
UNIVERSITY OF CALIFORNIA

Los Angeles

Core Training:

Learning Deep Neuromuscular Control of the Torso for Anthropomimetic Animation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Tao Zhou

2019

c© Copyright by

Tao Zhou

2019

ABSTRACT OF THE DISSERTATION

Core Training:

Learning Deep Neuromuscular Control of the Torso for Anthropomimetic Animation

by

Tao Zhou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Demetri Terzopoulos, Chair

Despite its importance, the core of the human body has to date received inadequate attention

in the computer graphics literature. We tackle the challenge of biomechanically simulating

and controlling the torso, including of course the spine, in its full musculoskeletal complex-

ity, thus providing a whole-body biomechanical human model with a full set of articular

degrees of freedom actuated by many hundreds of muscles embedded in a finite-element soft

tissue simulation. Performing skillful (non-locomotive) motor tasks while bipedally balanc-

ing upright in gravity has never before been attempted with a musculoskeletal model of

such realism and complexity. Our approach to tackling the challenge is machine learning,

specifically deep learning. The neuromuscular motor control system of our virtual human

comprises 12 trained deep neural networks (DNNs), including a core voluntary/reflex DNN

pair devoted to innervating the 443 muscles of the torso. By synthesizing its own training

data offline, our virtual human automatically learns efficient, online, active control of the

core musculoskeletal complex as well as its proper coordination with the five extremities—

the cervicocephalic, arm, and leg musculoskeletal complexes—in order to perform nontrivial

motor tasks such as sitting and standing, doing calisthenics, stepping, and golf putting.

Moreover, we equip our virtual human with a full sensorimotor control system, thus making

it autonomous. Afforded suitable NN-based machine perception, our model can also visually

analyze drawings and manually sketch similar drawings as it balances in an upright stance

before a large touchscreen display.

ii

The dissertation of Tao Zhou is approved.

Guy Van den Broeck

Song-Chun Zhu

Joseph M. Teran

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2019

iii

To my mother and father

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions . 3

1.2 Overview . 5

2 Related Work . 6

2.1 Biomechanical Human Models . 6

2.1.1 Modeling and Animating the Spine and Torso 7

2.2 Neuromuscular Motor Control of Biomechanical Models 8

3 Simulation Framework . 11

3.1 Overview . 11

3.2 Musculoskeletal Simulation . 13

3.2.1 Skeletal System . 13

3.2.2 Muscle System . 14

3.2.3 Torso Musculoskeletal Complex . 16

3.3 Flesh Simulation . 18

3.3.1 Flesh Constitutive Model . 19

3.3.2 Incompressibility . 20

3.3.3 Skeletal Attachments . 21

3.3.4 Discretization Given Musculature and Skeletal Structure 22

3.4 Summary . 23

4 Neuromuscular Motor Control Framework 24

4.1 Neuromuscular Motor Controllers . 24

v

4.2 Torso Voluntary Motor DNN . 26

4.2.1 DNN Architecture . 26

4.2.2 Offline Training Data Synthesis and Network Training 28

4.3 Torso Reflex Motor DNN . 29

4.3.1 DNN Architecture . 29

4.3.2 Offline Training Data Synthesis and Network Training 31

4.4 Motor DNNs for the Extremities . 31

4.4.1 Offline Training Data Synthesis and Network Training for the Legs . 32

4.5 Coupling the Torso and Extremities . 32

4.6 Summary . 35

5 Experiments and Results . 36

5.1 Sit-to-Stand . 36

5.2 Calisthenic Exercises . 38

5.3 Stepping . 38

5.4 Golf Putting . 43

6 Applications to Sensorimotor Control . 45

6.1 Autonomous Sketching . 45

6.1.1 Background . 45

6.1.2 Eye and Retina Model . 46

6.1.3 Sketch Visual Perception System . 48

6.1.4 Sketching Demonstration . 50

6.2 Autonomous Soccer Goaltending . 52

7 Conclusion . 54

vi

7.1 Limitations and Future Work . 55

7.1.1 Biomechanical, Muscle-Actuated Hands and Feet 55

7.1.2 Task-Specific Variance Structure . 55

7.1.3 Active Balance and Locomotion . 56

7.1.4 Reinforcement Learning . 57

A Synthesizing Training Data . 59

B Rendering . 61

C ONV2seq: Biomimetic Perception Learning for Sketch Generation . . . 62

D Learning to Doodle with Deep Q-Networks and Demonstrated Strokes . 68

D.1 Introduction . 68

D.2 Related Work . 71

D.2.1 Imitation Learning and Deep Reinforcement Learning 71

D.2.2 Sketch and Art Generation . 72

D.3 Methodology . 73

D.3.1 Our Model . 73

D.3.2 Pre-Training Networks Using Demonstration Strokes 75

D.3.3 Doodle-SDQ . 76

D.4 Experiments . 77

D.5 Discussion . 80

D.6 Conclusion . 82

References . 83

vii

LIST OF FIGURES

1.1 Torso anatomy . 2

1.2 Our human model performs skillful motor and sensorimotor control tasks 4

3.1 Biomechanical human musculoskeletal model . 12

3.2 Total muscle force versus stretch ratio of the Hill-type muscle model 15

3.3 Hill-type muscle model force-length and force-velocity relations 15

3.4 Close-up view of the torso . 17

4.1 The motor subsystem architecture of our human musculoskeletal model 25

4.2 Neuromuscular motor controller architecture . 26

4.3 Architecture of the neuromuscular motor DNNs of the torso complex 27

4.4 Progress of the backpropagation training of the torso voluntary motor DNN . . 29

4.5 Progress of the backpropagation training of the torso voluntary motor DNN . . 30

4.6 Progress of the backpropagation training of the torso reflex motor DNN 30

4.7 Progress of the backpropagation training of the torso reflex motor DNN 31

4.8 Progress of the backpropagation training of the reflex motor DNNs for the legs . 33

5.1 Anatomically detailed simulation and visualization of a sitting posture 37

5.2 Sequence of frames from a sit-to-stand simulation 38

5.3 Calisthenic exercising of the torso . 39

5.4 The stepping strategy . 40

5.5 Sequence of frames from a stepping simulation with wide stance 41

5.6 Sequence of frames from a stepping simulation with narrow stance 42

5.7 Sequence of frames from a golf putting simulation 43

5.8 Sequence of frames from a golf stepping and putting simulation 44

viii

6.1 Raytracing computation of irradiance at the retinal photoreceptors 46

6.2 Locations of the photo-receptors on the retinas 47

6.3 Architecture of our sketch-ONV2seq model . 48

6.4 Sequence of frames from a sketching simulation 51

6.5 Sequence of frames from a simulated soccer goaltending scenario 53

C.1 Model Architecture of sketch-pix2seq . 64

C.2 Model Architecture of sketch-ONV2seq . 65

C.3 Evaluation cost of models over training epochs 65

C.4 Hand-drawn and reconstructed sketches . 66

D.1 Cat doodles rendered using color sketch and water color media types 69

D.2 Sketch drawing examples . 71

D.3 Doodle-SDQ structure . 74

D.4 Data preparation for pre-training the network 76

D.5 Reference images for training and testing . 77

D.6 Comparisons between drawings and reference images in different media types . . 79

D.7 Additional sketch drawing examples . 80

ix

ACKNOWLEDGMENTS

I have always loved writing acknowledgements because I am really thankful for many things

in my life. Five years ago, I chanced upon an video on biomimetic human simulation from

Professor Terzopoulos’ group. I was deeply attracted to the fascinating work on neural

network based neuromuscular and sensorimotor control. Later that day, I wrote to Demetri

asking him if he would be willing to let me pursue a 2nd PhD degree in the UCLA Computer

Science Department. It was one of the best things I have done in my life.

Pushing, apprenticing, nurturing and guiding ones mentees is a challenging and some-

times daunting job that Demetri makes look very easy. During the past years, I owe him

so much for his help, and it might also have been an unique experience for him to mentor

a student who already has a PhD degree. He provided his unconditional support whenever

I needed it. Even with his tight schedule, he often spent hours discussing the progress of

my research. This thesis would never have materialized without his guidance and support.

I have learned a lot from Demetri and for that I will always be indebted.

I thank Professors Song-Chun Zhu, Joseph Teran, and Guy Van Den Broeck for serving

on my thesis committee and offering me their advice on how to improve my dissertation.

I would also like to express my appreciation to my collaborators on this project. Dr. Masaki

Nakada acted as my associate mentor on the biomechanical model project and always pro-

vided technical support and valuable advice thorough my PhD study. My project was follow-

up work to his PhD research on neuromuscular and sensorimotor control with biomimetic

perception, and his research set a high standard for my thesis. I express my appreciation to

Professor Sung-Hee Lee and Dr. Weiguang Justin Si. The biomechanical human model and

the simulation of soft tissues (which was further enhanced by Professor Eftychios Sifakis)

that I have used in my research is also largely based on the work that they developed

for their UCLA PhD theses. I must thank Alan Litteneker for his help converting from

OpenSceneGraph to POV-Ray. Without him, the rendering in this thesis would have been

mission impossible in such a short time period. Arjun Lakshmipathy also helped my paper

submissions and I was inspired by his work on biomechanical eye modeling and simulation.

x

It has been ten years since I began my research on control, from robot control, to human

motor control, and finally to virtual human control. I would like to express my deep appre-

ciation to my previous PhD advisor at Penn State University, Professor Mark Latash, and

to my MS advisor at Tongji University, Professor Zhuping Wang. I thank them immensely

for all their valuable inputs to my career.

I am very fortunate to have been surrounded by wonderful labmates in the UCLA

Computer Graphics and Vision Laboratory who helped me work through the PhD pro-

gram. I would like to express my gratitude to Dr. Tomer Weiss, Dr. Chenfanfu Jiang,

Dr. Sharath Gopal, Dr. Garett Ridge, Dr. Xiaowei Ding, Dr. Gergely Klar, Dr. Andre Prad-

hana, Abdullah-Al-Zubaer Imran, Ziran Lin, Yajun Shi, Yingyue Qiu, and Hao Ding.

Lastly, my parents spared no sacrifice to nurture me and avail me of the best possible

education. I thank them for their support and unconditional love. I am deeply grateful to

my family for making all of this possible.

xi

VITA

2008 B.S. Electrical Engineering
Tongji University
Shanghai, China

2011 M.S. Control Theory and Control Engineering
Tongji University
Shanghai, China

2015 Ph.D. Kinesiology
The Pennsylvania State University
University Park, PA

2015–2016 Research Assistant
Computer Graphics & Vision Laboratory
University of California, Los Angeles
Los Angeles, California

2016–2019 Teaching Assistant
Computer Science Department
University of California, Los Angeles
Los Angeles, California

2017 Research Intern
Adobe Research
San Jose, CA

2018 Apply Scientist Intern
A9, Amazon
Palo Alto, CA

PUBLICATIONS

Nakada M, Lakshmipathy A, Ling X, Chen HL, Zhou T, Terzopoulos D. “Biomimetic eye modeling
and deep neuromuscular oculomotor control.” ACM Transactions on Graphics, 38(6), November
2019, 221:1–14. Proc. ACM SIGGRAPH ASIA 19 Conference, Brisbane Australia, November 2019.

Zhou T, Fang C, Wang ZW, Yang JM, Kim B, Chen ZL, Brandt J, Terzopoulos D. “Learning
to doodle with deep Q-networks and demonstrated strokes.” In Proc. British Machine Vision
Conference (BMVC), Newcastle, England, September 2018, 13:1–13.

Nakada, M, Zhou T, Chen, H, Weiss, T, Terzopoulos, D. “Deep learning of biomimetic sensorimotor
control for biomechanical human animation.” ACM Transactions on Graphics, 37(4), August 2018,
56:1–15. Proc. ACM SIGGRAPH 18 Conference, Vancouver, Canada, August 2018.

Chen MH, Zhou T, Zaniolo C. “Multi-graph affinity embeddings for multilingual knowledge graphs.”
In Proc. 6th NIPS Workshop on Automated Knowledge Base Construction (AKBC), Long Beach,
CA, December 2017.

Zhou T, Chen MH, Yu J, Terzopoulos D. “Attention-based natural language person retrieval.” In
Proc. 3rd IEEE Workshop on Vision Meets Cognition: Functionality, Physics, Intentionality, and
Causality (FPIC), Honolulu, HI, July 2017, 1–8.

xii

Zhou T, Yu J. “Natural language person retrieval.” (abstract) In 31st AAAI Conference on Arti-
ficial Intelligence (AAAI), San Fancisco, CA, February 2017.

Hu RH, Peng XC, Zhou T, Yu J, Skaff S, Darrell T, Saenko K. “Object detection and retrieval
using natural language.” (abstract and demo) In 14th European Conference on Computer Vision
(ECCV), Amsterdam, The Netherlands, October 2016.

Zhou T, Falaki A, Latash ML. “Unintentional movements induced by sequential transient pertur-
bations in a multi-joint positional task.” Human Movement Science, 46:1–9, 2016.

Qiao M, Zhou T, Latash ML. “Positional errors introduced by transient perturbations applied to
a multi-joint limb.” Neuroscience Letters, 595:104–107, 2015.

Zhou T, Latash ML. “Unintentional changes in the apparent stiffness of the endpoint of a multi-joint
limb.” Experimental Brain Research, 233(10):2989–3004, 2015.

Ambike S, Zhou T, Latash ML. “Moving a hand-held object: Reconstruction of referent coordinate
and apparent stiffness trajectories.” Neuroscience, 298:336–356, 2015.

Zhou T, Zhang L, and Latash ML. “Intentional and unintentional multi-joint movements: Their
nature and structure of variance.” Neuroscience, 289:181–193, 2015.

Zhou T, Zhang L, Latash ML. “Characteristics of unintentional movements by a multijoint effector.”
Journal of Motor Behavior, 47(4):1–10, 2015.

Wang ZP, Zhou T, Mao Y, and Chen QJ. “Adaptive recurrent neural network control of uncer-
tain constrained nonholonomic mobile manipulators.” International Journal of Systems Science,
45(2):133–144, 2014.

Zhou T, Solnik S, Wu YH, and Latash ML. “Unintentional movements produced by back-coupling
between the actual and referent body configurations: Violations of equifinality in multi-joint posi-
tional tasks.” Experimental Brain Research, 232(12):3847–3859, 2014.

Falaki A, Zhou T, Towhidkhah F, and Latash ML. “Task-specific stability in muscle activation
space during unintentional movements.” Experimental Brain Research, 232(11):3645–3658, 2014.

Zhou T, Solnik S, Wu YH, Latash ML. “Equifinality and its violations in a redundant system:
control with referent configurations in a multi-joint positional task.” Motor Control, 18(4):405–
424, 2014.

Zhou T, Wu YH, Bartsch A, Cuadra C, Zatsiorsky VM, and Latash ML. “Anticipatory synergy
adjustments: preparing a quick action in an unknown direction.” Experimental Brain Research,
226(4):565–573, 2013.

Wang ZP, and Zhou T. Control of an uncertain nonholonomic mobile manipulator based on the
Diagonal Recurrent Neural Network. In: 2011 Chinese Control and Decision Conference (CCDC),
p. 4044-4047.

Wang ZP, Zhou T, and Chen QJ. “Control of uncertain constrained nonholonomic mobile manipu-
lator based on recurrent neural network.” In Proc. 8th World Congress on Intelligent Control and
Automation (WCICA), 532–536, 2010.

xiii

CHAPTER 1

Introduction

Anthropomimetic animation differs from conventional human animation in that it aims to

achieve realism by taking advantage of increasingly accurate simulation of the anatomical

structures of the human body, not only the bones, joints, and muscles, but also the human

sensory organs and, of course, the brain. The torso, or trunk, is the anatomical term for the

central part—in common speech, the core—of many animal bodies, excluding the extremities;

i.e., the head and neck and limbs. Although it is indeed of core importance to the human

body, the torso has to date received insufficient attention in the computer graphics literature.

The goal of this thesis is to rectify this deficiency by taking an anthropomimetic approach.

Comprising the thorax or chest, abdomen, and pelvis, the torso complex houses most of

the critical organs of the body as well as its major muscle groups (Figure 1.1a,b), including

the pectoral muscles, abdominal muscles, lateral muscles, etc. The core muscles of the torso

work together to help stabilize the body, transfer energy from the legs to the upper body,

and transfer energy from the upper body to the legs. The vertebral column or spine, with

its striking segmented structure (Figure 1.1c), is a very important skeletal component of the

torso complex. Its thoracic and lumbar portions within the torso itself provide the main

support for the human body, enabling standing, bending, twisting, and a variety of other

whole-body motor actions. Furthermore, the majority of the spinal cord, the main pathway

for sensorimotor information flow between the brain and the peripheral nervous system,

branches out within the torso.

