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Abstract of the Dissertation
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by
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Doctor of Philosophy in Computer Science
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Professor Demetri Terzopoulos, Chair

Current medical ultrasound datasets used in training simulators lack adequate coverage due

to imaging hardware limitations. We present software solutions both for generating and for

interacting with large-scale ultrasound datasets. The generation process combines a physical

simulation with a ray-tracing rendering technique to create synthetic ultrasound volumes for

use as ground-truth test data. These datasets allow us both to train users and to evaluate

an automatic registration solution used to align multiple real ultrasound volumes. We merge

the aligned results with a multiresolution functional-based convex optimization technique to

achieve seamless blends between adjacent volumes. A content-aware embedding algorithm

places the merged data into a clean background template. We enable end-users to interact

with the final results through a real-time mannequin-based translational tracking system.
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CHAPTER 1

Introduction

1.1 Motivation

Over the past few years, ultrasound technology has become an increasingly popular tool

in medical diagnosis. While commonly associated with imaging fetus development during

pregnancy, this technology can be applied to any anatomical structure, including organs,

bones, and even the eyes. As adoption of ultrasound diagnosis expands, training becomes

an increasingly critical component. Familiarity with the appearance of different anatomical

features and pathologies requires extensive experience, which has traditionally required hours

of clinical exposure. Several companies, however, have sought to facilitate the training

process through virtual simulators. Such solutions consist of presenting the user with a

variety of datasets, either synthetic (computer generated), or acquired (real patient data).

While synthetic datasets are not subject to the limitations of the image acquisition methods,

they often lack the realism necessary for proper training. Acquired datasets offer true-to-life

imagery, but can be limited in scope by the hardware involved.

The SonoSim R©Ultrasound Training Solution (Figure 1.1) provides a prime example of

using real patient data in a training simulator (Savitsky, 2013). 3D ultrasound datasets are

acquired by expert sonographers and embedded within a virtual patient. To view this data,

the user controls a hand-held mock probe containing an embedded inertial measurement unit

(IMU). As the user rotates the probe, the simulator tracks the movement and displays the

appropriate 2D slice through the 3D dataset. Acquiring, assembling, and interacting with

large-scale datasets of this nature poses a number of challenges for the SonoSim product.

Our research focuses on solving these issues.
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Figure 1.1: The SonoSim R©Ultrasound Training Solution.

1.2 Problem Statement

One of the main drawbacks of acquired datasets is their limitation in physical size and

angular coverage. In a clinical setting, where a physician or sonographer typically views

a 2D slice of the body, the user has complete freedom over the placement of the probe,

sliding it along the patient’s body, or rotating it to obtain a better view. Some of this

freedom can be captured in a dataset by preserving a full 3D volume of data, generated

from a 3D probe, or reconstructed from a series of slices. The 3D data acquisition process,

however, requires that the probe position and orientation remain static in order to produce

an accurate dataset. Furthermore, the probe hardware is limited in the angular coverage

it can acquire. Consequently, a single 3D volume cannot support translational movement

of the simulated probe, and it limits the range of meaningful rotation (Figure 1.2). The

necessary solution then is to acquire multiple datasets and merge them into a single dataset

with greater coverage (Figure 1.3). However, several key problems arise:
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(a) Original scan orientation (b) Simulated scan to the left (c) Simulated scan to the right

(d) Scanning outside the rota-
tional extent of the data

(e) Scanning outside the transla-
tional extent of the data

Figure 1.2: 2D illustration of the data coverage problem. The black region represents the
acquired dataset. The green lines represent valid scan configurations during simulation. The
red lines represent invalid scan configurations during simulation. In 3D, the black region
would be a volume, and the colored lines would be 2D image slices.

Figure 1.3: Illustration of combining multiple ultrasound datasets to achieve greater cover-
age.
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1. The datasets are noisy, and therefore difficult to align.

2. When the probe movement involves translation, the data is distorted by non-uniform

physical deformations as the probe pushes against the patient’s skin, again hindering

alignment.

3. Ultrasound artifacts such as shadows are position-dependent, and therefore differ be-

tween datasets, presenting both alignment challenges as well as visual inconsistencies.

The problem then is to develop an automatic or semi-automatic solution to align and

stitch together adjacent datasets in light of these challenges. Furthermore, since the increased

coverage of the resulting datasets affords greater scanning freedom within the simulator, we

need to develop an improved interaction solution that supports translation.

1.3 Our Solution

To tackle this problem, we propose a semi-automatic alignment process using synthetic

datasets with perfect ground truth for evaluation. The availability of synthetic datasets

is critical, as it eliminates the need for manually aligned data, which is both unreliable

and difficult to obtain. Synthetic datasets provide perfect alignment knowledge even in

scenarios where the amount of noise or other image artifacts are too great to allow meaningful

interpretation. Thus, we begin our solution by simulating the ultrasound acquisition and

imaging process. Next, we consider the alignment problem. Using a combination of magnetic

tracking, automatic alignment, and manual alignment, we are able to place adjacent volumes

in their proper configuration. We train our medical team and evaluate alignment results

with a scoring metric based on our ground truth synthetic data. Once volumes have been

aligned, they are blended together with our novel region-based stitching algorithm. This

fully automatic solution eliminates seams, and provides smooth transitions between volumes.

Finally, we apply our volume embedding algorithm, which places the merged anatomical data

into a background noise template to restore the signature ultrasound form factor. To enable

translational interaction with the resulting large-scale datasets, we present an optical surface

4



tracking solution that enables users to move a probe and needle across a contoured shell, as

if interacting with a real patient.

1.4 Contributions

Some of the novel contributions of our work are listed below:

1. Ultrasound Data Synthesis: We present a novel synthetic ultrasound data pipeline,

including a novel ray-tracing solution to generate authentic-looking ultrasound datasets

containing signature artifacts such as noise, shadows, and echoes.

2. Registration and Evaluation: We present a novel data-driven magnetic tracking

calibration solution, a suite of semi-automatic alignment tools, and a training and

evaluation scheme based on our synthetic data.

3. Volume Stitching: We present a novel n-dimensional image blending algorithm based

on region identification, and introduce a distance map variant as well as a functional

minimization variant.

4. Volume Embedding: We present a novel solution to an unexplored problem, in

the form of our ultrasound volume embedding algorithm. This includes generating

synthetic ultrasound noise, and applying a content-aware overlay process.

5. Translational Tracking and Patient Simulation: We present a novel human-

computer interaction technique by introducing an optical surface tracking system, and

apply this to patient simulation for ultrasound training. We also foresee a number of

potential applications beyond this use case.

1.5 Overview of the Dissertation

We now present a chapter-by-chapter overview of the dissertation, describing each component

of our solution in more detail.
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Chapter 2: Related Work We review relevant prior work on ultrasound data synthesis

and image alignment, volume stitching and embedding, as well as data interaction and

patient simulation.

