braitenberg-
style controllers, each performing a simple operation
(such as approach and avoid) in a task environment
very similar to ours. They then used Q-learning to
select the appropriate controller to use at each
moment. Their technique does not address the way
which the low-level controllers come about. In their
experiments, the learning algorithm reached peak per-
formance between 150 and 500 iterations of the algo-
rithm. MAXSON, in contrast, learns the structure of
the low-level controllers and takes an order of magni-
tudeless time.

9.3  Social Imitation Learning

The DRAMA architecture (Billard and Hayes, 1999)
uses a technique similar to our value network in a
mobile robot to associate events cross-modally, as well
as across time in order to label landmarks, and to
learn series of perceptions. In DRAMA, event recog-
nition systems (made up of feed forward networks)
identify sensory events that are fed into an associative
module. This fully connected module associates
events that co-occur or occur in similar time frames
by increasing the weights on the links between the
nodes representing each event.  DRAMA also per-
forms social imitation learning (Billard and Hayes,
1997). A mechanism external to the architecture
enabled the robotic agent to imitate the actions of
another robot. By associating auditory input with
imitated motor actions, the agents could learn a sim-
ple language about actions. In further experiments
(Billard and Dautenhahn, 1998; Billard and
Dautenhahn, 1999), the imitating robot could also

learn names for environmental attributes. The imita-
tion helped ensure that the two robots shared similar
input when learning the names of locations and direc-
tions. While DRAMA does learn about its environ-
ment, it neither contains an action selection mecha-
nism such as MAXSON’s policy network, nor does it
use the output of the associator to generate reinforce-
ment.

Cecconi et al. also developed agents that learned
via social imitation (Cecconi et al., 1995). In their
model, a child agent rides on the back of a parent
agent so that both the parent and child receive identi-
cal sensory input. The child then uses the parent’s
action as a training signal for the child’s neural net-
work.  By forcing the child’s input to be the same as
the parent’s, they avoid the perception problem of one
agent learning from another although they have dif-
ferent input vectors. In V-MAXSON, we address this
problem through the event phase-based learning.

Kaminka and Tambe’s agents learned by observing
the actions of other agents in a team (Kaminka and
Tambe, 1999). These agents determined that they
were mis-behaving by comparing their actions with
those of other members of the team, a strategy is more
appropriate for groups of agents that have already
learned how to perform a task, but may experience a
planning failure. Models of the relationships between
agents allow an agent to detect and correct an error.
This team-based learning is different from vicarious
learning in that, with the former, agents learn based
on observations of the actions of other agents; while
with the latter, agents learn based on both the actions
of and the effects on other agents. Team-based learn-
ing can be powerful in specifying correct behavior to
an agent, but it requires that the agents be cooperat-
ing on some task.

In imitation learning, the basic assumption is that
the teaching agent knows better how to solve the task
than does the learning agent. The learning agent com-
pares its behavior with that of the teaching agent to
make adjustments. In vicarious learning, the learning
agent’s behavior is not involved. Instead the learning
agent observes the consequences of the teaching
agent’s actions. Both these learning techniques are
useful when they are appropriate. Vicarious learning is
not as powerful because, like reinforcement learning,
the agent only receives a positive or negative signal
evaluating an action. Imitation learning allows the
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agent to learn the correct way of performing some
task. In a situation where none of the agents are
experts, imitation learning is less useful, while vicari-
ous learning can afford a real advantage.

10 CONCLUSIONS AND FUTURE WORK

When agents need to learn about their environment
in order to survive, it is important that they do so
quickly and accurately. They should take advantage of
the sort of environment they live in to maximize their
chances of success.  In the environments discussed in
this paper, the agents are required to learn about their
environment rapidly.  For example, if an agent does
not learn how to approach food when hungry within
two interactions with food, the agent will die.
Algorithms that require 40 interactions with poison
in order to learn to avoid the poison cannot succeed
in this environment. This sort of environment consti-
tutes a different benchmark for animat learning,
where rapid understanding is required for survival.
This benchmark should help facilitate research into
what kinds of architectures lead to the fast learning in
what kinds of environments, as opposed to general
purpose architectures.

Our architecture uses second-order connections
between goal and external input sensors, converts
delayed discrete reinforcement to immediate continu-
ous reinforcement across sensory modalities, applies
max-based credit assignment strategies, and makes
effective use of the spatial continuous nature of the
task. As a result, the MAXSON neural network archi-
tecture is able to learn to approach food and water,
while learning to avoid poison. It learns to achieve
these multiple simultaneous goals much faster and
more flexibly than the more general Q-learning tech-
niques.

Our architecture as described here cannot learn to
perform maze learning or other types of mapping-
navigation tasks. We suggest that this is not a defi-
ciency of the system but rather a demonstration of the
fundamental differences in the two tasks.  We believe
that approach-avoid tasks should be performed by
reactive systems, and maze navigation should be per-
formed using an explicitly stored cognitive map, such
as the one in Chao and Dyer (1999) or Lagoudakis
(1999). Adding such a map to a reactive system
enables an agent to learn a maze within a single explo-

ration, as opposed to multiple explorations seen in
TD and Q-learning (Russell and Norvig, 1995).  This
more closely matches the behavior of real animals in
maze environments (Gallistel, 1990). Part of our
future work is to integrate the maps of Chao and Dyer
into the MAXSON architecture so that the agents will
be able to navigate via the acquisition of explicit cog-
nitive maps.

Another area of future work is to expand the learn-
ing to include learning to achieve sequences of goals by
imitation of a teaching agent. (Crabbe and Dyer,
1999b) describes an architecture where second-order
networks (structured like MAXSON networks) per-
form construction tasks that require the achievement
of sequences of goals. Output from the sequence por-
tions of the network activate various goal nodes, con-
trolling the agent to meet these goals in sequence.  We
intend to enable learning in the sequence portion of
the architecture as well. The result will be agents that
learn how to approach and avoid objects on their own
using MAXSON, and learn the appropriate sequence
(in what order the goals should be met) via observa-
tion and imitation.

As we have seen, the MAXSON architecture can
also be extended to perform other types of learning,
such as vicarious learning. Agents that can learn vic-
ariously have a survival advantage over agents that
cannot. V-MAXSON agents can survive in unforgiv-
ing, instant-death environments, as well as help each
other in more forgiving environments. The possible
confusions that arise from vicarious learning can neg-
atively affect the agent, but can also be overcome by
additional experiences of the agent. We view V-MAX-
SON as merely a first step in the area of vicarious
learning. Any system that can learn about objects and
actions in the environment from the results of actions
of other agents is learning vicariously. In this area
there remain many open questions, including: How
do agents internally represent actions of other agents?
To what extent do animals in nature exhibit vicarious
learning? is vicarious learning the basis of the devel-
opment of communication? We envision further work
in exploring the nature of this type of learning.

NOTES

1The goal input corresponds to input coming from
within the agent’s body, similar to motivational
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units in (Cecconi and Parisi (1992).
2The name MAXSON is an acronym for Max-based

Second-Order Network.
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