This disseration reports on an unprecedented attempt to tackle the challenge of biome-

chanically simulating and motor controlling the torso in its full musculoskeletal complexity,

which includes more than 100 articular Degrees of Freedom (DoFs) and well over 400 muscle

1

(a) (b) (c)

Figure 1.1: (a) Superficial and intermediate muscles of the back. (b) Deep muscles of the
back. (c) The spine, including the 7 cervical (C1–C7), 12 thoracic (T1–T12), and 5 lumbar
(L1–L5) vertebra. (From Gray’s Anatomy, 1918.)

actuators. Motor control is an area of biological science that explores how the nervous sys-

tem exploits interactions between body parts and the environment to produce purposeful,

coordinated actions that accomplish specific tasks. A central problem of motor control is

that of dealing with abundant actuation and redundant DoFs (Latash, 2012), a challenge

that is perhaps most acute in the context of the torso musculoskeletal complex. Numerous

publications have provided support for the view that synergies as neural organizations ensure

task-specific co-variation of elemental variables to provide the desired stability properties of

motor actions while dealing with secondary tasks and unexpected perturbations.1

1Indeed, since the end of 19th century, researchers have agreed that the brain does not control muscles
individually but unifies them into groups that are controlled in a synergistic manner (Jackson, 1889). The
postural synergies for these simple daily movements may be considered as building blocks that the central
nervous system uses to mitigate its computational burden (Scholz and Schöner, 1999).

2

1.1 Contributions

With biology serving as our guide, we take the natural, neuromuscular approach to ad-

dressing the tough challenge of controlling the torso as the human body’s core synergistic

subsystem. In particular, our work leverages modern artificial neural network and deep

learning techniques. The specific contributions of our work are as follows:

1. We develop the first neuromuscular motor control system for the spine and torso in

the field of computer graphics and the most comprehensive and sophisticated one to

date in any field.

2. We demonstrate that our control framework for the core musculoskeletal complex

can work in concert with compatible neuromuscular controllers specialized to the five

extremities—the cervicocephalic, two arm, and two leg musculoskeletal complexes.

3. We show how the six neuromuscular motor controllers, which include twelve Deep

Neural Networks (DNNs), can form the motor subsystem of a whole-body sensorimotor

control system.

4. We demonstrate and validate the robust online operation of our biomechanical virtual

human’s sensorimotor system in carrying out several skillful (non-locomotive) motor

tasks, such as shown in Figure 1.2.

Of particular importance is the fact that our core neuromuscular motor controller is au-

tomatically trained offline on data synthesized by the biomechanical torso musculoskeletal

model itself. Once trained, our controller works efficiently online to control the forward

dynamics of our biomechanical virtual human. This is done without the online computation

of inverse kinematics and inverse dynamics with muscle optimization as is typical for motor

control schemes used in robotics.

3

(a) (b)

(c)

Figure 1.2: Our biomechanical human musculoskeletal model can perform various skillful
motor control tasks while balancing its body in gravity, such as preparing to putt a golf ball
(a) in a relatively upright stance with a “right hand low” grip on the golf club, and (b) in
a crouched stance with a “prayer” grip. (c) Our virtual human performs an elaborate and
prolonged sensorimotor control scenario, sketching on a large touchscreen display a set of
reference drawings that it observes on a tablet. The body is rendered with translucent skin
to reveal its internal simulated soft tissues.

4

1.2 Overview

The remainder of the dissertation is organized as follows:

Chapter 2 reviews relevant prior work.

Chapter 3 presents the multiphysics simulation framework of our biomechanical human

musculoskeletal model.

Chapter 4 develops the neuromuscular motor control system for the musculoskeletal

model.

Chapter 5 presents our experiments and results.

Chapter 6 applies our virtual human model to the challenging problem of sensorimotor

control.

Chapter 7 concludes the dissertation with a summary of our work and suggestions for

future work.

5

CHAPTER 2

Related Work

Our work builds upon techniques in the fields of computer graphics, biomechanics, robotics,

machine learning, and neuroscience to model the anatomy and biomechanical functionality

of the relevant musculoskeletal tissues of the human body and emulate the neuromuscular

control abilities of the motor center of the brain.

2.1 Biomechanical Human Models

Anthropomorphic characters have been of central interest in computer animation. There

exists a large body of work in human anatomical modeling, such as for the hand (Sueda

et al., 2008; van Nierop et al., 2007; Tsang et al., 2005), torso (DiLorenzo et al., 2008;

Zordan et al., 2004), face (Sifakis et al., 2005; Kähler et al., 2002; Lee et al., 1995), and neck

(Lee and Terzopoulos, 2006). Also, various modeling schemes have been proposed regarding

the modeling of muscle (Ng-Thow-Hing, 2001; Irving et al., 2004). Such earlier efforts applied

various methods to the modeling of certain parts of the human body, but not to full-body

modeling and control.

With regard to full-body models, Hodgins et al. (1995) and Faloutsos et al. (2001a,b) de-

veloped robotic joint-torque-driven articulated body control, which did not incorporate mus-

cles into the control mechanism, but was nonetheless nontrivial to demonstrate at that time.

Subsequently, Lee et al. (2009) developed a comprehensive upper body, muscle-actuated

biomechanical model, and an extended, full-body version of this model was used by Si et al.

(2014) to animate human swimming in simulated water using a neural central pattern gener-

ator (CPG) control system that synthesizes sustained rhythmic muscle activations suitable

6

for locomotion.

2.1.1 Modeling and Animating the Spine and Torso

Several computer graphics researchers have addressed the difficult problem of modeling and

animating the human spine and torso in some or all of its complexity.

In their early 1990s pioneering work, Monheit and Badler (1991) introduced a purely

kinematic model of the spine and torso based on the anatomy of the vertebra and the

passive effects of the discs and surrounding soft tissues. They animated their spine model

using the inverse kinematics technique. Shao and Ng-Thow-Hing (2003) proposed the use of

more sophisticated joint models in the spine and shoulder, including non-orthogonal, non-

intersecting axes of rotation and changing joint centers that are often found in the kinematics

of biological joints (see also (Lee and Terzopoulos, 2008)).

By the mid to late 1990s the community had progressed to physics-based animation of

articulated anthropomorphic models using joint-torque actuation control (Hodgins et al.,

1995; Faloutsos et al., 2001a). However, the difficulties of this method at the time made it

necessary to reduce the complexity of spine submodels to just a few rotational joints, which

in terms of articulatory realism may be regarded as a step backward relative to the earlier

kinematic model.

Roughly contemporaneously, researchers were experimenting with more realistic, muscle-

based models. Wilhelms and Van Gelder (1997) and Scheepers et al. (1997) developed pro-

cedural muscle models that did not drive the anthropomorphic model, but instead deformed

kinematically in response to kinematic skeletal articulation, which added realism to human

character animation through keyframing or motion capture. Porcher Nedel and Thalmann

(2000) took the additional step of using physically-based deformable muscle models, but

again with a simplified kinematic spine.

Anatomically and biomechanically accurate musculoskeletal simulation is now supersed-

ing these earlier models. In the context of the torso, Zordan et al. (2004) introduced the

first biomechanical model of the torso, which was designed to simulate breathing, including

7

a simplified spine model and a relevant subset of the torso muscles. Lee and Terzopoulos

(2006) introduced the first biomechanical cervicocephalic musculoskeletal model with full

anatomical accuracy in the cervical column. Extending this work, Lee et al. (2009) intro-

duced a comprehensive biomechanical model of the upper body, including the arms, torso

with full spine, plus a finite element flesh model, and Si et al. (2014) employed a whole-body

version of this model. We use an improved version of the same whole-body model in our

work.

Also loosely relevant to the scope of our work is that of Lee et al. (2018) and Saito et al.

(2015).

2.2 Neuromuscular Motor Control of Biomechanical Models

Cruz Ruiz et al. (2017) present a comprehensive survey on muscle-based control for character

animation. Our work falls into the category of neuromuscular motor control of realistic

musculoskeletal models.

The full body model of Lee et al. (2009) comprises 103 bones with 163 DoFs and 823 mus-

cles embedded in a finite-element flesh simulation. Hence the challenge originates from the

complexity of the modeling of anatomically accurate human skeleton, joints, muscles, flesh,

and skin models. The authors animated their model using biologically-implausible inverse dy-

namics techniques. By contrast, our objective is to emulate lifelike forward-dynamics-based

motor control. That is, our motor controllers must provide appropriate muscle innervations

at every simulation time step so as to actuate the complex anthropomorphic anatomical

system to carry out nontrivial motor tasks in a fully autonomous manner.

Following the pioneering work of Grzeszczuk et al. (1998) on exploiting artificial neural

networks and backpropagation learning in computer graphics, Lee and Terzopoulos (2006)

were the first to apply them as neuromuscular motor controllers, specifically in their biome-

chanical model of the human cervicocephalic system. Unlike traditional inverse dynamics

control, which is both unnatural and computationally expensive, learning neuromuscular

motor controllers is a promising, biomimetic approach to tackling high-dimensional, mus-

8

culoskeletal motor control problems. To control the neck-head system in gravity, the work

employed a two-layer, fully-connected artificial neural network trained offline through back-

propagation learning. The training data comprised tens of thousands of random target head

orientations as network inputs and, as associated outputs, the corresponding muscle activa-

tion levels that achieve these target orientations. Their neck-head biomechanical model was

actuated by 72 muscles, so the trained regression network with adequate generalization con-

tinuously mapped 3 inputs (a target skull orientation) to 72 outputs (the muscle activations

required to achieve this orientation). The trained network served as a neuromuscular con-

troller, which was capable of efficiently controlling the biomechanical model online, thereby

achieving a nearly real-time neuromuscular neck-head motor control system. Thus, Lee

and Terzopoulos (2006) demonstrated the potential of biomimetic neuromuscular learning

approaches to addressing the high-dimensional problems of muscle-actuated biomechanical

motor control.

Shallow neural networks with only one or two hidden layers are not capable of dealing

with the higher dimensionality and much greater quantities of training data required to train

a biomechanical model controller of an order of magnitude greater complexity, such as the

one presented by Lee et al. (2009). Indeed, Lee and Terzopoulos (2006) did not attempt to

generalize their neck-head controller to deal with non-horizontally-oriented shoulders, which

requires significantly larger quantities of training data. Thus, their trained neuromuscular

controller fails to maintain satisfactory control when the shoulders tilt more than a certain

amount. Lee et al. (2009) accomplished upper body control by solving inverse kinematics,

then inverse dynamics and finally static muscle optimization problems, which requires a

biologically infeasible, complete specification of desired movements. They could not achieve

biomimetic, forward-dynamic neuromuscular control with neural networks due to the greater

DoF and actuator complexity of the upper-body musculoskeletal system.

To tackle a more challenging generalization of the cervicocephalic control problem, Nakada

and Terzopoulos (2015) were the first to apply deep learning techniques (Goodfellow et al.,

2016). Their system showed that it is possible to train a deeper architecture on greater

quantities of training data by applying a unsupervised pre-training phase to initialize the

9

parameters of a stacked denoising autoencoder prior to a regular back-propagation based

fine-tuning process. The work demonstrated the viability of overcoming the limitations of

shallow networks by successfully applying deeper network architectures, and it motivated

the pursuit of full-body musculoskeletal motor control through the use of deep learning.

The work reported in this dissertation was inspired by that of Nakada et al. (2018), who

developed a biomimetic sensorimotor system for a comprehensive, anatomically-accurate,

muscle-actuated biomechanical human model. However, by immobilizing the pelvis as well

as the lumbar and thoracic spinal column vertebra and other bones of the torso, leaving

free to articulate only the extremities—the cervical column and four limbs—they skirted the

challenge that this thesis confronts. A key contribution of our work is a previously intractable

neuromuscular motor controller that not only can handle the full musculoskeletal complexity

of the spine and torso, but also couple the cervicocephalic and four limb neuromuscular

complexes from the preliminary sensorimotor model presented in (Nakada et al., 2018) with

a common unrestricted core, thus enabling our simulated human to stand erect, balance,

step, and perform skillful upper-body motor tasks.

10

CHAPTER 3

Simulation Framework

In this chapter, we present our simulation framework including the details of our compre-

hensive, whole-body biomechanical virtual human model.

3.1 Overview

Our simulation framework for human neuromuscular and sensorimotor control comprises two

coupled component simulators—an articulated multibody dynamics simulator for the muscle-

actuated skeleton and a deformable body dynamics simulator for the flesh. Figure 3.1 shows

frontal and dorsal musculoskeletal, flesh, and opaque-skinned views of our biomechanical

human model.

The musculoskeletal system of our anatomically accurate biomechanical virtual human

(Figure 3.1a,b) includes all of the relevant articular bones and muscles—103 bones (hand and

foot bones included) plus a total of 823 muscle actuators—comprising 163 articular DoFs.

Each skeletal muscle is modeled as one or more Hill-type uniaxial contractile actuator that

applies forces to the bones at its points of insertion and attachment.1

For added realism, our virtual human includes a finite element flesh model (Figure 3.1c,d),

with the contractile actuators embedded in the flesh. The passive flesh simulation is accom-

plished by deforming a lattice-based discretization of quasi-incompressible elastic material

augmented with active muscle terms from the embedded actuators. This approach avoids

1Our musculoskeletal model is a highly enhanced version of the preliminary model of Nakada et al. (2018).
The arms include 29 muscles each, the legs include 39 muscles each, and the cervicocephalic complex includes
244 muscles (compared to the 216 in ibid.). Thus our model has 823 active muscles compared to the 352
active muscles in the earlier model.

11

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: (a)–(b) The biomechanical human musculoskeletal model, showing the skeletal
system with its 193 bones and 823 Hill-type muscle actuators surrounded by the 3D muscle
geometries. (c)–(d) The biomechanical model showing its deformable finite element flesh
submodel. (e)–(f) The biomechanical model with opaque skin.

12

the need for multiple meshes conforming to individual muscles and its regular structure of-

fers significant opportunities for performance optimization. The inertial properties of the

musculoskeletal system are approximated from the dense volumetric physical parameters of

the soft-tissue elements—each bone’s inertial tensor is augmented by the inertial parameters

of its associated soft tissues.

The natural dynamics of the simulated human are induced by muscle forces generated by

the contractile actuators. The low-level motor control inputs comprise the activation level

of each muscle. The activated muscles generate forces that drive the skeletal simulation.

Given the contractile muscle forces and the external forces, the skeleton is simulated using

Featherstone’s method (Featherstone, 2014) to compute the forward dynamics in conjunction

with a backward Euler time-integration scheme as in (Lee et al., 2009).

The following two sections present the details of the musculoskeletal and flesh simulations,

borrowing heavily from (Lee et al., 2009).

3.2 Musculoskeletal Simulation

3.2.1 Skeletal System

The equations of motion of the skeletal system are written as

M (q)

 q̈m
q̈p

+C(q, q̇) =

 P (q)fc

0

+ JTfe, (3.1)

where q̇ and q̈ are the joint velocities and accelerations, M is the mass matrix, C accounts

for forces such as the force from connecting tissues and muscle parallel elements fp as well

as Coriolis forces and centrifugal forces, J is the Jacobian matrix that transforms applied

external forces to joint torques τ . The moment arm matrix P maps the contractile muscle

forces fc to the space of joint torques. The computation technique for the moment arm

matrix is introduced in (Gonzalez et al., 1997).

13

Equation (3.1) can be compactly written as

q̈ = φ(q, q̇, τ). (3.2)

We use forward dynamics to compute φ by computing the q̈ from the generated torque

produced by the muscle forces. Then, we use the implicit Euler time integration method to

solve the linearized equations of motion. We can compute velocity at the next time step,

where ∆t is the step size, by solving

q̇(t+ ∆t)− q̇(t) = ∆tφ(q(t+ ∆t), q̇(t+ ∆t), τ). (3.3)

The problem here is that this equation has the variable at the next time step on the right

hand side of the equation. We use first-order approximation and rewrite the equation as

follows:

δq̇ = ∆t

[
φ(q(t), q̇(t), τ) +

∂φ

∂q
δq +

∂φ

∂q̇
δq̇

]
= ∆t

[
φ(q(t), q̇(t), τ) +

∂φ

∂q
∆t(q̇(t) + δq̇) +

∂φ

∂q̇
δq̇

]
.

(3.4)

Thus, we can compute the joint velocities at the next time step. Then the joint angles at

the next time step may be computed with an explicit Euler time integration.

3.2.2 Muscle System

We use the Hill-type muscle model (Lee and Terzopoulos, 2006; Lee et al., 2009). The muscle

force fm = fP + fC is the combination of two components (Figure 3.2). The passive element

fP , which produces a restoring force due to the material elasticity to the deformation, is

represented as a uniaxial exponential spring, as follows:

fP = max(0, ks(exp(kce)− 1) + kdė), (3.5)

14

Figure 3.2: Total muscle force versus stretch ratio of the Hill-type muscle model. As the sum
of the active and passive forces, the total muscle force F peaks then drops in accordance
with the active force and then increases exponentially in accordance with the passive force.

Figure 3.3: The force-length and force-velocity relations of the Hill-type muscle model.

15

where ks and kd are the stiffness and damping coefficient, respectively, e is the strain of the

muscle and ė is its strain rate. The contractile element fC , which actively generates the

contractile force of the muscle, is computed as

fC = aFl(l)Fv(l̇), (3.6)

where Fl is the force-length relation, Fv is the force-velocity relation, and a is the muscle

activation level (0 ≤ a ≤ 1), which serves as the control input to the actuator.