Chapter 3: Ultrasound Data Synthesis Generating our synthetic ultrasound datasets

involves three key components. First, we generate procedural probe and tissue models.

Our parameterized probe model supports a wide variety of probe types. Our tissue model

provides a dense geometry representation based on randomized sphere packing. Next, a full

physical simulation is run to mimic the interaction of the ultrasound probe, ultrasound gel,

and tissue. This involves coupling rigid body dynamics (probe), fluid simulation (gel), and

soft body dynamics (tissue) in a cohesive framework based on the Material Point Method.

The final step is to generate image data from our simulation output using a physics-based

rendering approach. This involves a ray-tracing solution to mimic ultrasound waves traveling

through tissue, producing effects such as shadows and echoes, which play a critical role in

the alignment problem.

Chapter 4: Registration and Evaluation We present three solutions to the volume reg-

istration problem. The first is a magnetic tracking approach that requires a 3D printed probe

attachment to avoid interference, and a calibration procedure to determine the sensor/data

relationship. Next, we present an automatic alignment algorithm based on an iterative re-

finement technique within a six dimensional search space. Finally, we describe our manual

alignment system, which provides a variety of volume manipulation tools. We also present

an evaluation metric based on our synthetic ultrasound datasets and their ground truth

alignments.

Chapter 5: Volume Stitching Given an alignment, we merge the individual volumes

into a single volume using a fully automatic blending algorithm. This algorithm takes into

account the overlapping volumetric regions of the input datasets to produce a smooth tran-

sition optimizing the blend distance, resulting in a seamlessly stitched output volume. We
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present two variations on this method: one based on distance maps, the other based on

a multiresolution functional minimization. To make the latter approach computationally

competitive, we apply a multilevel optimization scheme whereby we apply our functional

minimization solution at increasingly higher resolutions.

Chapter 6: Volume Embedding To clean up the irregular boundaries of our stitched

volumes, we employ an embedding algorithm to place the data into a background noise

template. To produce a background template with adequate resolution, we augment real

noise data with synthetic noise based on our ultrasound image formation process. To embed

our anatomical data within the noise, we diffuse the low-frequency surface values of the

anatomical dataset, and apply these results to the high-frequency information of our noise

dataset. The two volumes are then blended into a single dataset, producing natural looking

results conforming to the signature form factor associated with ultrasound imagery.

Chapter 7: Translational Data Interaction and Patient Simulation We present

a new interaction technique to support the greater coverage afforded by our results. Since

our data now allow translational interaction, not just rotational, we developed an optical

surface tracking technique that allows users to interact freely with a 3D printed mannequin

or body part. The system takes advantage of the light diffusion properties of translucent

plastic to identify and track infrared LEDs when they come in contact with the surface. The

user can place a mock probe and needle anywhere on this surface to view the corresponding

ultrasound data and perform needle insertion procedures.

Chapter 8: Conclusion We conclude the dissertation by summarizing our work, dis-

cussing its limitations, and suggesting promising avenues for future work, including possible

extensions and different applications.
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CHAPTER 2

Related Work

Our work covers a wide range of topics, from rendering, to image stitching, to human-

computer interaction. Many of these areas have been studied extensively, and therefore

provide a point of comparison for our own work. We review this related work below, organized

by the relevant chapters of this dissertation.

2.1 Ultrasound Data Synthesis

Existing work in producing synthetic ultrasound data generally fall into two main categories:

acoustic wave simulations based on Field and Field II (Jensen, 1996), and systems designed

for real-time interaction, such as those by Kutter et al. (2009) and Zhu et al. (2006).

Jensen (1996) laid the groundwork for a program now known as Field II, a Matlab-

compatible acoustic wave simulator for high-quality ultrasound simulation. While the wave-

based nature of this system allows for simulating accurate acoustic physics, it results in an

inherently slow solution, requiring processing times of over an hour to render a single 2D

image. As such, the system is best suited for experimenting with transducer array designs

as opposed to generating synthetic data.

Both Kutter et al. (2009) and Zhu et al. (2006) combine volumetric computerized tomog-

raphy (CT) data with a ray tracing technique to generate real-time simulated ultrasound

slices. The work of Kutter et al. (2009) differs from ours in several key ways:

1. Their system operates on volumetric CT data, while ours operates on geometric data.

2. Their system does not take into account some of the more complex echo behavior as
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presented in our solution; they only consider echoes along the initial transducer ray

path, leaving out some of the key visual artifacts of ultrasound imagery.

3. Theirs is a 2D system, while ours is designed for 3D datasets (though we can also

trivially generate 2D images).

4. Theirs is a real-time system, while ours is off-line. This is in part because they are

only generating 2D datasets. In Chapter 7 we will also develop a real-time system for

rendering 2D ultrasound imagery.

The work presented by Zhu et al. (2006) similarly uses segmented CT data to generate

ultrasound-like 2D images in real time through ray tracing. The work of Zhu et al. (2006)

differs from that of Kutter et al. (2009) in that they also generate volumetric textures using

a Laplacian image pyramid technique, and blend this with their ray-traced CT data.

The rendering portion of our work falls somewhere between these two extremes. We aim

to produce higher-fidelity results than the real-time solutions, without the extreme compu-

tational cost of a full wave-based simulation. We also focus on generating 3D datasets, while

previous work typically focuses on 2D slices. One major difference between our approach

and existing solutions is that before we begin our image rendering pass, we simulate the

physical interactions that affect gel placement and tissue deformation. These interactions

play a critical role in generating some of the artifacts that prove most challenging in the

ultrasound data alignment problem.

2.2 Ultrasound Image Alignment

An ultrasound alignment solution is presented by Detmer et al. (1994), which also uses a

magnetic tracker for determining the placement and orientation of ultrasound imagery. Their

calibration solution involves acquiring around 40 2D images of a single point, as defined by

the intersection of several strings. Pagoulatos et al. (2001) improve upon this technique by

constructing a more complex calibration rig consisting of N-fiducials, a latticework of strings

connecting known points. Their system requires only one scan once the transformation
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between the magnetic base station and the calibration rig is known.

Our approach differs in several respects. First, we are using 3D ultrasound datasets, as

opposed to 2D images used by the work above. Second, our calibration technique requires

fewer scans than that of Detmer et al. (1994) and a simpler setup than that of Pagoulatos

et al. (2001).

2.3 Volume Stitching

Image data stitching problems have been investigated for use in 2D imaging tasks such as

the creation of mosaics and panoramas. One of the simplest and most common solutions

is to weight each contribution by the distance of the current pixel to the edge of the image

rectangle (Szeliski, 1996). Since such a solution can result in ghosting due to misalignment

in the registration process, a multiband approach (Burt and Adelson, 1983) can extend this

idea by blending low frequencies across a larger spatial region and higher frequencies across

a smaller spatial region. A different approach to the seam-elimination problem is presented

by Peleg (1981), which uses an iterative refinement method to find a smooth function that

can be subtracted from each source image to eliminate gray-level offsets between images.

Our solution differs in that we identify different types of regions involved in the image

blending process and the boundaries separating them, which allows us to create a more

meaningful blend within regions of overlap. Furthermore, it is important to note that most

photographic image blending problems deal with simple rectangles, while our solution sup-

ports arbitrary shapes, and even holes. This ability to support arbitrary shapes is necessary

to account for the different shapes produced by different image acquisition devices and tech-

niques. Finally, our focus is on 3D volumes, rather than 2D images, though the concepts

apply to any dimension.
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2.4 Volume Embedding

Our need to embed ultrasound data within a background template is rather unique, and

therefore not a specific topic of past research, to our knowledge. However, techniques for

similar problems are prevalent for general image processing. Poisson image editing (Pérez

et al., 2003) provides a method for seamlessly compositing a portion of one image, A, into

another, B. This solution computes a new image that attempts to preserve the gradient

of A relative to the edge values of B, resulting in composites that often look very natural.

The resulting overlap region, however, contains data that does not preserve the input values

of either image. For this reason, we cannot apply such a technique, as we must preserve

our anatomical data as much as possible. Indeed we see that our problem is somewhat the

inverse of that in (Pérez et al., 2003), in that we wish to modify the non-overlap region of

the image instead.

Inpainting (Criminisi et al., 2004) provides another option to our problem. This refers

to the process of filling missing regions of data with synthetic information derived from

surrounding data or another input source. While this sounds like a good fit for our problem,

such content-aware solutions can be unpredictable, and we do not want to risk introducing

any artifacts that may take on the appearance of anatomy. Furthermore, we would like to

maintain strict visual behavior in our filled regions, such as the proper stretching of noise

artifacts relative to the volume origin. Inpainting cannot fulfill this requirement. Instead we

generate a background volume that does.

2.5 Data Interaction and Patient Simulation

Much work exists in the space of surface tracking for human computer interaction (Jacob,

1996). Technologies such as ball mice (English et al., 1967), optical mice (Lyon, 1981),

resistive touch screens (Downs, 2005), capacitive touch screens (Kim et al., 2011), and surface

acoustic wave touch screens (Adler and Desmares, 1987) all provide accurate and robust

solutions to 2D translational tracking. Of particular interest is the type of tracking provided
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by the light pen (Stotz, 1963). This is in some ways the most similar to our solution, in that

it uses light to solve the tracking problem, albeit in the inverse direction. It is important to

note that all systems mentioned thus far conform to a 2D plane, while we aim to develop a

tracking solution for a 3D surface.

Some existing ultrasound simulators leverage full 3D tracking to solve this problem,

similar to the probe tracking systems described in Chapter 4. Zhu et al. (2006) use calibrated

magnetic trackers to perform needle insertion procedures on a mannequin. Such systems,

however, are both expensive and obtrusive.

Several solutions to the translational problem have been investigated at SonoSim, Inc.

Modifications to the standard translational input devices mentioned earlier were considered,

extended in such a way as to allow for the coupling of the probe. The current solution is

based on a proprietary pressure sensor. The 7cm x 7cm semi-flexible sensor has a resolution

of 14 × 14 pressure-sensitive cells. The output of the sensor can be treated like an image,

and a variety of algorithms have been applied to interpreting the pressure heat-maps. While

this solution solves the translation problem, there are several limitations to this approach:

1. Size. The active area cannot be extended without production of a new sensor.

2. Contours. The pad is mostly limited to curvature in one dimension, and even this

curvature is limited to a fairly large curvature radius. Therefore the pad cannot easily

conform to arbitrary 3D contours.

3. Disambiguation. The pad cannot easily distinguish between pressure sources, be that

the probe, the needle, or the user’s hands. The identity of a source must be determined

based on the shape signature, or by enforcing a temporal ordering of object placement

and limiting what can come in contact with the surface. Shape signatures are unreliable

and computationally expensive. Temporal ordering introduces a high burden on the

user, and it requires continuous tracking, which can be unreliable.

4. Proximity. The limited resolution, combined with pressure diffusion caused by protec-

tive layers, makes it difficult to separate sources when their proximity is small.
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5. Residual. The pressure pad exhibits a ghosting behavior wherein the sensor will con-

tinue to detect a residual signal for a short period after the stimulus has been removed.

6. Force. The pad requires a minimum pressure to robustly separate a stimulus signal

from background noise. This is problematic for our needle, which has a retractable tip

that is purposefully designed to require small force to mimic the behavior of a true

needle insertion.

7. Fragility. Attempting to apply even a slight contour to one of our pressure pads caused

irreparable damage.

8. Development. The pads and their development cycle are costly and cannot be proto-

typed with standard off-the-shelf components.

Our solution solves all of these problems by using optical tracking instead of a pressure pad.
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CHAPTER 3

Ultrasound Data Synthesis

Synthetic data allows us to work within a controlled environment such that we can better

understand the factors involved in aligning multiple ultrasound volumes. Most importantly,

synthetic data provides us ground truth. That is, we know the exact relationship between the

probe positions associated with each volume and, therefore, know the relationship between

the volumes themselves, regardless of what we can identify within the data itself.

Generating useful synthetic ultrasound data requires us to simulate both the physical

interactions involved, as well as the image formation process. We aim to develop a solution

that captures the following key characteristics of ultrasound data that pose the greatest

challenges during alignment:

1. Deformation. The interaction of the probe and tissue results in deformation of the

anatomy. These deformations are dynamic and inconsistent between volumes.

2. Shadows. Since shadows originate from the probe head, their appearance and place-

ment changes as the probe is moved.

3. Echoes. Like shadows, echoes evolve as the probe moves and result in inconsistencies

between volumes.

4. Noise. A major challenge in interpreting ultrasound imagery is separating signal from

noise.

To capture all of these features in our synthetic data, we begin with a physical simulation

involving rigid bodies, soft bodies, and viscous fluids. We then feed the results into a ray

tracing algorithm to generate the final volumes.
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3.1 Models

Before we can begin the simulation itself, we need to generate geometric representations of

the elements involved: probe, tissue, and gel. The first two elements must be procedural, in

order to create a diverse set of synthetic data.

3.1.1 Probe Model

The probe geometry plays a critical role in the ultrasound image formation process. Unlike

photography, where the form factor of the camera plays little to no role in the acquisition

process, the exterior form of an ultrasound probe affects the imagery directly. This arises

from the fact that the probe must be placed in physical contact with the structure we wish to

image. As a result, the probe deforms the structure. Depending on the tissue being imaged,

this deformation can cause notable artifacts within the first several centimeters below the

skin. Because of this coupling, the geometry of the probe cannot be ignored.