Figure 3.3 plots the force-length and force-velocity relations. The former is represented

as

Fl(l) = max(0, kmax(l − lm)), (3.7)

where lm is the minimum length for muscle to generate the force, and kmax is the maximum

stiffness of activated muscle. The latter is represented as

Fv(l̇) = max(0, 1 + min(l̇, 0)/vm), (3.8)

where vm is the maximum contraction velocity with no load. The coefficient kc is set to 7

for all the muscles, and Im is set to 0.5l0 and vm is l0sec
−1. The other coefficients ks, kd, and

kmax are scaled to be proportional to the strength of weight factor of each muscle, which

is calculated as roughly proportional to the cross-sectional area of the muscle. The list of

weights can be found in (Lee et al., 2009).

In our modified Hill-type model, Fl(l) increases monotonically. This works for our biome-

chanical human model because it stretches only a limited amount due to the constraints of

the bones. Thus, we avoid negative stiffness, which could potentially cause instability in the

numerical simulation of the musculoskeletal system.

3.2.3 Torso Musculoskeletal Complex

Unlike the musculoskeletal model of Nakada et al. (2018), our virtual human includes a fully

functional torso musculoskeletal complex whose 50 bones (112 articular DoFs) are actuated

16

(a) (b)

Figure 3.4: (a)–(b) Close-up views of the torso with its 50 bones and 443 hill-type muscle
actuators.

by no fewer than 443 muscles. Figure 3.4a,b shows in greater detail the torso musculoskeletal

complex, which is rooted at the pelvis, with its five lumbar vertebrae, L5 through L1, and

twelve thoracic vertebrae, T12 through T1, progressing up the spinal column to the T1

vertebra, which can be considered an “end-effector” (Figure 1.1c). Short, intermediate,

and long Hill-type uniaxial muscle actuators situated with anatomical precision in deep,

intermediate, and superficial layers, respectively, actuate the twelve 3-DoF joints of the spine

and other joints of the torso musculoskeletal complex, such as the rib and sternum. Each

spinal joint incorporates damped rotational springs to approximate the passive elasticity of

the intervertebral discs and ligaments.

17

3.3 Flesh Simulation

The shape and deformation of the flesh volume is determined by the dynamics of the artic-

ulated skeleton and the gravitational force acting on the flesh. Naturally, the exact tissue

behavior is also dependent on the geometric layout and material properties of the hetero-

geneous array of tissue components that constitute the flesh. Some of these material traits

are encoded as static distributions of scalar (e.g., elastic moduli) or vector (e.g., muscle fiber

orientation) quantities. In addition, the time-varying muscle activation signals, are input to

the flesh simulation along with the skeletal dynamics.

The physical behavior of the virtual human’s soft tissue and musculature is computed via

numerical simulation of a discrete volumetric model. In designing the discrete representation,

we simplify the model by striking a reasonable balance between computational complexity,

geometric resolution, biomechanical accuracy, and robustness of the simulation. First, the

skin is not modeled as a distinct simulation component; we model the entirety of the space

between the skin and bones as an elastic continuum; no air-filled cavities or fluid volumes

are explicitly simulated as such, although we are free to modulate the elastic properties

(e.g., stiffness or compressibility) of such areas to reflect their macroscopic behavior. In

addition, the entire flesh volume is assumed to deform as a connected continuum; that is,

we do not allow slip or separation in the interior of the flesh volume. Note that connective

tissue typically limits the extent of such motions, but there are parts of the real human body

anatomy where true sliding or separation is possible.

For the purpose of simulating the dynamic deformation of flesh and muscle, we employ

a lattice-based discretization of quasi-incompressible elasticity augmented with active (con-

tractile) muscle terms. The lattice-based representation captures the shape of the deforming

flesh volume. This discrete model is simply created by superimposing a cubic lattice (we

use a lattice size of 10 mm) on a three-dimensional model of the human body, and we dis-

card all cells that do not intersect the flesh volume (i.e., cells that are outside the body,

or wholly within solid bones). Of course, the lattice representation thus created does not

accurately capture the geometry of the flesh volume, but provides only a “cubed” approxi-

18

mation. Despite this, the discrete governing equations are constructed so as to compensate

for the geometric discrepancy. The equations of elasticity are discretized using the method

in (Patterson et al., 2012), which captures the fact that elastic material partially fills lat-

tice elements on the boundary of the flesh volume. The actual skin surface differs from the

jagged boundary of the lattice-derived simulation volume; we compensate by embedding a

high-resolution skin surface mesh within the cubic lattice and distributing the forces acting

on the skin surface into the volumetric lattice by scaling with the appropriate embedding

weights, as discussed in (Zhu et al., 2010). Finally, since the contact surface between the

flesh and bones is not resolved in the lattice-derived mesh, stiff zero-rest-length springs are

applied to elastically attach points sampled on bone surfaces to embedded locations in the

flesh simulation lattice, as detailed by Lee et al. (2009); McAdams et al. (2011).

3.3.1 Flesh Constitutive Model

The deformable collection of flesh, skin, and muscle are modeled as a hyperelastic solid. The

elastic energy associated with it is partitioned as follows:

Etotal = Eiso + Emuscle + Evol + Eatt. (3.9)

In this expression,

Eiso =

∫
Ω

Ψiso(F)dX (3.10)

is a strain energy of an isotropic “foundation” material which corresponds to passive flesh

(predominantly fatty tissue), where F = ∂φ/∂X denotes the deformation gradient of the

3D deformation function φ : Ω → R3, which maps material coordinates X to world-space

deformed locations x = φ(X). For the subset Ωm of the body, which is covered by muscle,

an additional anisotropic energy term

Emuscle =

∫
Ωm

Ψmuscle(F)dX (3.11)

19

is added, to account for the directional passive/active response of fibrous muscle tissue. The

energy term Evol enforces volume preservation in the flesh. Finally, the energy term Eatt is

associated with the elastic attachment constraints that couple the flesh and bone.

The isotropic component of the strain energy density is formulated as a Mooney-Rivlin

material

Ψiso(F) = µ10(‖F‖2
F − 3) +

µ01

2
(‖F‖4

F − ‖FTF‖2
F − 6) (3.12)

with parameter values µ10 = 20 KPa, µ01 = 60 KPa. Here a simple, non-deviatoric formula-

tion of Mooney-Rivlin hyperelasticity is used. The formulation supports strong incompress-

ibility; thus, factoring out the hydrostatic stress component is not essential (F will be forced

to have unit determinant by means of the strong incompressibility penalty). The anisotropic

component of the strain energy is expressed as

Ψmuscle =
∑
k

Ψ(k)
m (F;wk; ak) [X covered by muscle k], (3.13)

where wk and ak are the fiber direction and activation level of muscle k, respectively. The

energy density term associated with muscle k is a function Ψ
(k)
m (λk, ak) of the along-fiber

stretch ratio λk = ‖Fwk‖2 and the respective activation value ak. Quantity Ψ
(k)
m is defined

indirectly through its derivative with respect to λk; in fact, ∂Ψ
(k)
m /∂λk = T (λk, ak) is the

directional tension function resulting from the sum of the passive elasticity and force-length

terms used in the muscle-actuated skeleton simulation. The strain rate and force-velocity

terms have been omitted for simplicity, a decision further motivated by the fact that we use

a non-validated generic Rayleigh damping model for the isotropic flesh, which would dilute

the accuracy of an elaborate force-velocity formulation.

3.3.2 Incompressibility

Volume preservation in the elastic material is enforced via a penalty term Evol =
∫

Ω
Ψvol(J)dX,

where Ψvol(J) = κ log2(J)/2, with J = det F, is the volume change ratio, and the bulk mod-

ulus κ is set to 20 MPa. We transition to a mixed displacement/pressure energy formulation

20

in order to improve the numerical conditioning of this quasi-incompressible material:

Ê(x, p) = Eatt +

∫
Ω

[
Ψiso(F) + Ψmuscle(F) + αp log(J)− α2p2

2κ

]
dX. (3.14)

From the theory of mixed discretizations, the spatial gradients f = −∂E/∂x and f̂ =

−∂Ê/∂x of the two energy formulas (corresponding to elastic forces) are equal when the

mixed energy Ê is stationary with respect to a variation in the pressure field. Thus, a time-

integration scheme is constructed by computing forces according to f̂(x, p) = −∂Ê(x, p)/∂x,

and the stationarity condition ∂Ê/∂p = 0 is appended to the time integration equations. The

pure-displacement formulation is the same as the result, but the discrete equations remain

well conditioned in spite of the degree of incompressibility. The cost for this conditioning

is that the discrete time integration equations become symmetric indefinite, thus a Krylov

solver such as MINRES, SYMMLQ, or symmetric QMR must be used in place of conjugate

gradients.

3.3.3 Skeletal Attachments

Since the surfaces of attachment between flesh and bone do not coincide with nodes of

the simulation lattice, the attachments are enforced by soft, spring-based constraints. The

attachment energy is formulated as:

Eatt(x) =
∑
i

ki
2
‖Wix− ti‖2

2, (3.15)

where ti is the target location (on the moving skeleton) of a flesh attachment, Wi is a trilinear

interpolation operator that computes the interpolated location of an interior flesh point from

the vector of nodal positions x, and ki is the stiffness parameter of attachment i. We sampled

discrete attachment points on the bone surfaces as a preprocess. The attachment points are

sampled uniformly, with a target density that yields an average of 3 to 6 attachment points

per cell of the simulation lattice. We adapt the stiffness parameters such that a constant

stiffness per bone surface area can be achieved.

21

3.3.4 Discretization Given Musculature and Skeletal Structure

We use standard trilinear hexahedral elements on a cubic lattice for the discretization of

the deformation map φ, while the pressure field is only approximated as cell-wise constant.

The geometries of the skin, muscles, and bones are embedded in the simulated hexahedra.

The geometry of the muscles are used to modulate the material properties assigned to each

simulation element. The nonlinear energy integrals are computed by defining a 4-point

quadrature rule on an individual lattice cell basis, which is designed in the integration of

polynomials of degree up to 2, yielding a (locally) second-order accurate approximation to

the energy.

To achieve second-order accuracy on arbitrarily integration domains, a numerical quadra-

ture scheme is used. The scheme integrates exactly all monomials XpY qZr with 0 ≤

p+ q + r ≤ 2; i.e., Take the following quadrature as an example (Patterson et al., 2012):

∫
Ωk

1 X Y Z

X X2 XY XZ

Y XY Y 2 Y Z

Z XZ Y Z Z2

 dX. (3.16)

Here X = (X, Y, Z) is the material point in the undeformed configuration and Ωk = Ω∩Ck

is the elastic sub-domain within each lattice cell Ck. Monte-Carlo integration is used to

compute the relevant moments of fractional cells Ck. A number of randomly generated

points are uniformly distributed in each simulation hexahedron. We use 1.6× 106 points for

each simulated hexahedron of size 20 mm× 20 mm× 20 mm. We also examine whether each

of these sample points is located inside any muscle volume, in which case the direction of

the muscle fiber at the given location has to be associated with the sample point. Points

not inside any muscle volume are considered as locations of passive flesh or fatty tissue. We

then compute the quadrature (3.16) for the fraction of the simulation hexahedron covered by

each muscle. We also compute the quadrature for boundary cells that are partially covered

by muscles or passive flesh. The fiber directions of the sample points inside muscle k are

22

averaged and normalized the result to unit length to obtain a representative fiber direction

wk in (3.13).

3.4 Summary

This chapter presented the details of our anthropomimetic simulation framework, including

both its musculoskeletal simulation and flesh simulation components. Given this biome-

chanical substrate, the inputs needed by our virtual human model to produce various motor

behaviors are the time-varying activation levels to innervate its many Hill-type uniaxial mus-

cles to actuate its skeleton and flesh. In the next chapter, we will develop the neuromuscular

motor control system that achieves this.

23

CHAPTER 4

Neuromuscular Motor Control Framework

Our biomechanical human model is actuated by groups of skeletal muscles driven by neu-

romuscular motor controllers that provide efferent activation signals to the muscles. The

motor subsystem includes a total of 6 neuromuscular motor controllers (Figure 4.1), a core

controller for the torso musculoskeletal complex, one for the cervicocephalic complex, two

for the arm complexes, and two for the leg complexes. Each controller generates the muscle

activations a to actuate its associated musculoskeletal complex in a purposeful manner.

4.1 Neuromuscular Motor Controllers

Figure 4.2 shows the architecture of a neuromuscular motor controller. As in (Nakada

et al., 2018), it is comprised of a voluntary controller and a reflex controller, both of which

are trained DNNs that produce muscle activation adjustment (∆) signals. The voluntary

controller produces signals ∆av, which induce the desired actuation of the associated muscu-

loskeletal complex, while the reflex controller produces muscle-stabilizing signals ∆ar. Thus,

the output of the neuromuscular motor controller is given by

a(t+ ∆t) = a(t) + (∆av(t) + ∆ar(t)) . (4.1)

Note in Figure 4.2 that the neuromuscular controllers are recurrent neural networks with the

muscle activation signal a forming a feedback loop.

We adopted a DNN architecture that works well for motor DNNs; specifically, rectangularly-

shaped, fully-connected networks with six hidden layers. The DNN for the torso complex

has 600-unit-wide hidden layers, while those for the simpler musculoskeletal complexes of

24

(d)R DNNs 9,10

(c)L DNNs 7,8

(b) DNNs 3,4

(d)L DNNs 11,12

𝑎"#𝑎"$

∆𝑒$ ∆𝑒$

⋮
…

⋮
⋮

⋮

.

∆𝑎#∆𝑎$

𝑎$ ∆𝑥

⋮
…

⋮
⋮

⋮

𝑎"#𝑎"$

∆𝑒$ ∆𝑒$

⋮
…

⋮
⋮

⋮

.

∆𝑎#∆𝑎$

𝑎$ ∆𝑥

⋮
…

⋮
⋮

⋮

(c)R DNNs 5,6
𝑎"#𝑎"$

𝑒$ 𝑒$

⋮
…

⋮
⋮

⋮

.

∆𝑎#∆𝑎$

𝑎$ ∆𝜃

⋮
…

⋮
⋮

⋮

𝑎"#𝑎"$

∆𝑒$ ∆𝑒$

⋮
…

⋮
⋮

⋮

.

∆𝑎#∆𝑎$

𝑎$ ∆𝑥

⋮
…

⋮
⋮

⋮

𝑎"#𝑎"$

∆𝑒$ ∆𝑒$

⋮
…

⋮
⋮

⋮

.

∆𝑎#∆𝑎$

𝑎$ ∆𝑥

⋮
…

⋮
⋮

⋮

𝑎"#𝑎"$

𝑒$ 𝑒$

⋮
…

⋮
⋮

⋮

.

∆𝑎#∆𝑎$

𝑎$ ∆𝜃

⋮
…

⋮
⋮

⋮

Cervicocephalic
Motor	Controller

Left	Arm
Motor	Controller

Right	Arm
Motor	Controller

Torso
Motor	 Controller

Right	Leg
Motor	Controller

Left	Leg
Motor	Controller

(a) DNNs 1,2

Figure 4.1: The motor subsystem architecture of our biomechanical human musculoskeletal
model, illustrating its 6 neuromuscular motor controllers, each of which employs a pair
of trained DNNs. They are (a) the torso controller (DNNs 1,2), (b) the cervicocephalic
controller (DNNs 3,4), (c) the two arm controllers (DNNs 5,6 and DNNs 7,8), and (d) the
two leg controllers (DNNs 9,10 and DNNs 11,12).

25

Voluntary
Motor Controller

Reflex
Motor Controller

Δav
Δe

Δe
Δar a.a + +

Figure 4.2: Neuromuscular motor controller architecture. The voluntary controller inputs a
target discrepancy δ and, recurrently, the muscle activations a. The reflex controller inputs
the changes in muscle strains e and strain rates ė. Both controllers output muscle activation
adjustments.

the extremities have 300-unit-wide hidden layers. All the DNNs employ rectified linear units

(i.e., the ReLU activation function). The DNNs were implemented and trained using the

Keras library running on an Nvidia Titan X GPU in a Ubuntu 16.04 system with a 3.2 GHz

Core 17 CPU.

In the subsequent sections, we will present the details of the voluntary and reflex motor

DNNs that control the torso and the extremities.

4.2 Torso Voluntary Motor DNN

The function of the torso voluntary motor DNN (Figure 4.3a) is to generate efferent activation

signals to the torso muscles in order to balance the mass of the trunk in gravity atop the

flexible spinal column while actuating realistic torso movements to achieve target trunk poses

that serve the purposes of the arms and head.

4.2.1 DNN Architecture

As shown in Figure 4.3a, the input layer of the DNN includes units that represent the

(angular or linear) components of the discrepancy (δ in Figure 4.2) between the value of

some relevant feature of the torso’s state, such as the orientation of the T1 vertebra, and

the target value of that feature, as well as units that represent the current activations, ai(t),

26

𝑎"

⋮
⋮

	∆𝑎"

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
	∆𝑎&

∆𝜃

∆𝜙

𝑎&

600 600 600 600 600 600

∆α

(a) Voluntary Motor Controller DNN

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

600 600 600 600 600 600

⋮
	∆𝑎%

	∆𝑎&
∆𝑒%

⋮
∆𝑒&

∆𝑒%

⋮
∆𝑒&

.