The shape of the ultrasound probe head is a great example of function dictating form.

In a standard 3D probe, the transducers are arranged in an arc (typically a segment of a

circle) in order to capture a wide field of view. These transducers must be placed close

against their enclosure in order to ensure proper transmission of the ultrasound waves, and

the enclosure must be thin enough so as to not impede this transmission. Consequently, the

exterior surface reflects the arc form of the transducer arrangement.

Furthermore, a 3D probe must mechanically sweep its linear array of transducers during

volumetric scans, which dictates the form of the probe in the sweep direction. This rotational

movement defines a circular path that the transducer array must follow. Thus, our probe

head is defined by the circle segment dictating the transducer arrangement, and another

circle segment dictating the sweep movement. Note that these two circle segments can be

defined with different radii and different origins. As a result, the shape cannot be represented

by a simple sphere or ellipsoid.

To accommodate this form, we developed a parametric description of the probe geometry
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that accurately reflects the internal workings. These same parameters will be applied during

the rendering phase to ensure the correct correspondence between the physical model and the

image formation process. In describing these parameters we will use the following definitions:

Definition 3.1.1. Fan. Relating to the plane defined by the transducer array. Typically

this will refer to the imaging plane used during a 2D scan.

Definition 3.1.2. Sweep. Relating to the plane defined by the rotational axis of the trans-

ducer array. This is orthogonal to the fan plane. This comes into play during a 3D scan.

With our terms defined, we can list the three scalar parameters we expose to define the

probe head:

1. θf Fan angle

2. rf Fan radius

3. rs Sweep radius

Figure 3.1 shows the geometric meaning of these parameters. Figure 3.2 shows two probe

models generated from these parameters.

3.1.2 Tissue Model

For our tissue model, we needed the ability to densely fill a volume with large and small scale

features, in order to represent the variety seen in anatomical structures. This data would

also need to be generated procedurally in order to produce multiple datasets quickly, ruling

out hand-modeled geometry. For simplicity, we decided to use spheres.

Another requirement of our tissue geometry was that it deform well. Thus, we chose to

avoid standard spherical coordinates in favor of icospheres (subdivided icosahedra) due to

their uniform nature; the uniform tessellation of an icosphere allows it to deform consistently

regardless of the type and direction of deformation. Figure 3.3 demonstrates the process of

generating an icosphere from an icosahedron.
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Figure 3.1: Diagram showing the geometric meaning of our probe head parameters.

Figure 3.2: A rendering of two probes generated procedurally. Coloration and cables are
added for illustration purposes.
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(a) Icosahedron (b) Subdivided (c) Projected to sphere

Figure 3.3: Subdividing an icosahedron to create an icosphere. This process can be repeated
indefinitely to generate higher resolution spheres.

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

Figure 3.4: Icospheres of different subdivision levels.

Since our goal was to fill the space densely, we employed a simple level-of-detail system

to allow for higher resolution icospheres for larger features, and lower resolution icospheres

for smaller features (Figure 3.4). This greatly reduced both the memory footprint and the

computational footprint of our rendering pass.

To fill our volume with icospheres, we applied a variant of sphere packing. Typically this

refers to the process of arranging spheres of identical size as compactly as possible within

a given space without any overlap. Our needs differed in two ways, namely that we would

be packing spheres of different sizes, and that we only needed to ensure the non-overlap

criteria. Our approach uses a randomized algorithm, similar to that of Manna (1992), which

randomly selects a point in empty space and inserts a sphere, with a radius defined by the

distance to the closest neighboring sphere. Our approach involves generating spheres of

random size and placement, checking for overlap with existing spheres, and discarding those

that conflict. We ran this process until the desired number of spheres were added to the
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Figure 3.5: A cross section of a volume densely filled with icospheres. Different intensities
represent different echogenic properties.

space. To speed up the overlap check, we added each sphere to a three dimensional hash table

representing our volume, with each cell containing a list of spheres occupying some portion

of that space (Gissler et al., 2011). In this way we could quickly check the local region of

a new candidate for conflicts, as opposed to iterating across all other spheres. Each sphere

was randomly assigned a set of parameters defining its material characteristics. Figure 3.5

shows an example of such a packing.

3.2 Motion Tracking

In addition to defining our models, one other component must be provided as an input to the

physical simulation: probe motion. To acquire this motion, we used a six-degree-of-freedom

magnetic tracker (see Chapter 4 for more on this). We simply held the tracker and made a

typical probe movement, from approaching the anatomical region, to arranging the gel, to

moving to an adjacent part of the body. This movement was then transferred to our probe
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model for simulation.

3.3 Physical Simulation

The physical simulation provides two key contributions to our final synthetic data. The first

contribution is the introduction of accurate probe deformation into our tissue geometry. The

second, and more challenging contribution, is the integration of the ultrasound gel. Since

gel plays a key role in the image formation process, it must be simulated accurately.

3.3.1 Smoothed Particle Hydrodynamics

We first explored the possibility of simulating the gel with Smoothed Particle Hydrodynamics

(SPH). This model offers many benefits over grid-based Eulerian solutions in that it trivially

supports conservation of mass, is relatively straight-forward to implement, and provides a

natural extension for coupling with rigid and soft bodies.

The main idea behind SPH lies in its use of interpolation to provide a continuous field

from a discrete set of particles. The influence of a given particle extends to its neighbors

within a fixed smoothing radius, which parameterizes a symmetric smoothing kernel. This

provides a reasonable approximation since the influence of nearby particles should approach

zero quickly. In our implementation, we used smoothing kernels based on (Müller et al.,

2003) and pressure computations based on (Batchelor, 2000), with some of our constants

chosen from (Monaghan, 2005). This implementation produced promising results, as shown

in Figure 3.6.

We further augmented our SPH solution in order to accommodate the probe and tissue,

which would require complex boundary conditions and coupling. We based our boundary

conditions on the work of Akinci et al. (2012) and were able to achieve good results, as shown

in Figure 3.7.

We were able to apply this solution to our scanning scenario (Figure 3.8), but the high

viscosity of gel proved difficult to model well with SPH, which required incredibly small
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Figure 3.6: Three frames from a test run of our SPH implementation.

Figure 3.7: Three frames from a test run of our particle boundary implementation.

time-steps, and thus became impractical to simulate for our purposes.

3.3.2 Material Point Method

Given the challenges we faced with SPH, and because physical simulation is not the focus

of our work, we chose instead to use an existing solution. We collaborated with the UCLA

Mathematics Department to leverage the strength of their Material Point Method (MPM)

techniques. Their robust code-base is geared towards simulating non-Newtonian fluids such

as our ultrasound gel, making it an ideal solution for our work.

To simulate the ultrasound gel, they applied a viscoplastic constitutive model as described

by Ram et al. (2015). To model the tissue as an elastic object and couple it with the gel, they

applied the work of Jiang et al. (2015). Finally, to optimize the simulation, they applied the
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Figure 3.8: Test interaction between highly viscous gel and an ultrasound probe.

Figure 3.9: Rendering of the interaction between highly viscous gel and an ultrasound probe.
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(a) Before deformation

(b) After deformation

Figure 3.10: Example of applying our simulation output to a checkerboard grid. This shows
a slice through our tissue block, with deformation caused by the ultrasound probe and gel.

techniques of Gast et al. (2015). Using their system, we were able to obtain the results we

were seeking without much modification of the existing code. Figure 3.9 shows an example

of these results.

3.3.3 Applying Physical Simulation

We simulated the tissue with a uniform block of particles spaced evenly in a grid. In this way

we could easily interpret this data as a collection of tetrahedra, within which we could embed

our icosphere geometry. By determining which tetrahedron contains a given geometry vertex,

we can extract its barycentric coordinates and use this to track its position after deformation;

we simply apply the extracted coordinates to the deformed tetrahedron to arrive at the new

vertex position. Through this process we can reapply the same deformation to any number

of geometric models.
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3.4 Rendering

Generating synthetic ultrasound imagery from our physical simulation is one of the key steps

of our solution. To produce results that properly mimic real ultrasound data, our system

had to model some of the core concepts of the ultrasound image formation process.

3.4.1 Probe Design

An ultrasound probe uses acoustic waves to measure the distance of hidden anatomical

structures (Donald et al., 1958). The probe relies on piezoelectric transducers to both emit

ultrasound waves and detect their response after they bounce off underlying anatomy and

return to the probe. The waves are reflected in varying degrees when passing through areas

of density variation; for example, between muscle tissue and veins. Both the time delay and

the intensity of the echo can be used to locate the structure and generate a pixel value in

the appropriate area of the resulting image. In a 2D probe, a single linear array is installed

at the probe tip to generate a fan of data. A 3D probe does the same with a 2D array of

transducers, or by mechanically rotating a linear array to capture a series of 2D slices, which

are then assembled into a 3D volume.

3.4.2 Wave Physics

Ultrasound waves in the range of 2–20 MHz are typically used for medical imaging. Higher

frequencies produce smaller wavelengths, which can resolve greater detail. However, these

frequencies cannot penetrate as deeply and can only be used for smaller structures closer

to the surface. Since acoustic waves cannot travel through a vacuum, regions of lower den-

sity (particular gaseous regions) impede the transmission of the waves, producing shadowed

regions in the resulting image.

Echo intensity depends on the angle at which a wave strikes an acoustic interface. The

closer the angle is to the normal of the surface, the greater the intensity.

One of the core concepts of ultrasonography is that of echogenicity. This refers to the
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Figure 3.11: An example of the extreme realism possible with ray tracing.

extent to which a material returns an echo. A material with a higher echogenicity (“hyper-

echogenic”) generally appears brighter, while a material with a lower echogenicity (“hypoe-

chogenic”) appears darker (Prince and Links, 2006).

3.4.3 Ray Tracing

Typically associated with rendering physically-based photo-realistic visual images (Figure 3.11),

ray tracing (Glassner, 1989) presents an appealing option for creating synthetic ultrasound

images. This technique provides a natural mechanism for producing features such as shad-

ows and bounces (echoes). While such an approach does not traditionally accommodate

wave-specific effects such as constructive and destructive interference, these are less crucial

to the overall appearance of ultrasound images.

In many ray tracing systems, rays are traced backwards (Arvo and Chelmsford, 1986),

starting from the image plane, passing through the lens (or pinhole), and out into the scene.

Techniques such as photon mapping (Jensen, 2001) also trace rays in the forward direction,

starting at the light source(s) instead of the camera. Our solution does not need to make this

source/destination distinction, since the equivalent of a light source in ultrasonography is the
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transducer, which is also the equivalent of the camera. Thus, our approach involves emitting

rays from each transducer into the surrounding geometry. For 3D volume renderings, we

also trace rays from each transducer position along the sweep trajectory. Each time a ray

scatters or intersects an object, the location and travel distance is logged. After each hit, the

ray is reflected based on the angle of incidence. This continues until the total travel distance

exceeds the depth setting of our volume.

In addition to the duality of the transducer as both emitter and receiver, our ultrasound

ray tracing differs from traditional ray tracing in the type of data captured. In a traditional

ray tracer, the recording device (film) captures intensity and wavelength. In our ultrasound

ray tracer, the recording device (transducer) captures intensity, response time, and bounce

location.

3.4.4 Volumetric Scattering

Another key difference between our ray tracer and a traditional ray tracer is the reliance

on volumetric scattering. While most modern ray tracing software incorporate volumetric

scattering (or subsurface scattering (Hanrahan and Krueger, 1993)) as a feature, it is at the

forefront of ultrasound image formation. We take a probabilistic approach to this problem,

and derive a distribution function to determine if and where a ray scatters as it passes

through a fixed length of volume between geometry intersections. The probability P (x) that

a ray scatters while traveling distance x through some material with scattering coefficient

0 < p < 1 is given by

P (x) = 1− (1− p)x. (3.1)

Here, p represents the probability of the material scattering a ray over some dx, and is one

of the properties assigned to a piece of geometry during the procedural generation phase.

(1−p)x provides the probability that the ray does not scatter within x. Note that a material

that has no scattering properties (e.g., a vacuum) will have p = 0, and a material that

immediately scatters a ray (e.g., a solid surface) will have p = 1.

Using this probability distribution, we first determine whether our ray scatters between
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(a) Without skin model (b) With skin model, some scat-
tering

(c) With skin model, more scat-
tering

Figure 3.12: Examples of scattering within a photo-real setting. Note how scattering causes
deeper features to be obscured.

its last geometry intersection and the next (this distance is x). To do this, we simply compute

P (x) and then choose a random variable 0 ≤ r ≤ 1. If r ≤ P (x) then we have a scatter

bounce.

The next task is to determine, probabilistically, where in (0, x) the bounce occurred.

First, we choose a random variable r within the range

0 ≤ r ≤ (1− p)x − 1

log(1− p)
. (3.2)

We then compute the scatter distance

d =
log[r log(1− p) + 1]

log(1− p)
. (3.3)

Finally, we use d to update our ray origin and choose a new direction from a uniform
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distribution around our original direction vector. We tested this scattering technique within

a photo-real setting to see if the results appeared reasonable. Figure 3.12 shows some of

these results.