.

(b) Reflex Motor Controller DNN

Figure 4.3: Architecture of the neuromuscular motor DNNs of the torso complex.

27

for 1 ≤ i ≤ n, of each of the n = 443 muscles in the torso musculoskeletal complex. The

6 hidden layers comprise 600 units each. The output layer consists of units that encode

the adjustments ∆ai(t), for 1 ≤ i ≤ n, to the muscle activations, which then contribute

additively as av to updating the muscle activations according to (4.1).

4.2.2 Offline Training Data Synthesis and Network Training

To train the DNN, we use our biomechanical human musculoskeletal model to synthesize

training data, as follows: Specifying a target orientation for the torso yields angular dis-

crepancies, ∆α, ∆θ and ∆φ, between the current torso orientation and the target torso

orientation. With these angular discrepancies serving as the target control input, we com-

pute inverse kinematics followed by inverse dynamics with minimal muscle effort optimization

applied to the biomechanical torso model. This determines muscle activation adjustments,

which serve as the desired output of the torso voluntary motor DNN. Hence, the input/output

training pair consists of an input comprising the concatenation of the desired angle discrep-

ancies, ∆α, ∆θ and ∆φ, and the current muscle activations ai, for 1 ≤ i ≤ 443, along

with an associated output comprising the desired muscle activation adjustments ∆ai, for

1 ≤ i ≤ 443.

Appendix A presents additional details about the offline training data synthesis process.

The process takes 10 sec of computation time to solve for 0.03 simulation seconds on a 3.2 GHz

Intel Core i7 CPU with 16 GB RAM. Thus, we generated a training set of approximately

1M input-output pairs.

To train the DNNs, we apply backpropagation with the mean-squared-error loss function

and the Adaptive Moment Estimation (Adam) stochastic optimizer (Kingma and Ba, 2014),

with learning rate η = 10−6. Figure 4.4 plots the progress of the training process. Figure 4.5

and Figure 4.6 show the same progress of the DNN with 300 units in each of the hidden layers.

Comparing to Figure 4.4 and Figure 4.7, although the difference is not obvious between the

two reflex motor DNNs, we observe a better result in terms of mean squared error from the

voluntary motor DNN with 600 units; hence our choice of 600-unit hidden layers.

28

0 500 1000 1500 2000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Epoch

M
ea

n
S
q
u
ar

ed
E

rr
or

Figure 4.4: Progress of the backpropagation training of the torso voluntary motor DNN on
the training (green) and validation (red) datasets.

After the DNN is trained, it serves as the online torso voluntary motor controller.

4.3 Torso Reflex Motor DNN

4.3.1 DNN Architecture

Figure 4.3b shows the architecture of the torso reflex motor DNN. The input layer consists

of 2n units, where n = 443, the number of muscles in the torso musculoskeletal complex. It

comprises units that represent the change in muscle strain ∆ei and in strain rate ∆ėi, for

1 ≤ i ≤ n. Like the voluntary motor DNN, the network has 6 hidden layers with 600 units

each. The output layer consists of n units providing muscle activation adjustments ∆ai,

for 1 ≤ i ≤ n, which then contribute additively as ar to updating the muscle activations

according to (4.1).

29

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Epoch

M
ea

n
S
q
u
ar

ed
E

rr
or

Figure 4.5: Progress of the backpropagation training of the torso voluntary motor DNN on
the training (green) and validation (red) datasets with hidden layers of 300 units.

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Epoch

M
ea

n
S
q
u
ar

ed
E

rr
or

Figure 4.6: Progress of the backpropagation training of the torso reflex motor DNN on the
training (green) and validation (red) datasets with hidden layers of 300 units.

30

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Epoch

M
ea

n
S
q
u
ar

ed
E

rr
or

Figure 4.7: Progress of the backpropagation training of the torso reflex motor DNN on the
training (green) and validation (red) datasets.

4.3.2 Offline Training Data Synthesis and Network Training

To train the torso reflex motor DNN, we employ the same training methods as for the

voluntary motor DNN. We again use our biomechanical human musculoskeletal model to

synthesize training data. The process for the torso complex reflex data generation is similar

to the voluntary motor control data generation process and we employed the same computing

hardware.

4.4 Motor DNNs for the Extremities

The architecture of the DNNs in the 5 neuromuscular controllers for the five extremities—

the cervicocephalic complex, arm complexes, and leg complexes—is identical to that of the

torso (Figure 4.2); however, the sizes of the input and output layers are determined by the

number n of muscles in each complex, n = 219 for the cervicocephalic complex, n = 29 for

the arm complexes, and n = 39 for the leg complexes. We refer the reader to (Nakada et al.,

2018) for additional details.

For the purposes of our work in this thesis, we focus on balancing in gravity while sitting

31

or while in an upright stance and performing several motor tasks with the upper body.

Confined to such scenarios, the task for legs is mainly to support an upright posture for the

body and cooperate with the torso to maintain proper balance. This task may be satisfied

through reflex-based pose control.

4.4.1 Offline Training Data Synthesis and Network Training for the Legs

The reflex motor controller DNNs of the legs are architected like the network in Figure 4.2b,

but with 300 hidden units in each of the 6 hidden layers, and with n = 39 in the input and

output layers in accordance with the 39 muscles in each leg musculoskeletal complex.

To synthesize training data for the network, pose control requires that the networks

achieve and maintain a specified desired pose for the legs. Each desired pose determines a

unique set of strains ei and strain rates ėi for the 1 ≤ i ≤ 39 leg muscles. The input to

the leg reflex motor controller DNN is the discrepancy ∆ei between the actual and desired

strains concatenated with the discrepancy ∆ėi between the actual and desired strain rates,

while the desired output is the muscle activation adjustments ∆ai. In this way, we generated

approximately 300K input-output training data pairs.

Figure 4.8 shows the progress of the offline training process for the leg reflex DNN. After

the DNNs are trained, they serve as online reflex motor controllers.

4.5 Coupling the Torso and Extremities

Despite the fact that the musculoskeletal complexes of the core and each of the 5 extremities

include different sets of muscles under the control of different neuromuscular controllers, the

force couplings between the extremities and the core are accomplished in a completely natural

manner, through joints and muscles spanning the different musculoskeletal complexes.

First, the articulated biomechanical skeletal structure remains connected while moving,

by its joints. In particular, the spinal joint between the C7 vertebra of the cervical spine

and the T1 vertebra of the thoracic spine applies forces that constrain the cervicocephalic

32

0 200 400 600 800 1000 1200 1400 1600
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Left leg

Epoch

M
ea

n
S
q
u
ar

ed
E

rr
or

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) Right leg

Epoch

M
ea

n
S
q
u
ar

ed
E

rr
or

Figure 4.8: Progress of the backpropagation training of the reflex motor DNNs for the legs
on the training (green) and validation (red) datasets.

33

musculoskeletal complex to the torso. At the shoulders, the head of each humerus articulates

with the glenoid fossa of its respective scapula in the torso, forming shoulder joints that apply

forces to constrain the arm musculoskeletal complexes to the torso. At the hips, the head

of each femur articulates with the acetabulum in the pelvic bone in the torso, forming hip

joints that apply forces to constrain the leg musculoskeletal complexes to the torso.

Second, each of the musculoskeletal complexes of the extremities include multiple signif-

icant muscles that attach to major bones in the torso. These include the long, superficial

muscles of the neck, such as the trapezius; the muscles of the shoulder, such as the biceps,

triceps, and the muscles composing the rotator cuff; and the muscles of the hip, such as the

gluteal group, adductor group, etc. The virtual counterparts of these muscles exist in our

musculoskeletal model and they apply common forces between major bones of the torso and

the proximal bones of the musculoskeletal complexes of the extremities.

Unlike Nakada et al. (2018) where we treat each musculoskeletal complex in isolation and

train their motor controllers independently of one another, for viable core training, we must

regard the whole-body model as a unified system. Thus, during torso training data synthesis,

it is important to introduce random forces from the extremities onto the torso, such that the

torso neuromuscular controller learns the consequences of forces derived from the extremities.

Therefore, by sending random activation signals to their muscles, we randomly actuate the

arm and cervicocephalic complexes by modest amounts as we synthesize the training data

for the torso neuromuscular motor controller.

If the legs are to support the torso in a balanced stance, it is furthermore important to do

the same for them. We therefore send random activation signals to the torso muscles as we

synthesize training data for the leg neuromuscular motor controllers. To learn balance, if the

center of pressure comes too close to the margin of the support polygon, the biomechanical

model is reset to an upright posture and the data synthesis procedure is restarted.

34

4.6 Summary

Our approach in this chapter to tackling the challenge of neuromuscular motor control of

our biomechanical human musculoskeletal model was machine learning, specifically deep

learning. The neuromuscular motor control system of our virtual human comprises 12 trained

DNNs, including a core voluntary/reflex DNN pair devoted to innervating the 443 muscles

of the torso. By synthesizing its own training data offline, our virtual human automatically

learns efficient, online, active control of the core musculoskeletal complex as well as its proper

coordination with the five extremities—the cervicocephalic, arm, and leg musculoskeletal

complexes. In the following two chapters, we will apply our novel, full-body neuromuscular

motor control system in several animation scenarios.

35

CHAPTER 5

Experiments and Results

In this chapter, we report our experiments with the whole-body biomechanical human mus-

culoskeletal model and show our results.

To visualize the soft-tissue components in our simulation framework, we demonstrate

the detailed anatomical animation of the human body by rendering the skin translucently.

Appendix B presents additional details about the body rendering process. For example,

Figure 5.1 shows a sitting posture with close-up views demonstrating the deformation of the

hip muscles when sitting on a stool.

5.1 Sit-to-Stand

Figure 5.2 shows frames from a demonstration of our virtual human model sitting on a stool

and standing upright. The musculoskeletal model must continually hold its upper body erect

and maintain balance in gravity as it executes this action, as well as when it is standing in

place and seated on the stool. Our demonstration video shows this animation, along with

a visualization of the progression of the neuromuscular controller training process, in which

our virtual human loses balance with inadequately trained torso and leg controllers and

eventually learns to be proficient in performing the sit-to-stand action.

36

(a) (b)

(c) (d)

Figure 5.1: Anatomically detailed simulation and visualization of a sitting posture. (a) and
(b) show a sitting posture of the virtual human with and without contact with a stool,
respectively. Close-up views of the flesh near the pelvis are shown in (c) and (d).

37

(a)

I
(b)

I
(c)

I

(d)

I
(e)

I
(f)

�

Figure 5.2: Sequence of frames from a sit-to-stand simulation.

5.2 Calisthenic Exercises

Figure 5.3 shows frames from an animation of our virtual human performing calisthenic exer-

cises that involve significant torso articulation, including substantial bending and twisting of

the lumbar and thoracic spinal articulatory DoFs. Not only is our exerciser able to articulate

its upper body in a realistic manner, but by virtue of its reactive motor control ability it also

maintains bipedal balance in gravity despite the large center-of-gravity shifts that typically

result from strongly bending the upper body.

5.3 Stepping

A basic motor functionality for a free-standing autonomous virtual human is to be able

to shift its position by taking steps. Purposeful stepping is a transient task-based motor

function that differs from locomotion, which requires long-term, repetitive, rhythmic motor

actions.

38

(a) (b)

(c) (d)

Figure 5.3: Calisthenic exercising of the torso. (a) and (b) demonstrate twist movements
while (c) and (d) demonstrate backward and forward leaning movements.

39

Left foot

Right foot

Center of
Pressure

Initial Pose
stance

Shift CoP to
right foot

Lift left foot &
Step forward Shift Cop to left foot Lift right foot &

Step forward Adjust

Figure 5.4: The stepping strategy.

Figure 5.4 illustrates our stepping control strategy. Our virtual human starts from a

centered bipedal stance posture where the center of pressure (COP), represented by the

red circle, falls near the center of the support polygon, the convex hull surrounding the

boundaries of the two feet represented by the blue rectangles. Through the appropriate leg

muscle activations, the virtual human shifts its COP towards one foot thereby reducing the

pressure on the other foot until that foot’s friction against the floor decreases enough that

it can easily by shifted anteriorly, all the while maintaining its balanced upright stance. If

necessary, the process is repeated by shifting the COP through the center of the support

polygon towards the opposite foot. When stepping is completed, the bipedal stance is again

centered by shifting the COP back near the center of the support polygon. The strategy for

posterior or lateral shifts of a free foot is similar.

Figure 5.5 and Figure 5.6 show frames from simulations of our virtual human autonomously

stepping forward toward a touchscreen display in order to move close enough to operate it.

Proper balance is maintained throughout the stepping action.

40

(a)

I
(b)

I

(c)

I
(d)

I

(e)

I
(f)

�

Figure 5.5: Sequence of frames from a stepping simulation with wide stance.

41

(a)

I
(b)

I

(c)

I
(d)

I

(e)

I
(f)

I

(g)

I
(h)

I

(i)

I
(j)

�

Figure 5.6: Sequence of frames from a stepping simulation with narrow stance.

42

(a)

I
(b)

I
(c)

I

(d)

I
(e)

I
(f)

�

Figure 5.7: Sequence of frames from a golf putting simulation (front view).

5.4 Golf Putting

Putting is the most individual of the golf strokes. The most important consideration is what

feels natural, right, and good to each individual. Therefore multiple putt grips, stances,

and actions are used. Figure 1.2a shows our biomechanical human musculoskeletal model

gripping the golf club in a “right hand low” grip, while Figure 1.2b shows an alternative

“prayer” grip. Our virtual golfer is balancing in gravity in an appropriately crouched stance

in preparation for the putt.

Figure 5.7 and Figure 5.8 show frames from a putting simulation in which our golfer

positions itself by stepping up to the ball, and after a number of attempts, putts the ball

into the hole, throughout which our golfer’s body stays bipedally well balanced and performs

realistic strokes.

43

(a)

I
(b)

I
(c)

I

(d)

I
(e)

I
(f)

I

(g)

I
(h)

I
(i)

�

Figure 5.8: Sequence of frames from a golf stepping and putting simulation (side view). (a)
The virtual human initially hold the putter and look at the ball; (b)–(c) the virtual human
bent the knee and lean forward, prepare to put; (f)–(i) the virtual human swing the putter,
hit and drive the ball to the hole.

44

CHAPTER 6

Applications to Sensorimotor Control

In this chapter, we demonstrate our whole-body biomechanical human musculoskeletal model

and its neuromuscular control system in two substantially more complex applications that

involve sophisticated sensorimotor control. The first demonstration, which involves observing

and reproducing sketches, combines computer graphics with nontrivial computer vision. The

second demonstration equips our virtual human with biomechanical eyes with the objective

of validating the performance of these advanced eye models.

6.1 Autonomous Sketching

6.1.1 Background

There exist several studies related to sketching in the fields of robotics and AI. Traditionally,

a robot arm is programmed to sketch lines on a canvas so as to mimic a given digitized

portrait (Tresset and Leymarie, 2013). Calligraphy skills can be acquired by “Learning from

Demonstration” (Sun et al., 2014). DNN-based approaches to art generation have recently

been developed (Gatys et al., 2016; Elgammal et al., 2017). Furthermore, deep reinforcement

learning based algorithms have been proposed to mimic the drawing task. However, these

systems lack natural human drawing behaviors (Ganin et al., 2018; Zhou et al., 2018a).

In a departure from traditional pixel image modeling approaches, Simhon and Dudek

(2004) and Zhang et al. (2017) proposed generative models of vector graphics. Graves

(2013) focused on handwriting generation with Recurrent Neural Networks that generates a

sequence of points. Subsequently, a sketch-RNN model was proposed to synthesize sketches

(Jongejan et al., 2016; Ha and Eck, 2017), which was trained in a fully supervised manner,

45

Figure 6.1: Rays (blue lines) cast from the positions of photoreceptors on the retina through
the pinhole aperture and out into the scene by the raytracing procedure that computes the
irradiance responses of the photodectors.

and the features learned by the model were represented as a sequence of pen stroke positions.

However, humans do not naturally sense their visual environments as uniform grids of pixels

and, although sketches are naturally generated by pen strokes, strokes do not capture the

way humans mentally represent sketches.

In this chapter, we modify the sketch-RNN architecture to adapt the sketching tech-

nique to our human model. We employ an enhanced version of the biomimetic vision model

proposed by Nakada et al. (2018), which includes a pair of virtual eyes, capable of eye move-

ments. The eyes have retinas populated by photoreceptors (cones) that are nonuniformly

distributed in a biologically consistent, foveated pattern.

6.1.2 Eye and Retina Model

The eye is modeled as a sphere that can be rotated with respect to its center around its

vertical y axis by a horizontal angle of θ and around its horizontal x axis by a vertical angle

of φ. The eyes are in their neutral positions looking straight ahead when θ = φ = 0.