We can see in Algorithm 1 how we incorporate this volumetric scattering model into our

ray-tracing algorithm. The algorithm maintains a stack of material attributes to determine

what medium (and therefore what scattering properties) must be considered.

3.4.5 Image Formation

Once we have traced rays for each transducer, taking into account geometry bounces as

well as scatter bounces, we can begin the image formation process. This process differs

significantly from standard photo-real image formation in two key ways. First, our data do

not lie on the imaging sensor as they do in traditional rendering, where we can think of the

image as existing on the virtual image plane. Instead, our data exist in the 2D/3D space

in front of the transducers. Second, our data are not neatly packed into pixels or voxels

as in traditional rendering. Instead, we must interpolate our data from discrete points and

rasterize this into a standard image or volume grid representation.

Our image formation stage also involves post-processing our data. As mentioned above,

we store positional information for each bounce during our ray tracing pass. To turn these

data into final intensity values, we must take into account the relationship between the

bounce location and the transducer. As was mentioned in Section 3.4.2, a wave’s influence

on a receiving transducer is determined by its propagation direction. A wave arriving head-on

produces the strongest signal, while a perpendicular direction produces the weakest signal.

The exact behavior of the angular fall-off depends on the arrangement, design, and pro-

cessing of the transducer signals, but it can generally be modeled as a sinusoid. For a

transducer with position p and direction v, and a ray bounce at position b, we compute its

attenuation as

α =

(
n · (b− p)

||n|| ||b− p||

)c

, (3.4)

where c is a clarity parameter that allows us to control how clear or fuzzy the image is due
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initialize octree;
material attribute stack = [];
foreach sweep position do

foreach transducer do
for number of samples do

generate a ray for the current transducer and sweep position;
path length = 0;
push back environment material attributes;
while path length < max depth do

if ray intersects geometry then
read top material attributes from attribute stack;
if scatter bounce then

compute scatter bounce position and direction;
path length += ||bounce position - ray origin||;
record bounce info and path length;
update ray origin and direction;

else
if surface bounce then

compute bounce direction;
path length += ||bounce position - ray origin||;
record bounce info and path length;
update ray origin and direction;

else
if exiting a structure then

pop material attribute;
else

push material attribute of intersected geometry;
end
path length += ||intersection position - ray origin||;
update ray origin;

end

end

else
exit loop;

end

end

end

end

end
Algorithm 1: Our ultrasound ray-tracing algorithm.
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(a) c = 1 (b) c = 10 (c) c = 100

(d) c = 1 (e) c = 10 (f) c = 100

Figure 3.13: Demonstration of the effect of changing the clarity parameter c. The top row
shows the effects on the resulting rendering. The bottom row shows a 2D illustration of the
attenuation function, where the vertical axis represents the transducer direction. Note how
a low clarity value results in a hazier image.

to off-directional contributions. The greater the value of c, the clearer the image. We can

see a visual representation of this parameter in Figure 3.13.

Next, we must determine where to place our intensity values in the 2D or 3D image.

Since ultrasound images determine placement based on time delays, we ignore the accurate

positional information we used to determine receiver attenuation, and instead simply place

our intensity value at the proper distance along the transducer direction based on the time

delay stored with the position information. This intentional inaccuracy contributes to the

telltale artifacts of ultrasound imagery.

Finally, we rasterize our intensity values to a 2D image or 3D volume by interpolating

neighboring values based on their depth and angular position. We apply trilinear interpo-

lation (Levoy, 1988) to produce smooth results. Our results capture the signature look of

ultrasound imagery, as show in Figure 3.14.
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Figure 3.14: A sample rendering from our synthetic data pipeline. Note the signature
ultrasound artifacts such as deformation, noise, shadows, and echoes.

3.4.6 Acceleration Structure

Because of the high polygon count of our dense tissue representation, we use an octree

acceleration structure to make the geometry intersections more efficient. In a brute force

approach, each ray would need to be tested against every object in the scene, resulting in

a linear runtime O(n) on the number of objects in the scene. This can result in extremely

poor performance when many rays and many objects are considered. An octree (Glassner,

1984) boosts this performance significantly by subdividing the space recursively. With this

method, the scene space is first divided into 8 quadrants. If no object intersects one of these

quadrants, we can identify that quadrant as empty. If an object does intersect a quadrant,

it is once again divided into 8 subquadrants and the process repeated. This entire process

can be computed as a preprocessing step. During the ray tracing phase, we simply check

each quadrant that the ray intersects to see if we have any potential intersections. If none

exist, we can stop immediately. If a potential intersection does exist, we recurse to the next

level and repeat the process, ultimately reducing the run time to O(log n).
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3.5 Results

As shown in Figure 3.14, our synthetic data pipeline produces natural-looking results that

capture the core ultrasound artifacts such as deformation, noise, shadows, and echoes. We

will show in Chapter 4 how these datasets can be used effectively both for training and

alignment evaluation.
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CHAPTER 4

Registration and Evaluation

Registration — the process of aligning adjacent volumes — plays a pivotal role in generating

large-scale ultrasound datasets. It also poses some of the greatest challenges. Due to the

numerous artifacts present in ultrasound data, determining proper alignment is not only

difficult, but in some ways impossible.

The problem is two-fold: First, we must recognize that a true alignment is a combination

of complex anatomical deformations. Some of these deformations are caused by the pressure

of the probe head against the anatomy (Figure 4.1) while others are caused by patient

movement (Table 4). Second, image formation artifacts such as noise, blur, and shadowing

lead to ambiguities in the correspondence problem. Often an entire visual structure, such as

a ureteral jet, may be present in one volume but not another, due to its transient nature.

Thus, a truly accurate alignment is impossible.

To overcome these challenges, we make the simplifying assumption that the alignment is

a rigid transformation. Since the dominant differences between volumes are due to the rigid

movement of the ultrasound probe, this is a reasonable simplification to make. We present

three methods for determining these transformations, from recording them through magnetic

tracking, to computing them through an automatic alignment algorithm, to defining them

manually through a user interface. Depending on the circumstances and quality of a given

scan session, some or all of these techniques may be applied.
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(a) Non-deformed anatomy

(b) With probe deformation to the left (c) With probe deformation to the right

Figure 4.1: Illustration of deformation.

Voluntary Involuntary
Squirming
Talking
Laughing
Breathing

Blood Flow
Bowel Peristalsis
Bladder Size
Ureteral Jets
Fetal Movement

Table 4.1: Examples of different types of patient movement. Note that some of the voluntary
movements may in fact be more accurately characterized as involuntary for some patients.