We model the eye as an idealized pinhole camera with an infinitesimal aperture at the

center of the pupil. To simulate biomimetic foveated perception, we place the photoreceptors

on the hemispherical retinal surface at the interior rear of the eyeball according to a noisy log-

polar distribution. In particular, we include 9,936 photoreceptors situated at dk = (dk,x, dk,y),

46

Figure 6.2: Locations of the photo-receptors (black dots) on the left retina and right retina
according to the noisy log-polar model.

for 1 ≤ k ≤ 9,936, such that

dk,x = eρj cos θi +N(µ, σ2);

dk,y = eρj sin θi +N(µ, σ2),
(6.1)

where 0 < ρj ≤ 138, incremented in steps of 1, and 0 ≤ θi < 360◦, incremented in 5◦

steps, and where N is additive IID Gaussian noise of mean µ = 0 and variance σ2 = 0.0225,

which places the photoreceptors in slightly different positions on the two retinas. Figure 6.2

illustrates the photoreceptor distributions on the left and right retinas.

Retinal imaging is performed using ray tracing. In each eye, sample rays from the posi-

tions of each of the 9,936 photoreceptors on the hemispherical retinal surface are cast through

the aperture and out into the 3D virtual world where they recursively intersect with the vis-

ible surfaces of virtual objects and sample the light sources. As opposed to a conventional

2D image, the irradiance thus computed at each retinal photoreceptor comprises elements of

a 1D Optic Nerve Vector (ONV) of length 9,936. As the virtual human observes its world,

the ONV outputs from its eyes drive the processing in its visual perception system. For the

purposes of our current application the retinal photoreceptors are binary; i.e., their response

is either black or white.

47

Left retina
9936D ONV

FC1-200 dropout

FC2-100 dropout

FC3-50 dropout

FC4-25 dropout

RNN

Right retina
9936D ONV

FC1-200 dropout

FC2-100 dropout

FC3-50 dropout

FC4-25 dropout

(𝑧, 𝑠%)

𝑧

s′)

𝑡𝑎𝑛ℎ

FC5-128
FC6-128

𝜖 ∼ 𝑁(0, 𝐼)

𝜇

𝜎

concat

Encoder

RNN RNN

s′5

(𝑧, 𝑠)) (𝑧, 𝑠6789:))

s′6789

Decoder

Figure 6.3: Architecture of our sketch-ONV2seq model. Si is a 5-dimensional feature vector
at time t, which includes the sketch offset and the drawing command, and (z, Si) denotes
the concatenation of latent vector and feature vector.

6.1.3 Sketch Visual Perception System

Figure C.2 illustrates the architecture of our virtual human’s visual perception system for

sketching, which is an ONV-to-sequence (ONV2seq) Variational Autoencoder (VAE). A

trained DNN encoder compresses the sensed irradiance information in the ONV into a much

smaller hidden state vector, from which the trained decoder reconstructs the viewed sketches

as a sequence of finger strokes. The main differences between our model and the sketch-RNN

model of Ha and Eck (2017) are in the DNN encoder and the loss function.

Our DNN encoder comprises two streams of fully connected layers, each of which processes

the ONV from one eye, yielding two hidden state streams. Each stream is a 4-layer, fully-

connected, tapered network, with 200, 100, 50, and 25 units in each hidden layer. The hidden

states from both eyes are concatenated and projected into two vectors µ and σ, which are

combined to produce a 128-dimensional latent random vector z that is conditioned on the

input sketch.

The decoder is an autoregressive RNN that, from sketches represented by z, outputs the

48

finger strokes as a sequence of linear motor actions to successive screen coordinate offsets

(∆xi,∆yi) along with commands to touch the finger to the screen, to lift it from the screen,

and to stop sketching.

Following Ha and Eck (2017), we model (∆xi,∆yi) as a Gaussian mixture model

p(∆x,∆y) =
m∑
j=1

wjN (∆x,∆y|µxj , µyj , σxj , σyj , ρxyj); (6.2)

i.e., a weighted sum, with weights wj, of m bivariate normal distributions N conditioned on

the means µx and µy, standard deviations σx and σy, and correlation coefficient ρxy. The

objective function for training the DNNs in the model is a reconstruction loss

L = Ls + Lp. (6.3)

Here, the loss of the sketch movements is

Ls = − 1

nmax

ns∑
i=1

log
(
p(∆xi,∆yi)

)
, (6.4)

where ns is the length of the sketch in movements and nmax is the total sequence length, and

the loss of the sketch state is

Lp = − 1

Nmax

Nmax∑
i=1

3∑
k=1

pki log(qki), (6.5)

where p is a state variable such that p = 1 when the finger is in contact with the touchscreen,

p = 2 when it is not in contact, and p = 3 when the drawing is finished.

We train our sketch ONV2seq model to minimize only the reconstruction loss L; i.e., to

maximize the log-likelihood of the generated probability distribution of the training data.

The loss is minimized using Adam stochastic optimization with minibatches of size 500 with

the initial step size α = 0.00001, gradually decaying with the training step at a decay rate

of 0.995. The dropout rate for the fully connected layers in the encoder is 0.5.

Additional details are presented in Appendix C.

49

6.1.4 Sketching Demonstration

Figure 6.4 shows frames from a simulation in which the biomechanical human musculoskele-

tal model stands before a large touchscreen display. An auxiliary tablet displays images of

drawings from the QuickDraw dataset (Jongejan et al., 2016). While the virtual human bal-

ances its body in gravity by virtue of its trained musculoskeletal controllers, it must observe

its environment with its two eyes, supported by natural, muscle-actuated cervicocephalic

movements. The virtual human controls itself autonomously, foveating the two displays as

necessary, lifting its right arm to control the tablet display by swiping with its fingertip, and

lifting its left arm and using its finger to select colors from a palette on the large display and

sketch its interpretation (via its visual perception system described in the previous section)

of the drawing that it sees displayed on the tablet. The scenario in the simulation evolves

as follows:

Stepping up to the display to reach a comfortable working position (a), our virtual human

(b) swipes the blank tablet screen with his right finger and (c) observes a cat reference image

that appears on the tablet. (d) Continuing the observation, he prepares to sketch. Using his

left arm and hand, he (e) selects the red color from the palette and (f) sketches the cat in

red, (g) occasionally looking back to the screen to review the cat drawing. (h) He continues

sketching the cat, (i) comparing the drawing on the tablet with his cat sketch. Next, he (j)

swipes the tablet to display a tree, (k) prepares to draw the tree by (l) selecting the green

color, then (m) sketches the tree in green, (n) occasionally looking back to the tablet to

review the tree image and then (o) continuing to sketch the tree, and finally (p) compares

the tree image on the tablet with the sketched tree. He then (q) swipes the tablet to display

a bus, (r) prepares to draw the bus, (s) selects the blue color, (t) starts sketching the bus in

blue, (u) occasionally looking back to the tablet to review the bus image. He (v) continues

sketching the bus, (w) looks back to the tablet screen, (x) adds the final details to complete

the bus sketch. Finally, he steps away from the touchscreen display.

In autonomously performing this scenario, our virtual human must deal with the varying

external contact forces between its feet and the floor as it actuates its legs and arms as well

50

(a)

I
(b)

I
(c)

I
(d)

I

(e)

I
(f)

I
(g)

I
(h)

I

(i)

I
(j)

I
(k)

I
(l)

I

(m)

I
(n)

I
(o)

I
(p)

I

(q)

I
(r)

I
(s)

I
(t)

I

(u)

I
(v)

I
(w)

I
(x)

�

Figure 6.4: A sequence of frames from the sketching simulation. The virtual human controls
itself autonomously.

51

as the external forces from its manual interaction with the two touchscreens.1

6.2 Autonomous Soccer Goaltending

Our biomechanical musculoskeletal model has served in validating the performance of an

advanced biomechanical model of the eye in a novel sensorimotor control scenario, where the

virtual human assumes the role of an autonomous soccer goaltender (Figure 6.5).

The biomechanical eye model, which was developed by Nakada et al. (2019), represents

a significant improvement in fidelity over the simple, kinematic eye model described in the

previous section, inasmuch as it includes functional submodels of the relevant optical organs

(cornea, iris, deformable lens), a much higher-acuity retina, and its movements are actuated

by six extraocular muscles driven by deep neuromuscular oculomotor controllers.

Equipped with two of these biomechanical eyes, our virtual human puts its binocular

vision to use in a simulated soccer goaltending scenario, as shown in (Figure 6.5). While

balancing its body in an upright ready stance, its eyes successfully foveate and visually

pursue a moving target—the soccer ball. Our virtual human autonomously reacts to the

approaching ball’s trajectory, reaching out with its arms and possibly leaping at the ball in

order to deflect it away from the goal, and its two eyes continue to visually track the moving

ball while its head and body are in motion.

1In terms of the (transient spring-damper) interaction forces between the fingertips and the planes of the
touchscreens, the maximum permitted penetration of the fingertip is set to 5 mm and the stiffness of the
touchscreen is set to 10 N/mm. If the current fingertip position is beyond the allowed threshold depth, the
virtual human adjusts its fingertip position via neuromuscular arm control.

52

(a) Balanced, ready stance

I
(b) Reaching to the right

I

(c) Springing to the left

I
(d) Leaping to the right

�

Figure 6.5: Sequence of frames from a simulated soccer goaltending scenario involving our
autonomous biomechanical human musculoskeletal model incorporating biomimetic virtual
eye models. Under deep neuromuscular oculomotor control, our goalie’s eyes observe and
persistently track incoming soccer balls by making saccadic foveation and smooth pursuit
eye movements. The eye movements furthermore drive cervicocephalic head movements also
under deep neuromuscular motor control. With its additional deep neuromuscular motor
controllers, our goalie controls its torso, arms, and legs to reach out and even leap at ap-
proaching balls to deflect them away from the goal.

53

CHAPTER 7

Conclusion

The torso plays a major role in human motor control by transmitting voluntary control sig-

nals from the brain to the extremities to perform desired motor control tasks, while collecting

proprioceptive sensory information as feedback. Indeed, controlling torso movement itself is

nontrivial considering the complexities of the torso musculoskeletal complex, which includes

more than half the muscles of the body and two thirds of its articular degrees of freedom.

This thesis has addressed the challenge of biomechanically simulating and controlling the

torso in its full musculoskeletal complexity, thus enabling a fully autonomous, whole-body

biomechanical human model with an extensive set of articular degrees of freedom actuated

by many hundreds of muscles. It would be a virtually insurmountable challenge to con-

trol such a complex musculoskeletal system using traditional optimization-based methods,

considering the interaction joint forces between body parts and the contractile forces from

muscles spanning multiple joints and connecting multiple musculoskeletal complexes. The

only viable approach is the biomimetic one of neuromuscular control.

Our demonstration of the successful application of fully-connected deep neural networks

to controlling the torso musculoskeletal complex is a primary contribution of this thesis.

Our torso neuromuscular motor controller trains itself using data synthesized by the biome-

chanical torso musculoskeletal model, and it takes into consideration the interactions caused

by the co-variation between the torso and the extremities resulting in natural, realistic

whole-body human animation. Including our core neuromuscular motor controller with a

voluntary/reflex DNN pair devoted to innervating the 443 muscles of the torso, the neuro-

muscular motor control system of our virtual human comprises a total of 12 trained deep

neural networks (DNNs).

54

We have successfully validated our approach in several ways: For example, the upper-

body calisthenic exercises require a stable bipedal stance while bending and rotating the

torso, as does the golf putting task, and the sit-to-stand task requires even more challenging

balance maintenance, as does the stepping task. We have also provided an unprecedentedly

sophisticated demonstration of a fully autonomous, free-standing, biomechanical human mus-

culoskeletal model with full sensorimotor control observing drawings with its eyes, analyzing

its retinal percepts via its internal vision system, and sketching the drawings with its finger

on a touchscreen.

We regard it a significant achievement spanning the fields of computer graphics and

biomechanics that the six musculoskeletal complexes—torso, neck, arms, and legs—are now

controlled by a dozen artificial neural networks trained on data synthesized by the virtual

human model itself, analogous to real life.

7.1 Limitations and Future Work

7.1.1 Biomechanical, Muscle-Actuated Hands and Feet

For the time being, the hands and feet of our virtual human are animated in a purely

kinematic matter. Their anatomical structures include complete bone and muscle geometries,

but they presently lack the functional muscle actuators necessary to produce muscle-driven

biomechanical hand and foot movements. It is worthwhile to explore the suitability of Hill-

type muscle actuators for the hands and feet. If Hill-type actuators prove to be inadequate,

one can turn to the strand musculotendon actuators of Sueda et al. (2008). In either case,

in accordance with our paradigm, deep neuromuscular motor controllers will need to be

developed and trained for the hands and feet.

7.1.2 Task-Specific Variance Structure

The inverse kinematics needed to calculate desired joint angles and desired muscle strains

adopt an optimization method, which always provides a unique solution. From the per-

55

spective of motor control, this solution does not allow variance across trials (Latash et al.,

2002).

In general, the Uncontrolled Manifold (UCM) hypothesis (Scholz and Schöner, 1999)

assumes that the space of elemental variables may be divided into two subspaces, with

one subspace (UCM) corresponding to no effect on the task-specific performance variables,

whereas the other subspace is orthogonal to the UCM and does affect the performance

variables. The variance in the UCM is VUCM, whereas the variance in the space orthogonal

to the UCM is VORT. Obviously, reducing VORT is desirable for tasks requiring high accuracy.

Nevertheless, there is no obvious criterion for the VUCM.

In fact, two factors make a larger VUCM desirable. First, the selected elemental variables

for one task are also involved in other tasks, thus contributing to the stability of other

performance variables. A large VUCM indicates a larger solution space with regard to such

performance variables. If the solution space is small, any secondary task would require new

solutions for the first task. Thus, given a large solution space, the secondary task can also

be performed without affecting the original task (Zhang et al., 2008). Second, unpredictable

changes both within the body and in the environment always influence the performance of

any task. A large VUCM is able to mediate the effects of such perturbations (Mattos et al.,

2011).

To mimic real human movement, a concept of back coupling should be introduced to

solve the motor redundancy problem and allow UCM variance (Martin et al., 2009, 2019).

7.1.3 Active Balance and Locomotion

Our neuromuscular controllers are capable of controlling our musculoskeletal model to sit,

stand up, and balance upright; however, beyond stepping, our virtual human cannot yet

perform continuous bipedal locomotion. Our next goal is to enable it to locomote and

navigate its environment. Balancing strategies from animation and robotics may be incor-

porated into our biomechanical human model. Although a challenging proposition given its

musculoskeletal complexity, this is an exciting research direction.

56

In terms of active balance control, certain balance controllers define objectives in terms

of Center of Pressure (CoP) (Abdallah and Goswami, 2005), while others use momenta

(Kajita et al., 2003). Although Ground Reaction Forces (GRF) and Center of Pressure

(CoP) have a one-to-one relationship with the rate of change of spatial momentum, their

physical meanings for balance differ. Whereas the CoP relates to robot motion, the GRF

characterizes the constraints of the ground contact.

As for locomotion task, two categories of control schemes have been proposed. The

first use per-joint PD servos, coordinated by a high-level state machine (Yin et al., 2007;

Faloutsos et al., 2001a; Hodgins et al., 1995). However, the combination of high-gain tracking

and discrete state machines frequently leads to rigid motions that can be very difficult to

tune to produce natural-looking full-body movements. The second category of methods

take biologically inspired approaches, such as Central Pattern Generators (CPGs), which

are neural circuits capable of producing coordinated patterns of rhymic activity without

any rhythmic inputs from sensory feedback or from higher control centers. The method has

been successfully applied to multi-legged locomotion of Myriapoda (Fang et al., 2013) as

well as to the control of swimming locomotion with a sophisticated biomechanical human

model, the precursor to ours (Si et al., 2014). Low-level CPGs should be integrated into our

free-standing biomechanical human model to drive bipedal locomotion.

7.1.4 Reinforcement Learning

Our neuromuscular motor controllers are trained offline using fully-connected deep neural

networks. This gives the baseline capability of performing fundamental tasks such as reaching

and standing. In order to achieve more natural motions with a greater variety of tasks,

we plan to implement online learning methods with Deep Reinforcement Learning (DRL),

which promises to give our model the ability to learn continuously from its experience. Such

learning processes are especially important for motions that come with clear objectives such

as playing sports, which humans continuously practice to improve their skills.

Previous studies have successfully applied DRL to articulated skeletal control (Peng et al.,

57

2017, 2018). However, these methods adopt deep reinforcement learning only at joint level

while they apply supervised learning at the muscle level. While it seems infeasible to apply

DRL to control on the order of 1,000 muscle actuators directly, the brain does not control

muscles individually but unifies them into groups that are controlled in a synergistic manner

(Jackson, 1889; Bizzi and Cheung, 2013; Ting and Macpherson, 2005). Synergies are con-

sidered building blocks that the central nervous system uses to mitigate its computational

burden. It seems promising to decrease the dimensionality of the task by applying DRL

directly to synergistic muscle groups. Furthermore, DRL can be applied to visual perception

tasks, such as for doodling (see Appendix D).

58

APPENDIX A

Synthesizing Training Data

The DNNs that implement the voluntary neuromuscular controllers in our sensorimotor

control system are trained offline in a supervised manner. Once trained, the DNNs can

quickly produce the required muscle activation signals online.

We synthesize training data using our biomechanical human musculoskeletal system sim-

ulator. Given the current state of the musculoskeletal system, the current muscle activations,

and a desired target state, we compute an appropriate correction to each muscle activation in

order to drive the musculoskeletal system closer to the target state, subject to the downward

pull of gravity.