4.1 Magnetic Tracking

Ideally we would like to provide a good initial estimate to our algorithmic alignment solu-

tion. This can be achieved by monitoring the probe position during the scan session itself

through motion tracking. The main challenge here is incorporating a system that is agile and

unobtrusive, since we would like to acquire data during routine clinical exams. An optical

tracking motion capture rig along the likes of a visual effects setup is not possible under

these constraints, as such a solution typically requires an entire room to be outfitted with
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(a) Ascension base station and sensor (b) Close up of the sensor

Figure 4.2: The Ascension magnetic tracking solution.

sensors (Meyer et al., 1992), and line-of-sight cannot be obstructed. In addition to being

impractical, an optical tracking setup also raises privacy concerns due to the use of cameras.

To get around these problems, we present a solution based on magnetic tracking.

4.1.1 Setup

Magnetic tracking provides an ideal motion tracking solution since it can be incorporated

with a minimal physical footprint, generally just a base station, sensor, processing box,

and laptop. To this end we employed an Ascension six-degree-of-freedom magnetic tracker

(Figure 4.2). One of the challenges with this solution was overcoming the electro-magnetic

interference generated by the ultrasound probe. Early tests with the magnetic tracker at-

tached to the body of the probe resulted in highly unreliable and ultimately unusable results.

While the probe interference could theoretically be mapped and compensated for, we

chose instead to build an attachment to move the sensor outside of the interference region.

We used OpenSCAD to design an attachment that would precisely fit our transvaginal probe,

allowing the magnetic sensor to be placed several inches behind the probe, where interference

no longer poses a problem. Careful attention was taken to design the attachment in such a

way as to fit snugly against the contours of the probe with very small tolerances to allow

for consistent and rigid placement. One design constraint was that the attachment would

need to be removed between scans to allow for cleaning of the probe. Thus, repeatability in
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(a) OpenSCAD render (b) Final 3D print attached to both the
probe and sensor

Figure 4.3: Transvaginal probe attachment to add magnetic tracking.

placement was very important. Likewise, the slot for the magnetic sensor had to be designed

with similar constraints in mind, since the sensor would have to be removed for use with

difference probes. Grooves were built into the design to allow for zip ties and rubber bands

to help secure the assembly. A rendering of the final design is shown in Figure 4.3a.

The attachment was 3D printed, and the interior coated with rubber to prevent slippage.

As per the design, zip ties were used to secure the attachment to the probe, and strong

orthodontic rubber bands were placed around the magnetic sensor to hold it in place. The

finished rig is shown in Figure 4.3b.

This setup allows the sonograph to scan as usual, with the base station discretely hidden

under the patient table to avoid interfering with the procedure. It is important to note that

a non-metallic (e.g., wooden) table is ideal, as it will not introduce disturbances into the

magnetic field.
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4.1.2 Calibration

To leverage the magnetic sensor rig for volume alignment, we must first identify the re-

lationship between the sensor transform and the resulting volume. Since both the sensor

space and the volume space use the same units of measurement, this relationship is a rigid

transformation with six degrees of freedom. Given that we had to extend the sensor several

inches beyond the back of the probe, the distance between the probe head and the sensor is

large enough to result in substantial error if our calibration is not accurate.

One solution to this calibration problem is to simply measure the translational offset

with a ruler or caliper and assume negligible rotational error (i.e., assume the sensor has

been attached carefully enough that it is well-aligned with the shaft of the probe). However,

this is a very imprecise calibration solution, particularly given the lack of clear landmarks on

the probe body from which to measure. Furthermore, we would still need to determine the

relationship between the probe head and the data itself, as well as the relationship between

the magnetic sensor and its point of origin. Thus, we would need to rely on three separate

offsets, each of which contains potential error.

A more robust solution is to rotate the probe/sensor assembly about a fixed point, for

instance by placing the probe head into a small divit to prevent sliding. Using the knowledge

that the probe transforms only contain rotational information, we can use this to compute

the translational offset. Again, we must assume we can handle the rotational offset through

careful alignment. This solution presents advantages over the first solution in that it reduces

human error, and arrives at a best-fit solution from many data points (we can take continuous

samples during the rotation process). It also eliminates the need to know the relationship

between the magnetic sensor body and its origin. However this still requires that we know

the offset from the probe head to the data itself. Thus, we would need to rely on two separate

offsets, which is better than the first solution, but still not ideal.

Our approach involves calibrating directly to our data. In this way, we eliminate any

in-between steps and remove any assumptions or ambiguous measurements that may result

in compounded error. For this approach to work, we must perform three scans and manually
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(a) OpenSCAD render (b) 3D prints (1:1 and 1:2) (c) 3D visualization of our scan

Figure 4.4: Our calibration rig. The balls serve as strong visual features for alignment.

align the resulting volumes. Combining this information with the magnetic sensor data for

each scan, we can compute the best fit rigid transformation offset.

To facilitate our calibration process, we designed a special calibration shape with strong

visual landmarks. As with our probe attachment, this was constructed in OpenSCAD (Fig-

ure 4.4a) and 3D printed (Figure 4.4b). We printed two versions of our calibration rig at

different scales to ensure that enough landmarks would be visible in our scans.

To scan the rig properly, the prints were glued to a glass plate and submerged in a water

bath, which provides a medium through which to propagate the ultrasound waves. We then

acquired five volumes, three to align manually as input to our calibration computation, and

two more for testing the resulting solution. We made sure to move the probe substantially,

both translationally and rotationally, between scans to ensure a broad baseline for calibra-

tion. Figure 4.5a shows our setup during one of these scans. Figure 4.5b shows how the

calibration rig appears in a slice through one of our acquired volumes. Figure 4.4c shows a

3D visualization of the volume with our calibration rig embedded within.

Once we acquired the volumes, we loaded them into our manual volume alignment tool

(Section 4.3) and easily aligned them based on the strong visual landmarks in the data. It

is important to note that anatomical datasets are generally far more difficult to align due

to the subtlety of features, and ambiguities introduced by deformation. It is also important
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(a) Calibration scanning setup (b) 2D slice of our scan data

Figure 4.5: Calibration setup and corresponding data slice.

to note that this manual step is generally a one-time-only process, as once calibration is

determined it should not need to be changed.

To leverage our two datasets (sensor transformations and manual alignment transforma-

tions) to arrive at a calibration solution, we must formalize their relationship. Let us treat

Si as the known matrix representing the rigid transformation of the sensor and Mi as the

known matrix representing the rigid transformation of our manual alignment for scan i. Let

O be the unknown matrix representing the rigid transformation offset between our sensor

space and our volume alignment space. Finally, let C be the unknown calibration matrix

representing the rigid transformation between the sensor and our volume data. Our goal is

to identify C. The relationship between these matrices is as follows:

SiC = OMi. (4.1)

Two scans gives us

S1C = OM1 (4.2)

and

S2C = OM2. (4.3)
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Taking the inverse of (4.2) and multiplying with (4.3) yields

(S1C)−1(S2C) = (OM1)
−1(OM2)

C−1S−11 S2C = M−1
1 O−1OM2

C−1S−11 S2C = M−1
1 M2

S−11 S2C = CM−1
1 M2.