For example, if the end effector is in some given pose and we want it to achieve a new pose,

we first compute the desired changes of the joint angles q by solving an inverse kinematics

problem. Second, we compute a desired acceleration for each joint to achieve the desired

motion in a given time step. Third, we compute the required joint torques by solving the

inverse dynamics problem for each joint, subject to external forces, such as gravity. Finally,

a muscle optimization technique is applied to compute the minimal muscle activations that

can generate the desired torque for each joint.

For the purposes of training the neural network, the input is the concatenation of the

desired movement vector e = pd − pc between the current pose pc and desired pose pd, and

current muscle activations ac, while the desired output of the network in response to this

input is the change of activation ∆a = ad−ac, where ad is a desired muscle activation; i.e.,

Training input-output pair

input: [e,ac];

output: ∆a.

(A.1)

59

This constitutes a single training pair for the network.

We iteratively update the joint angles in a gradient descent manner such that the differ-

ence between the current pose q and target pose q∗ is minimized. The controller determines

required accelerations to reach the target at each time step h using the following PD function:

q̈∗ = kp(q
∗ − q) + kd(q̇

∗ − q̇), (A.2)

with proportional kp = 2(1 − γ)/h2 and derivative kd = 2/h gains and error reduction rate

γ. We set h = γ = 0.1.

We use the hybrid recursive dynamics algorithm due to Featherstone (2014), which makes

it possible to compute the desired accelerations for acceleration-specified joints and the

desired torques for torque-specified joints, as follows: First, we set the muscle-driven joints

as acceleration-specified joints, while the passive joints remain torque-specified joints. We

compute the desired accelerations for the muscle-driven joints and run the hybrid dynamics

algorithm to compute the resulting accelerations for the passive joints. Second, we advance

the system to the next time step in accordance with the first-order implicit Euler method,

as was explained in the previous section, and use the hybrid dynamics algorithm to compute

the required torques for the muscle-driven joints, thus obtaining the desired torques for the

muscle-driven joints and accelerations for the passive joints.

After the desired torques are obtained, an optimization problem for agonist and antago-

nist muscles is solved to compute the desired minimal muscle activation levels.

Further details about the above numerical techniques can be found in (Lee et al., 2009)

and Chapter 3.

60

APPENDIX B

Rendering

We use the open-source POV-Ray software to render our simulations. We first run the

simulation in OpenSceneGraph and store the whole scene except for the musculoskeletal

model into a .osg file. The conversion from the internal OpenSceneGraph visualization data

to external rendering systems required custom code to output Wavefront OBJ and POV-Ray

POV files. The implementation of this was mainly comprised of several interacting C++

software modules following the visitor design pattern. Special care was taken to ensure the

geometry and material properties matched before and after the conversion to all desired files

types. However, this was not always generically possible. For example, the POV filetype

does not support line shapes. Instead, we converted to cylinders with a predefined radius,

empirically chosen to be in the range 1.0–5.0, which was satisfactory.

We also store the kinematic state (joint angles and velocities) and import it to the flesh

simulator. The simulation system we use is based on PhysBAM (Dubey et al., 2011), which is

an object-oriented C++ library capable of solving a variety of problems in computational dy-

namics, computational mechanics, computer graphics, and computer vision. The geometries

of the skin, muscles, and skeleton are embedded into the hexahedra of the embedding volume

(Patterson et al., 2012). This embedding framework preserves high resolution geometry for

rendering. The scene script of POV-Ray contains definitions of the camera, illumination,

background, and material properties of all the geometric entities. We add the flesh model

and other objects, such as the putter or touchscreen, into the scene. It takes around 10

seconds to render one frame of 1,920 × 1,080 pixels on a single core of our 3.2 GHz Intel

Core i7-3930k computer. POV-Ray enables adjustment of the transparency of the skin to

show an opaque or translucent skin surface that reveals the underlying flesh/muscle model.

61

APPENDIX C

ONV2seq: Biomimetic Perception Learning for Sketch

Generation

Our raw datasets came from QuickDraw, a public sketch database built by Google. All

the sketch sequence data were collected by The Quick, Draw!, an online game that requires

participants to draw a sketch within 20 seconds. We use a data format that represents a

sketch as a set of finger stroke actions. In this data, the initial absolute coordinate of the

drawing is located at the origin of the finger. A sketch is a list of points, and each point is

a vector consisting of 5 elements: (∆x, ∆y, p1, p2, p3). The first two elements are the offset

distance in the x and y directions of the finger from the previous point. The last 3 elements

represents a binary one-hot vector of 3 possible states. The first finger state, p1, indicates

that the finger is currently touching the screen, and that a line will be drawn connecting

the next point with the current point. The second finger state, p2, indicates that the finger

will be lifted from the touchscreen after the current point, and that no line will be drawn

next. The final finger state, p3, indicates that the drawing has ended, and subsequent points,

including the current point, will not be rendered. The number of training samples for each

category is 70,000, while the validation and test samples are both 2,500 samples.

The hidden state extracted from the images is project to two vectors µ and σ. We use µ

and σ, along with N(0, I), a vector of IID Gaussian variables of size Nz to construct a random

vector, z ∈ RNz in the classical VAE method (Kingma and Welling, 2013): z = µ+σ�N(0, I).

At each step i of the decoder RNN, the previous point xi−1 and the latent vector z are

presented as a concatenated input, where x0 is defined as (0,0,1,0,0). The output at each

time step comprises parameters of the probability distribution of the next data point xi.

62

We model (∆x,∆y) as a Gaussian Mixture Model (GMM) with M normal distributions and

(q1, q2, q3) as a categorical distribution to model the ground truth data (p1, p2, p3), where

q1 + q2 + q3 = 1. The generated sequence is conditioned from a latent code z sampled from

our encoder, which is trained end-to-end alongside the decoder:

p(∆x,∆y) =
M∑
j=1

ΠjN(∆x,∆y|µx,j, µy,j, σx,j, σy,j, ρxy,j), (C.1)

where
M∑
n=1

Πj = 1. (C.2)

Here, N(∆x,∆y|µx,j, µy,j, σx,j, σy,j, ρxy,j) is the probability distribution function for a bi-

variate normal distribution; each of the M bivariate normal distributions consist of five

parameters: (µx, µy, σx, σy, ρxy), where µx and µy are the means, σx and σy are the stan-

dard deviations, and ρxy is the correlation parameter of each bivariate normal distribution.

The vector Π contains the mixture weights of the Gaussian mixture model.

During data preparation, all sequences are generated to a length of Nmax where Nmax is

a preset length of the sketch in the training dataset. Since the length of x is always shorter

than Nmax, we set xi to be (0, 0, 0, 0, 1) for i > Ns, where Ns is the sketch length. During the

sampling process, we generate the parameters for both GMM and categorical distributions

at each time step, and sample an outcome xi for each time step. The sampled outcome xi is

fed as the input for the next time step.

The training loss is to maximize the log-likehood of the generated probability distribution

to explain the training data x. The reconstruction loss

LR = Ls + Lp (C.3)

has two components—the offset term (∆x,∆y)

Ls = − 1

Nmax

Ns∑
i=1

log

(
M∑
j=1

Πj,iN(∆xi,∆yi|µx,j,i, µy,j,i, σx,j,i, σy,j,i, ρxy,j,i)

)
(C.4)

63

Figure C.1: Model Architecture of sketch-pix2seq

and the finger state terms (p1, p2, p3)

Lp = − 1

Nmax

Nmax∑
i=1

3∑
k=1

pk,i log(qk,i). (C.5)

Note that points beyond Ns is not used for modeling the offset term (∆x,∆y) while the

finger state terms require all of the PDF parameters until Nmax.

The images fed into the encoder of the sketch-pix2seq model (Figure C.1) were produced

by first converting the raw sequences to vector image files (.svg) and then converting to

gray-scale pixel image files (.png, .jpg, etc.) of size 64 × 64. The ONV data used by the

encoder of the sketch-ONV2seq model (Figure C.2) were converted from the pixel image files

of 600 × 600 after augmenting the stroke width and adding sufficient padding space such

that more image detail can be captured by the retinal photoreceptors.

Figure C.1 shows the model architecture for sketch-pix2seq, which used a gray-scale pixel

image as the neural network input. Our model architecture is shown in Figure C.2. It is a

ONV2seq Variational Autoencoder (VAE), which has similar structure to sketch-RNN and

sketch-pix2seq. The main difference in the network architecture lies in the DNN encoder,

which consists of two parallel channels of four-layer fully-connected networks, rather than a

CNN-based network.

We conducted experiments for three models—sketch-ONV2seq, sketch-ONV2seq (pre-

trained decoder of sketch-pix2seq), and sketch-ONV2seq (pretrained decoder of sketch-

64

Figure C.2: Model Architecture of sketch-ONV2seq

Figure C.3: Evaluation cost of models over training epochs

65

Figure C.4: The first row contains hand-drawn sketches (original test samples) and the
second row is the ONV (of left retina) generated based on the original test samples. Rows
3–7 are the reconstructed sketches based on the models: (3) sketch-RNN, (4) sketch-pix2seq,
(5) sketch-ONV2seq, (6) sketch-ONV2seq (pretrained decoder of sketch-RNN), (7) sketch-
ONV2seq (pretrained decoder of sketch-pix2seq).

RNN)—and compared them with the sketch-RNN and sketch-pix2seq models. The sketch-

ONV2seq is trained from the scratch with all the weights initialized with a uniform random

distribution. The decoder weights of sketch-ONV2seq (pretrained decoder of sketch-pix2seq)

and sketch-ONV2seq (pretrained decoder of sketch-RNN) are initialized with the pretrained

weights of the sketch-pix2seq and sketch-RNN models, respectively, while the rest of the

weights are randomly initialized.

For simplicity, we selected four categories—cat, bus, rabbit and tree—to carry out the

experiments. Figure C.3 plots the evaluation loss for each training epoch. As is shown in

the figure, sketch-ONV2seq performs the worst and it has the highest cost. Furthermore,

sketch-ONV2seq also converges most slowly when training from scratch. This is expected as

the fully-connected layers are not as good as convolutional layers at capturing image features.

However, if we initialize the decoder weights for the sketch-ONV2seq models using the one

in sketch-pix2seq, convergence is significantly faster.

Figure C.4 is the generated sketch result based on the input of selected test samples.

The generated sketches of the sketch-pix2seq model looks the best and those of the sketch-

66

ONV2seq (pretrained decoder of sketch-pix2seq) look similar. Furthermore, although the

sketch-ONV2seq model can achieve lower loss using the pretrained sketch-RNN decoder, its

visual result is still disappointing. This might be because the RNN encoder in the sketch-

RNN model fails to capture local image features as well as the DNN encoder and the CNN

encoder does, but it captures the sequence order information instead. Thus their encoded

latent vectors may have quite different distributions and the trained decoder weights based

on the latent vectors are unlikely to be suitable for transfer to the other models. Another

thing to note is that the sketch-RNN model has the lowest loss, but its reconstructed sketches

are not the best. According to Nakada et al. (2018), the sketches reconstructed by the sketch-

pix2seq model look more ‘human-like’ (likely to be drawn by a human) than the sketch-RNN

model, but its construction loss is larger, which indicates that the loss is not correlated to

how ‘human-like’ the sketch is.

67

APPENDIX D

Learning to Doodle with Deep Q-Networks and

Demonstrated Strokes

This appendix reproduces publication (Zhou et al., 2018b).

Doodling is a useful and common intelligent skill that people can learn and master. In

this work, we propose a two-stage learning framework to teach a machine to doodle in a

simulated painting environment via Stroke Demonstration and deep Q-learning (SDQ). The

developed system, Doodle-SDQ, generates a sequence of pen actions to reproduce a reference

drawing and mimics the behavior of human painters. In the first stage, it learns to draw

simple strokes by imitating in supervised fashion from a set of stroke-action pairs collected

from artist paintings. In the second stage, it is challenged to draw real and more complex

doodles without ground truth actions; thus, it is trained with Q-learning. Our experiments

confirm that (1) doodling can be learned without direct step-by-step action supervision and

(2) pretraining with stroke demonstration via supervised learning is important to improve

performance. We further show that Doodle-SDQ is effective at producing plausible drawings

in different media types, including sketch and watercolor. A short video can be found at

https://www.youtube.com/watch?v=-5FVUQFQTaE.

D.1 Introduction

Doodling is a common, simple, and useful activity for communication, education, and reason-

ing. It is sometimes very effective at capturing complex concepts and conveying complicated

ideas Brown (2014). Doodling is also quite popular as a simple form of creative art, com-

pared to other types of fine art. We all learn, practice, and master the skill of doodling in

68

https://www.youtube.com/watch?v=-5FVUQFQTaE

Figure D.1: Cat doodles rendered using color sketch (left) and water color (right) media
types.

one way or another. Therefore, for the purposes of building a computer-based doodling tool

or enabling computers to create art, it is interesting and meaningful to study the problem

of teaching a machine to doodle.

Recent progress in visual generative models—e.g., Generative Adversarial Networks Good-

fellow et al. (2014) and Variational Autoencoders Kingma and Welling (2013)—have enabled

computer programs to synthesize complex visual patterns, such as natural images Denton

et al. (2015), videos Vondrick et al. (2016), and visual arts Elgammal et al. (2017). By

contrast to these efforts, which model pixel values, we model the relationship between pen

actions and visual outcomes, and use that to generate doodles by acting in a painting en-

vironment. More concretely, given a reference doodle drawing, our task is to doodle in a

painting environment so as to generate a drawing that resembles the reference. In order

to facilitate the experiment setup and be more focused and expedient on algorithm design,

we employ an internal Simulated Painting Environment (SPE) that supports major media

types; for example, sketch and watercolor (Figure D.1).

Our seemingly simple task faces at least three challenges :

First, our goal is to enable machines to doodle like humans. This means that rather than

mechanically printing pixel by pixel like a printer, our system should be able to decompose

a given drawing into strokes, assign them a drawing order, and reproduce the strokes with

pen action sequences. These abilities require the system to visually parse the given drawing,

understand the current status of the canvas, make and adjust drawing plans, and implement

the plans by invoking correct actions in a painting environment. Rather than designing a

69

rule-based or heuristic system that is likely to fail in corner cases, we propose a machine

learning framework for teaching computers to accomplish these tasks.

The second challenge is the lack of data to train such a system. The success of modern

machine learning heavily relies on the availability of large-scale labeled datasets. However,

in our domain, it is expensive, if not impossible, to collect paintings and their corresponding

action data (i.e., recordings of artists’ actions). This is compounded by the fact that the

artistic paintings space features rich variations, including media types, brush settings, per-

sonal styles, etc., that are difficult to cover. Hence, the traditional paradigm of collecting

ground truth data for model learning does not work in our case.

Consequently, we propose a hybrid learning framework that consists of two stages of

training, which are driven by different learning mechanisms. In Stage 1, we collect stroke

demonstration data, which comprises a picture of randomly placed strokes and its corre-

sponding pen actions recorded from a painting device, and train a model to draw simple

strokes in a supervised manner. Essentially, the model is trained to imitate human drawing

behaviour at the stroke level with step-by-step supervision. Note that it is significantly easier

to collect human action data at the stroke level than for the entire painting. In Stage 2, we

challenge the model learned in Stage 1 with real and more complex doodles, for which there

are no associated pen action data. To train the model, we adopt a Reinforcement Learning

(RL) paradigm, more specifically Q-learning with reward for reproducing a given reference

drawing. We name our proposed system Doodle-SDQ, which stands for Doodle with Stroke

Demonstration and deep Q-Networks. We experimentally show that both stages are required

to achieve good performance.

Third, it is challenging to induce good painting behaviour with RL due to large state/action

space. At each step, the agent faces at least 200 different action choices, including the pen

state, pen location, and color. The action space is larger than in other settings where RL

has been applied successfully Mnih et al. (2015); Peng et al. (2016); Levine et al. (2016). We

empirically observe that Q-learning with a high probability of random exploration is not ef-

fective in our large action space, and reducing the chance of random exploration significantly

helps stabilize the training process, thus improving the accumulated reward.

70

Figure D.2: Sketch drawing examples: BMVC. (top) The images produced by unrolling the
Doodle-SDQ model for 100 steps. (bottom) The corresponding reference images.

To summarize, Doodle-SDQ leverages demonstration data at the stroke level and gen-

erates a sequence of pen actions given only reference images. Our algorithm models the

relationship between pen actions and visual outcomes and works in a relatively large action

space. We apply our trained model to draw various concepts (e.g., characters and objects)

in different media types (e.g., black and white sketch, color sketch, and watercolor). In

Figure D.2, our system has automatically sketched a colored “BMVC”.

D.2 Related Work

D.2.1 Imitation Learning and Deep Reinforcement Learning

Imitation learning techniques aim to mimic human behavior in a given task. An agent (a

learning machine) is trained to perform a task from demonstrations by learning a mapping

between observations and actions Hussein et al. (2017). Naive imitation learning, however,

is unable to help the agent recover from its mistakes, and the demonstrations usually cannot

cover all the scenarios the agent will experience in the real world. To tackle this problem,

DAGGER Ross et al. (2011) iteratively produces new policies based on polling the expert

policy outside its original state space. Therefore, DAGGER requires an expert to be available

during training to provide additional feedback to the agent. When the demonstration data

or the expert are unavailable, RL is a natural choice for an agent to learn from experience

by exploring the world. Nevertheless, reward functions have to be designed based on a large

number of hand-crafted features or rules Xie et al. (2012).

71

The breakthrough of Deep RL (DRL) Mnih et al. (2015) came from the introduction of

a target network to stabilize the training process and experience replay to learn from past

experiences. Hasselt et al. (2016) proposed Double DQN (DDQN) to solve an over-estimation

issue in deep Q-learning due to the use of the maximum action value as an approximation to

the maximum expected action value. Schaul et al. (2016) developed the concept of prioritized

experience replay, which replaced DQN’s uniform sampling strategy from the replay memory

with a sampling strategy weighted by TD errors. Our algorithm starts with Double DQN

with prioritized experience replay (DDQN + PER) Schaul et al. (2016).

Recently, there has also been interest in combining imitation learning with the RL prob-

lem Cruz Jr et al. (2017); Subramanian et al. (2016). Silver et al. (2016) trained human

demonstrations in supervised learning and used the supervised learner’s network to initialize

RL’s policy network while Hester et al. (2018) proposed Deep Q-learning from Demonstra-

tions (DQfD), which leverages even very small amounts of demonstration data to accelerate

learning dramatically.

D.2.2 Sketch and Art Generation

There are outstanding studies related to drawing in the fields of robotics and AI. Tradi-

tionally, a robot arm is programmed to sketch lines on a canvas to mimic a given digitized

portrait Tresset and Leymarie (2013). Calligraphy skills can be acquired via Learning from

Demonstration Sun et al. (2014). Recently, Deep Neural Network-based approaches for art

generation have been developed Gatys et al. (2016); Elgammal et al. (2017). An earlier work

by Gregor et al. (2015) introduced a network combining an attention mechanism with a

sequential auto-encoding framework that enables the iterative construction of complex im-

ages. The high-level idea is similar to ours; that is, updating only part of the canvas at each

step. Their method, however, operates on the canvas matrix while ours generates pen ac-

tions that make changes to the canvas. More recently, a SPIRAL model Ganin et al. (2018)

used Reinforced Adversarial Learning to produce impressive drawings without supervision;

however, the model generates control points for quadratic Bezier curves, rather than directly

72

controlling the pen’s drawing actions.

Rather than focusing on traditional pixel image modeling approaches, Zhang et al. (2017)

and Simhon and Dudek (2004) proposed generative models for vector images. Graves (2013)

focused on handwriting generation with Recurrent Neural Networks to generate continuous

data points. Following the handwriting generation work, a sketch-RNN model was proposed

to generate sketches Ha and Eck (2017); Jongejan et al. (2016), which was learned in a fully

supervised manner. The features learned by the model were represented as a sequence of pen

stroke positions. In our work, we process the sketch sequence data and, using an internal

simulated painting environment, render onto the canvas as in the reference images.

D.3 Methodology

Given a reference image and a blank canvas for the first iteration, our Doodle-SDQ model

predicts the pen’s action. When the pen moves to the next location, a new canvas state is

produced. The model takes the new canvas state as the input, predicts the action based on

the difference between the current canvas and the reference image, and repeats the process

for a fixed number of steps. (Figure D.3a).

D.3.1 Our Model

The network has two input streams (Figure D.3b-A). The global stream has 4 channels,

which comprise the current canvas, the reference image, the distance map and the color

map. The distance map and the color map encode the pen’s position and state. The local

stream has 2 channels—the cropped patch of the current canvas centered at the pen’s current

location with size equal to the pen’s movement range, and the corresponding patch on the

reference image. Unlike the classical DQN structure Mnih et al. (2015), which stacks four

frames, the input in this model includes only the current frame and no history information.

The convnet for global feature extraction consists of three convolutional layers Mnih et al.

(2015). The first hidden layer convolves 32 8 × 8 filters with stride 4. The second hidden

73

(a)

Distance
Map

Color
Map

Image
Patch

CNN
local

CNN
global

C
oncat

FC
layer

A B

FC
layer

(b)

Figure D.3: Doodle-SDQ structure. (a) The algorithm starts with a blank canvas and
an input reference image. The neural network predicts the action of the pen and sends
rendering commands to a painting engine. The new canvas and the reference image are then
concatenated and the process is repeated for a fixed number of steps. (b) A: Two CNNs
extract global scene-level contextual features and local image patch descriptors. The local
and global features are concatenated for action prediction. B: Given the current position
(red dot) and the predicted action (green dot), the painting engine renders a segment to
connect them. The rectangle of blue dots represents the movement range, which is the same
size as the local image patch.

layer convolves 64 4×4 filters with stride 2. The third hidden layer convolves 64 3×3 filters

with stride 1. The only convnet layer of the local CNN stream convolves 128 11× 11 filters

with stride 1. The two streams are then concatenated and input to a fully-connected linear

layer, and the output layer is another fully-connected linear layer with a single output for

each valid action.

At each time step, the pen must decide where to move (Figure D.3b-B). The pen is

designed to have maximum 5 pixels offset movement horizontally and vertically from its

current position.1 Therefore, the movement range is 11 × 11 and there are in total 121

positional choices.

The pen’s state is determined by the type of reference image. Specifically, the pen’s state

is either up or down (i.e., draw) for a grayscale image. For a color image, the pen’s state

can be up or down with a color selected from the three options (i.e., red, green, and blue).2

1The maximal offset movement of the pen is set arbitrarily; it could also be 4 or 6.

2The painting engine allows more colors; however, to simplify our experiments, we limit it to three colors.

74

Image Input global stream Input local stream Output action space

Grayscale 84× 84× 4 11× 11× 2 11× 11× 2 = 242
RGB 84× 84× 8 11× 11× 6 11× 11× 4 = 484

Table D.1: Input and output dimensionalities.

Therefore, the dimension of the action space is 242 for grayscale images and 484 for color

images. Figure D.3b-B shows a segment rendered given the pen’s current position and the

predicted action.

Rather than memorizing absolute coordinates of a pen on a canvas, humans tend to

encode the relative positions between points. To represent the current location of the pen,

an L2 distance map is constructed by computing

D(x, y) =

√
(x− xo)2 + (y − yo)2

L
, ∀(x, y) ∈ Ω, (D.1)

where Ω denotes the canvas which is an L×L discrete grid, L being the length of the canvas’

side, and (xo, yo) is the current pen location. In terms of a color map, all elements are 1

when the pen is put down and 0 when the pen is lifted up for grayscale images. For an image

with red, green, and blue color, all elements are 0 when the pen is lifted up, 1 for red color

drawing, 2 for green color and 3 for blue color. The size of distance map and the color map

is the same as the canvas size, which is 84× 84 (Figure D.3b-A). Table D.1 summarizes the

dimensionalities of the input and output for grayscale or color reference images.

D.3.2 Pre-Training Networks Using Demonstration Strokes

DRL can be difficult to train from scratch. Therefore, we pre-train the network in a su-

pervised manner using synthesized data with ground truth actions. The synthetic data are

generated by randomly placing real strokes on canvas (Figure D.4a). The real strokes are

collected from recordings of a few artist paintings.

In the learning from demonstration phase, each training sample consists of the reference

image (Figure D.4a), the current canvas (Figure D.4b), the color map, the distance map

75

(a) (b) (c) (d) (e)

Figure D.4: Data preparation for pre-training the network. (a) A reference image comprising
two strokes randomly placed on the canvas; (b) the current canvas as part of the reference
image; (c) the distance map of the current canvas, whose center is the pen’s location on the
current canvas; (d) the next step canvas after a one step action of the pen; (e) The distance
map of the next step canvas, which represents the pen’s location on the next step canvas.

(Figure D.4c), the small patch of the reference image, and the current canvas. The ground

truth output will be the drawing action producing Figure D.4d from Figure D.4b. After

training, the learned weights and biases are used to initialize the Doodle-SDQ network in

the RL stage.

D.3.3 Doodle-SDQ

To encourage the agent to draw a picture similar to the reference image, the similarity

between the kth step canvas and the reference image is measured as

sk =

∑L
i=1

∑L
j=1(P k

ij − P ref
ij)2

L2
, (D.2)

where P k
ij is the pixel value at position (i, j) in the kth step canvas and P ref

ij is the pixel value

at that position in the reference image.

The pixel reward of executing action at the kth step is defined as

rpixel = sk − sk+1. (D.3)

An intuitive interpretation is that rpixel is 0 when the pen is up and increases with the

similarity between the canvas and reference image.

76

Figure D.5: Reference images for training and testing. 16 classes are randomly chosen from
the QuickDraw dataset Jongejan et al. (2016): clock, church, chair, cake, butterfly, fork,
guitar, hat, hospital, ladder, mountain, mailbox, mug, mushroom, T-shirt, house.

To avoid slow movement or pixel by pixel printing, we penalize small steps. Specifically,

if the pen moves less than 5 pixels/step when the pen is drawing or if it moves while being

up, the agent will be penalized with Pstep. If the input is an RGB image, we additionally

penalize the incorrectness of the chosen color Pcolor.

Thus, the final reward is

rk = rpixel + Pstep + βPcolor, (D.4)

where Pstep and Pcolor are constants set based on the observation, and β depends on the input

image type: 0 for a grayscale image and 1 for a color image.

In the RL phase, we use QuickDraw Jongejan et al. (2016), a dataset of vector drawings,

as the input reference image. Since the scale of the drawings in QuickDraw varies across

samples, the drawing sequence data is processed such that all the drawings can be squeezed

onto an 84× 84 pixel canvas. We randomly selected sixteen classes, and each class includes

200 reference images (Figure D.5). For RL training, the images except for the ‘house’ class

are applied. Therefore, 3,000 reference images are adopted for training.

D.4 Experiments

During the pretraining phase, we use a softmax cross entropy loss for the classification task.

The loss is minimized using Adam Kingma and Ba (2014) with minibatches of size 128 for

optimization with the initial step size α = 0.001, and gradually decays with the training step.

77

Naive
SDQ

SDQ +
Rare exp

Pretrain
on

random

Pretrain
on

QuickDraw

SDQ +
Rare exp +
weight init

Max
reward

House
Class

Sketch 93 1,404 1,726 1,738 1,927 2,966
Color Sketch −13 1,651 1,765 1,747 1,808 3,484
Water Color −162 407 596 620 670 1,492

Training
Classes

Sketch 67 1024 1,539 1,521 1,805 2,645
Color Sketch −15 1,464 1,669 1,683 1,731 3,533
Water Color −182 363 446 473 509 1,527

Table D.2: Average accumulated rewards for the models tested.

Instead of using random initialization, the learned weights from the pretrained classification

model are used to initialize Doodle-SDQ’s network. Due to the large action space, the pen is

likely to draw a wrong stroke following a random action in the RL phase. Thus, exploration

in action space is rarely applied unless the pen is stuck at some point.3 For the RL stage, we

train for a total of 0.6M frames and use a replay memory of 20 thousand frames. The weights

are updated based on the difference between the Q value and the output of the target Q

network Schaul et al. (2016). The loss is minimized using Adam with α = 0.001. Our model

is implemented in Tensorflow Abadi et al. (2016).

To visualize the effect of the algorithm, the model is unrolled for 100 steps starting from an

empty canvas. We chose 100 steps because more steps do not lead to further improvement.

Figure D.6 shows the drawing given the reference images from different categories in the

test set using different media types. Additional sketch drawing examples are presented

(Figure D.7) and the algorithm was tested on reference images not in the QuickDraw dataset,

where we found that, although it was trained on QuickDraw, the agent has the ability to

draw quite diverse doodles. For a reference image, the reward from each step is summed up

and the accumulated reward is a quantitative measure of the performance of the algorithm.

The maximum reward is achieved when the agent perfectly reproduces the reference image.

In the test phase, we used 100 house reference images and 100 reference images randomly

selected from the test sets belonging to the training classes.

3From our observations, the pen is likely to stop moving at some location or move back and forth between
two spots. Only in these scenarios, the pen will be given a random action to avoid local minima.

78

(a) Sketch: butterfly, guitar, church, cake, mailbox, hospital

(b) Color sketch: mailbox, chair, hat, house, mug, T-shirt

(c) Watercolor: T-shirt, butterfly, cake, mug, house, mailbox

Figure D.6: Comparisons between drawings and reference images in different media types:
(a) sketch, (b) color sketch, (c) watercolor. The left image in each pair is the drawing after
100 steps of the model and the right is the reference image. The drawings in watercolor
mode are enlarged to visualize the stroke distortion and color mixing

Table D.2 presents the average accumulated rewards and the average maximum rewards

across reference images. In the table, the ‘Naive SDQ’ model is the Doodle-SDQ model

trained from scratch following a ε-greedy strategy with ε annealed linearly from 1.0 to 0.1

over the first fifty thousand frames and fixed at 0.1 thereafter. The ‘SDQ + Rare exp’

is the Doodle-SDQ model trained from scratch with rare exploration. The ‘Pretrain on

random’ model is the model with supervised pretraining on the synthesized random stroke

sequence data (Figure D.4). The ‘Pretrain on QuickDraw’ model is the model with supervised

pretraining on the QuickDraw sequence data. The ‘SDQ + Rare exp + weight init’ model

is the Doodle-SDQ model with rare exploration and weight initialization from the ‘Pretrain

on random’ model. Based on the average accumulated reward, Doodle-SDQ with weight

initialization is significantly better than all the other methods. Furthermore, pretraining on

the QuickDraw sequence data directly does not lead to superior performance over the RL

method. This indicates the advantage of using DRL in the drawing task.

79

Figure D.7: Additional sketch drawing examples.

D.5 Discussion

We now list several key factors that contribute to the success of our Doodle-SDQ algorithm

and compare it to the DDQN + PER model of Schaul et al. (2016) (Table D.3).

Since Naive SDQ cannot be directly used for the drawing task, we first pretrain the net-

work to initialize the weights. Referring to Table D.2, pretraining with stroke demonstration

via supervised learning leads to an improvement in performance (Columns 4 and 7). Based

on our observations, the 4-frame history used in Schaul et al. (2016) introduces a movement

momentum that compels the agent to move in a straight line and rarely turn. Therefore,

history information is excluded in our current model. In Schaul et al. (2016), the probability

80

Doodle-SDQ DDQN + PER Schaul et al. (2016)

History No Yes
Exploration Rare Yes
Pretrain Yes No
Input stream 2 1

Table D.3: Differences between the proposed method and Schaul et al. (2016).

for the exploration of random action decays from 0.9 to 0.1 with increasing epochs. Since

we pretrained the network, the agent does not need to explore the environment with a large

rate Cruz Jr et al. (2017). Thus, we initially set the exploration rate to 0.1. However,

Doodle-SDQ cannot outperform the pretrained model until we remove exploration.4 The

countereffect of the exploration may be caused by the large action space. The small patch

in the two streams structure (Figure D.3) makes the agent attend to the region where the

pen is located. More specifically, when the lifted pen is within one step action distance to

the target drawing, the local stream is able to move the pen to a correct position and start

drawing. Without this stream, the RL training cannot be successful even after removing

the exploration or pretraining the network. The average accumulated rewards for the global

stream only network varies around 100 depending on the media types.

Despite the success of our SDQ model in simple sketch drawing, there are several lim-

itations to be addressed in the future work. On the one hand, our motivation is to de-

sign an algorithm to enable machines to doodle like humans, rather than competing with

GAN Goodfellow et al. (2014) to generate complex image types, at least not at the current

stage. However, it has been demonstrated that an adversarial framework Ganin et al. (2018)

interprets and generates images in the space of visual programs. Therefore, it will be a

promising direction to mimic human drawing by combining adversarial training technique

and reinforcement learning. On the other hand, although the SDQ model works in a rela-

tively large action space due to rare exploration, the average accumulated rewards introduced

by the component of reinforcement learning still suffers from the increase of the dimension

4A random movement will be generated only when the agent gets stuck at some position, such as moving
back and forth or remaining at the same spot.

81

of action space by allowing colorful drawing as shown by a comparison between sketch and

color sketch (Column 6 and 7 in Table D.2). Since our future work will incorporate more

action variables (e.g., the pen’s pressure and additional colors) and explore doodling on large

canvases, the actions might be embed in a continuous space Dulac-Arnold et al. (2015).

D.6 Conclusion

We addressed the challenging problem of emulating human doodling. To solve this problem,

we proposed a deep-reinforcement-learning-based method, Doodle-SDQ. Due to the large

action space, Naive SDQ fails to draw appropriately. Thus, we designed a hybrid approach

that combines supervised imitation learning and reinforcement learning. We train the agent

in a supervised manner by providing demonstration strokes with ground truth actions. We

then further trained the pre-trained agent with Q-learning using a reward based on the

similarity between the current drawing and the reference image. Drawing step-by-step, our

model reproduces reference images by comparing the similarity between the current drawing

and the reference image. Our experimental results demonstrate that our model is robust

and generalizes to classes not presented during training, and that it can be easily extended

to other media types, such as watercolor.

82

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning.
In OSDI, volume 16, pages 265–283. 78

Abdallah, M. and Goswami, A. (2005). A biomechanically motivated two-phase strat-
egy for biped upright balance control. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 1996–2001. IEEE. 57

Bizzi, E. and Cheung, V. C. (2013). The neural origin of muscle synergies. Frontiers in
Computational Neuroscience, 7:51. 58

Brown, S. (2014). The Doodle revolution: Unlock the power to think differently. Penguin.
68

Cruz Jr, G. V., Du, Y., and Taylor, M. E. (2017). Pre-training neural networks with
human demonstrations for deep reinforcement learning. arXiv preprint arXiv:1709.04083.
72, 81

Cruz Ruiz, A., Pontonnier, C., Pronost, N., and Dumont, G. (2017). Muscle-based control
for character animation. Computer Graphics Forum, 36(6):122–147. 8

Denton, E. L., Chintala, S., Fergus, R., et al. (2015). Deep generative image models
using a Laplacian pyramid of adversarial networks. In Advances in Neural Information
Processing Systems, pages 1486–1494. 69

DiLorenzo, P., Zordan, V., and Sanders, B. (2008). Laughing out loud: Control for
modeling anatomically inspired laughter using audio. ACM Transactions on Graphics
(TOG) (Proc. ACM SIGGRAPH Asia 2008), 27(5):125. 6

Dubey, P., Hanrahan, P., Fedkiw, R., Lentine, M., and Schroeder, C. (2011). PhysBAM:
Physically based simulation. In ACM SIGGRAPH 2011 Courses, SIGGRAPH ’11, pages
10:1–10:22, New York, NY, USA. ACM. 61

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann,
T., Weber, T., Degris, T., and Coppin, B. (2015). Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679. 82

Elgammal, A., Liu, B., Elhoseiny, M., and Mazzone, M. (2017). CAN: Creative adversarial
networks, generating “art” by learning about styles and deviating from style norms. arXiv
preprint arXiv:1706.07068. 45, 69, 72

Faloutsos, P., van de Panne, M., and Terzopoulos, D. (2001a). Composable controllers
for physics-based character animation. In Proc. 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01), pages 251–260, Los Angeles, CA.
6, 7, 57

83

Faloutsos, P., van de Panne, M., and Terzopoulos, D. (2001b). The virtual stuntman:
Dynamic characters with a repertoire of autonomous motor skills. Computers & Graphics,
25(6):933–953. 6

Fang, J., Jiang, C., and Terzopoulos, D. (2013). Modeling and animating myri-
apoda: A real-time kinematic/dynamic approach. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 203–212. ACM. 57

Featherstone, R. (2014). Rigid Body Dynamics Algorithms. Springer, New York, NY. 13,
60

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S., and Vinyals, O. (2018). Syn-
thesizing programs for images using reinforced adversarial learning. arXiv preprint
arXiv:1804.01118. 45, 72, 81

Gatys, L., Ecker, A., and Bethge, M. (2016). Image style transfer using convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2414–2423. 45, 72

Gonzalez, R., Buchanan, T., and Delp, S. (1997). How muscle architecture and moment
arms affect wrist flexion-extension moments. Journal of Biomechanics, 30(7):705–712. 13

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press, Cam-
bridge, MA. 9

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680. 69, 81

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850. 45, 73

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. (2015). DRAW:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623. 72

Grzeszczuk, R., Terzopoulos, D., and Hinton, G. (1998). Neuroanimator: Fast neural net-
work emulation and control of physics-based models. In Computer Graphics Proceedings,
Annual Conference Series, pages 9–20, Orlando, FL. Proc. ACM SIGGRAPH 98. 8

Ha, D. and Eck, D. (2017). A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477. 45, 48, 49, 73

Hasselt, H. v., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
Q-learning. In AAAI Conference on Artificial Intelligence, pages 2094–2100. AAAI Press.
72

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Sendonaris, A.,
Dulac-Arnold, G., Osband, I., Agapiou, J., et al. (2018). Deep Q-learning from demon-
strations. Association for the Advancement of Artificial Intelligence (AAAI). 72

84

Hodgins, J., Wooten, W., Brogan, D., and O’Brien, J. (1995). Animating human athlet-
ics. In Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’95), pages 71–78, Los Angeles, CA. 6, 7, 57

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. (2017). Imitation learning: A survey
of learning methods. ACM Computing Surveys (CSUR), 50(2):21. 71

Irving, G., Teran, J., and Fedkiw, R. (2004). Invertible finite elements for robust sim-
ulation of large deformation. In Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, page 131. 6

Jackson, J. (1889). On the comparative study of diseases of the nervous system. British
Medical Journal, 2:355–362. 2, 58

Jongejan, J., Rowley, H., Kawashima, T., Kim, J., and Fox-Gieg, N. (2016). The Quick,
Draw! AI experiment. https://quickdraw.withgoogle.com. 45, 50, 73, 77

Kähler, K., Haber, J., Yamauchi, H., and Seidel, H.-P. (2002). Head shop: Gen-
erating animated head models with anatomical structure. In Proc. 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 55–63, San Antonio,
TX. 6

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa,
H. (2003). Resolved momentum control: Humanoid motion planning based on the linear
and angular momentum. In Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 2, pages 1644–
1650. IEEE. 57

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. Technical
report, arXiv preprint arXiv:1412.6980. 28, 77

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114. 62, 69

Latash, M. (2012). The bliss (not the problem) of motor abundance (not redundancy).
Experimental Brain Research, 217(1):1–5. 2

Latash, M. L., Scholz, J. P., and Schöner, G. (2002). Motor control strategies revealed in
the structure of motor variability. Exercise and Sport Sciences Reviews, 30(1):26–31. 56

Lee, S., Yu, R., Park, J., Aanjaneya, M., Sifakis, E., and Lee, J. (2018). Dexterous ma-
nipulation and control with volumetric muscles. ACM Transactions on Graphics (TOG),
37(4):57. 8

Lee, S.-H., Sifakis, E., and Terzopoulos, D. (2009). Comprehensive biomechanical model-
ing and simulation of the upper body. ACM Transactions on Graphics (TOG), 28(4):99:1–
17. 6, 8, 9, 13, 14, 16, 19, 60

85

Lee, S.-H. and Terzopoulos, D. (2006). Heads up! Biomechanical modeling and neuro-
muscular control of the neck. ACM Transactions on Graphics, 23(212):1188–1198. Proc.
ACM SIGGRAPH 2006. 6, 8, 9, 14

Lee, S.-H. and Terzopoulos, D. (2008). Spline joints for multibody dynamics. ACM
Transactions on Graphics (TOG), 27(3):22. 7

Lee, Y., Terzopoulos, D., and Waters, K. (1995). Realistic modeling for facial animation.
In Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques, pages
55–62. ACM. 6

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373. 70

Martin, V., Reimann, H., and Schöner, G. (2019). A process account of the uncontrolled
manifold structure of joint space variance in pointing movements. Biological Cybernetics,
pages 1–15. 56

Martin, V., Scholz, J. P., and Schöner, G. (2009). Redundancy, self-motion, and motor
control. Neural Computation, 21(5):1371–1414. 56

Mattos, D., Latash, M. L., Park, E., Kuhl, J., and Scholz, J. P. (2011). Unpredictable
elbow joint perturbation during reaching results in multijoint motor equivalence. Journal
of Neurophysiology, 106(3):1424–1436. 56

McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E.
(2011). Efficient elasticity for character skinning with contact and collisions. ACM Trans-
actions on Graphics (TOG), 30(4):37. 19

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wiestra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540):529–33. 70,
72, 73

Monheit, G. and Badler, N. (1991). A kinematic model of the human spine and torso.
IEEE Computer Graphics and Applications, 11(2):29–38. 7

Nakada, M., Lakshmipathy, A., Chen, H., Ling, N., Zhou, T., and Terzopoulos, D. (2019).
Biomimetic eye modeling and deep neuromuscular oculomotor control. ACM Transactions
on Graphics (TOG), 38(6):221:1–14. Proc. ACM SIGGRAPH Asia 2019 Conference,
Brisbane, Australia, November 2019. 52

Nakada, M. and Terzopoulos, D. (2015). Deep learning of neuromuscular control for biome-
chanical human animation. In Advances in Visual Computing, Lecture Notes in Computer
Science, Vol. 9474, pages 339–348, Berlin. Springer. Proc. International Symposium on
Visual Computing, Las Vegas, NV, December 2015. 9

86

Nakada, M., Zhou, T., Chen, H., Weiss, T., and Terzopoulos, D. (2018). Deep learning
of biomimetic sensorimotor control for biomechanical human animation. ACM Transac-
tions on Graphics (TOG), 37(4):56:1–15. Proc. ACM SIGGRAPH 2018 Conference, Los
Angeles, CA, August 2018. 10, 11, 16, 24, 31, 34, 46, 67

Ng-Thow-Hing, V. (2001). Anatomically-Based Models for Physical and Geometric Recon-
struction of Humans and Other Animals. PhD thesis, University of Toronto, Computer
Science Department. 6

Patterson, T., Mitchell, N., and Sifakis, E. (2012). Simulation of complex nonlinear elastic
bodies using lattice deformers. ACM Transactions on Graphics (TOG), 31(6):197. 19, 22,
61

Peng, X., Berseth, G., Yin, K., and Van De Panne, M. (2017). Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on
Graphics, 36(4):41. 57

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions
on Graphics (TOG), 37(4):143. 58

Peng, X. B., Berseth, G., and Van de Panne, M. (2016). Terrain-adaptive locomotion skills
using deep reinforcement learning. ACM Transactions on Graphics (TOG), 35(4):81. 70

Porcher Nedel, L. and Thalmann, D. (2000). Anatomic modeling of deformable human
bodies. The Visual Computer, 16(6):306–321. 7

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, pages 627–635. 71

Saito, S., Zhou, Z.-Y., and Kavan, L. (2015). Computational bodybuilding: Anatomically-
based modeling of human bodies. ACM Transactions on Graphics (TOG), 34(4):41. 8

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay.
In International Conference on Learning Representations (ICLR). 72, 78, 80, 81

Scheepers, F., Parent, R., Carlson, W., and May, S. (1997). Anatomy-based modeling
of the human musculature. In Proceedings of the ACM SIGGRAPH Conference, pages
163–172. ACM Press/Addison-Wesley Publishing Co. 7

Scholz, J. and Schöner, G. (1999). The uncontrolled manifold concept: Identifying control
variables for a functional task. Experimental Brain Research, 126(3):289–306. 2, 56

Shao, W. and Ng-Thow-Hing, V. (2003). A general joint component framework for realistic
articulation in human characters. In Proc. Symposium on Interactive 3D Graphics, pages
11–18. ACM. 7

87

Si, W., Lee, S.-H., Sifakis, E., and Terzopoulos, D. (2014). Realistic biomechanical simula-
tion and control of human swimming. ACM Transactions on Graphics (TOG), 34(1):10:1–
15. 6, 8, 57

Sifakis, E., Neverov, I., and Fedkiw, R. (2005). Automatic determination of facial muscle
activations from sparse motion capture marker data. ACM Transactions on Graphics,
1(212):417–425. 6

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. (2016). Mastering the game of Go with deep neural net-
works and tree search. Nature, 529(7587):484–489. 72

Simhon, S. and Dudek, G. (2004). Sketch interpretation and refinement using statistical
models. In Rendering Techniques, pages 23–32. 45, 73

Subramanian, K., Isbell Jr, C. L., and Thomaz, A. L. (2016). Exploration from demon-
stration for interactive reinforcement learning. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, pages 447–456. 72

Sueda, S., Kaufman, A., and Pai, D. (2008). Musculotendon simulation for hand anima-
tion. ACM Transactions on Graphics, 27(3):83. 6, 55

Sun, Y., Qian, H., and Xu, Y. (2014). Robot learns Chinese calligraphy from demon-
strations. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 4408–4413. IEEE. 45, 72

Ting, L. H. and Macpherson, J. M. (2005). A limited set of muscle synergies for force
control during a postural task. Journal of Neurophysiology, 93(1):609–613. 58

Tresset, P. and Leymarie, F. (2013). Portrait drawing by Paul the robot. Computers &
Graphics, 37(5):348–363. 45, 72

Tsang, W., Singh, K., and Fiume, E. (2005). Helping hand: An anatomically accurate in-
verse dynamics solution for unconstrained hand motion. In Proc. 2005 ACM SIGGRAPH/
Symposium on Computer Animation, pages 319–328. 6

van Nierop, O. A., van der Helm, A., Overbeeke, K. J., and Djajadiningrat, T. J. (2007).
A natural human hand model. The Visual Computer, 24(1):31–44. 6

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016). Generating videos with scene
dynamics. In Advances In Neural Information Processing Systems, pages 613–621. 69

Wilhelms, J. and Van Gelder, A. (1997). Anatomically based modeling. In Proceedings of
the ACM SIGGRAPH Conference, pages 173–180. ACM Press/Addison-Wesley Publishing
Co. 7

88

Xie, N., Hachiya, H., and Sugiyama, M. (2012). Artist agent: a reinforcement learning
approach to automatic stroke generation in oriental ink painting. In Proceedings of the
29th International Conference on Machine Learning, pages 1059–1066. Omnipress. 71

Yin, K., Loken, K., and van de Panne, M. (2007). Simbicon: Simple biped locomotion
control. ACM Transactions on Graphics (TOG), 26(3):105. 57

Zhang, W., Scholz, J. P., Zatsiorsky, V. M., and Latash, M. L. (2008). What do synergies
do? Effects of secondary constraints on multidigit synergies in accurate force-production
tasks. Journal of Neurophysiology, 99(2):500–513. 56

Zhang, X.-Y., Yin, F., Zhang, Y.-M., Liu, C.-L., and Bengio, Y. (2017). Drawing and
recognizing Chinese characters with recurrent neural network. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 45, 73

Zhou, T., Fang, C., Wang, Z., Yang, J., Kim, B., Chen, Z., Brandt, J., and Terzopoulos,
D. (2018a). Learning to doodle with stroke demonstrations and deep Q-networks. In
British Machine Vision Conference (BMVC), pages 13:1–13, Newcastle, UK. 45

Zhou, T., Fang, C., Wang, Z., Yang, J., Kim, B., Chen, Z., Brandt, J., and Terzopoulos,
D. (2018b). Learning to sketch with deep Q-networks and demonstrated strokes. arXiv
preprint arXiv:1810.05977. 68

Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. (2010). An efficient multigrid method for
the simulation of high-resolution elastic solids. ACM Transactions on Graphics (TOG),
29(2):16. 19

Zordan, V., Celly, B., Chiu, B., and DiLorenzo, P. (2004). Breathe easy: Model and
control of simulated respiration for animation. In Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 29–37. 6, 7

89

	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 Related Work
	2.1 Biomechanical Human Models
	2.1.1 Modeling and Animating the Spine and Torso

	2.2 Neuromuscular Motor Control of Biomechanical Models

	3 Simulation Framework
	3.1 Overview
	3.2 Musculoskeletal Simulation
	3.2.1 Skeletal System
	3.2.2 Muscle System
	3.2.3 Torso Musculoskeletal Complex

	3.3 Flesh Simulation
	3.3.1 Flesh Constitutive Model
	3.3.2 Incompressibility
	3.3.3 Skeletal Attachments
	3.3.4 Discretization Given Musculature and Skeletal Structure

	3.4 Summary

	4 Neuromuscular Motor Control Framework
	4.1 Neuromuscular Motor Controllers
	4.2 Torso Voluntary Motor DNN
	4.2.1 DNN Architecture
	4.2.2 Offline Training Data Synthesis and Network Training

	4.3 Torso Reflex Motor DNN
	4.3.1 DNN Architecture
	4.3.2 Offline Training Data Synthesis and Network Training

	4.4 Motor DNNs for the Extremities
	4.4.1 Offline Training Data Synthesis and Network Training for the Legs

	4.5 Coupling the Torso and Extremities
	4.6 Summary

	5 Experiments and Results
	5.1 Sit-to-Stand
	5.2 Calisthenic Exercises
	5.3 Stepping
	5.4 Golf Putting

	6 Applications to Sensorimotor Control
	6.1 Autonomous Sketching
	6.1.1 Background
	6.1.2 Eye and Retina Model
	6.1.3 Sketch Visual Perception System
	6.1.4 Sketching Demonstration

	6.2 Autonomous Soccer Goaltending

	7 Conclusion
	7.1 Limitations and Future Work
	7.1.1 Biomechanical, Muscle-Actuated Hands and Feet
	7.1.2 Task-Specific Variance Structure
	7.1.3 Active Balance and Locomotion
	7.1.4 Reinforcement Learning

	A Synthesizing Training Data
	B Rendering
	C ONV2seq: Biomimetic Perception Learning for Sketch Generation
	D Learning to Doodle with Deep Q-Networks and Demonstrated Strokes
	D.1 Introduction
	D.2 Related Work
	D.2.1 Imitation Learning and Deep Reinforcement Learning
	D.2.2 Sketch and Art Generation

	D.3 Methodology
	D.3.1 Our Model
	D.3.2 Pre-Training Networks Using Demonstration Strokes
	D.3.3 Doodle-SDQ

	D.4 Experiments
	D.5 Discussion
	D.6 Conclusion

	References