(4.4)

If we define A = S−11 S2 and B = M−1
1 M2, we have

AC = CB, (4.5)

which is a special case of the Sylvester Equation (Sylvester, 1884) AX + XB = C, where

C = 0 (note that this is not the same C as our calibration matrix). There are many known

solutions to this equation, including the commonly referenced Bartels-Stewart algorithm

(Bartels and Stewart, 1972), as well as others, such as that by Golub et al. (1979). However,

our scenario is special in that our A, B, and X (i.e., C) are known to be rigid transformations.

In addition to putting constraints on the solution, this also requires us to take special care

to enforce that our result is indeed a rigid transformation. Fortunately, Shiu and Ahmad

(1989) provide a robust solution to this problem for a similar calibration technique.

The solution presented by Shiu and Ahmad (1989) requires that we set up two of our

special case Sylvester Equations in order to avoid an under-constrained system:

A1C = CB1 (4.6)

and

A2C = CB2. (4.7)

To achieve this, we see that we simply need one more aligned volume. From our data,
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comprised of S1, S2, S3, M1, M2, and M3, we can obtain

A1 = S−11 S2 (4.8)

B1 = M−1
1 M2 (4.9)

A2 = S−11 S3 (4.10)

B2 = M−1
1 M3. (4.11)

Providing two equations moves us from an under-constrained to an over-constrained

problem. To identify a unique solution, Shiu and Ahmad (1989) have us perform a least

squares fit, first on the rotational component of the solution, and then on the translational.

Applying their solution allows us to arrive at the rigid transformation defining our calibration

matrix C.

4.1.3 Results

As a quick verification of our results to (4.5), we compared the main translational offset to

a ruler measurement and saw that the results were close. Furthermore, a quick inspection

of the rotational components of our matrix showed column vectors prominently aligned to

standard unit vectors, suggesting that our sensor was closely aligned to the probe axis, as

expected (we know we aligned some axis of the sensor with some axis of our volume based

on the design of our probe attachment).

As a more robust test of our calibration matrix, we applied the results to our remaining

two unaligned volumes. To place these volumes in the same space as our manually aligned

volumes, we also computed O as follows:

O = S1CM
−1
1 . (4.12)

We could then visually inspect the results, where we observed that the automatically aligned

volumes were within only a few millimeters of their expected position (Figure 4.6). Based

on extensive experience performing manual volume alignments, we can confidently say that
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(a) Slice through volume 1 (b) 3D visualization of volume 1

(c) Slice through volume 2 (d) 3D visualization of volume 2

(e) Slice through both volumes (f) 3D visualization of both volumes

Figure 4.6: A visual analysis of two volumes aligned with our calibrated magnetic-tracking
solution. The first two rows show each volume in isolation. The bottom row shows the two
overlayed. We can see slight evidence of the imperfect alignment, but overall the results are
good.
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this tracking-based alignment provides a very helpful starting point. Achieving this kind

of rough placement manually is generally the most time-consuming part of the alignment

process. Thus, we anticipate significant time savings with our magnetic tracking solution.

As mentioned previously, our solution requires far fewer scans than that of Detmer et al.

(1994) and a much simpler calibration rig than that of Pagoulatos et al. (2001).

4.2 Automatic Alignment

While motion tracking provides a reliable starting point to the alignment process, additional

work is required to arrive at a final solution. Furthermore, some scenarios prevent the

use of motion tracking, in which case another automated solution is desirable. We present

an automatic alignment algorithm to aid the volume registration process. Our method

is similar to that described by Collignon et al. (1995), and involves refining a six-degree-

of-freedom search, beginning at a course level, identifying the best fit, and refining this

solution. Ultimately this results in a search tree where the branching factor is n6, where n

is the number of samples taken in each dimension. For n = 3, this produces a branching

factor of 36 = 729.

4.2.1 Base Error Metric

To establish which branch to traverse, we must establish a metric for rating each sample.

Our solution uses intensity differences as the main error metric. Given an alignment, we

iterate across the voxels of one volume and find the differences between the values in the

corresponding location of the second volume. If the values are identical, this means there

is 0 error and we have a perfect match. As the difference increases, our confidence in the

alignment decreases.

One problem with this approach is that alignments with very little overlap have a high

probability of matching well by chance. For example, if we consider an alignment where

the two volumes only overlap by one voxel, and both happen to have the same value, this

would appear to be a perfect alignment. To get around this problem, we enforce a minimum
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(a) Volume A (b) Volume B

(c) Automatic alignment

Figure 4.7: A demonstration showing fully automatic alignment of two volumes.

number of overlapping voxels as a percentage of total voxels. Thus, our error metric is

error =


1
n

∑n
i |vai − vbi|, if n ≥ mt;

∞ otherwise,

(4.13)

where va and vb are two volumes, n is the number of overlapping voxels, m is the total number

of voxels in a single volume, and 0 ≤ t ≤ 1 is the threshold value. Figure 4.7 shows how this

method can be used to achieve a fully automatic alignment of two volumes. Figure 4.8 shows

how this method can be used effectively to improve upon an expert’s ability to manually

perform the alignment task.
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(a) Manual alignment (b) Automatic refinement

Figure 4.8: A comparison of manual alignment (left) and automatic refinement (right). A
medical expert in the field of ultrasound proclaimed that the automatic alignment produced
a far superior result.

4.3 Manual Alignment

Even with our automatic alignment process, there are many situations where user interaction

is still necessary. For example, scan sessions in which our magnetic tracking system is not

available will often require medical technicians to perform manual alignments. While our

alignment algorithm performs well in many of these cases, excessive artifacts can interfere

with good alignment, and we must rely on expert knowledge of the known anatomy in order

to perform a proper alignment.

To this end, we developed an interactive alignment tool (Figure 4.9) that enables users to

work within 2D slicing planes to perform the alignment process. Our tool provides a number

of options to facilitate the alignment process. Its core features include the following:

• Volume translation and rotation. These are the main controls for moving a volume or

volumes to produce an alignment.

• Slice view axis and position control. With these controls the user can quickly switch

between slice views to see how their alignment appears in each dimension.

• Selection controls. The user can choose to select a single volume at a time, or multiple

at once if a group must be adjusted together. Options are available to invert the

selection, deselect all volumes, or select all volumes.
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(a) Main window showing 2D slices

(b) 3D view

Figure 4.9: Screen shots of our volume alignment tool. Here, we see three separate volumes
of an early-stage pregnancy aligned together.
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• Blending options. Sometimes a user needs to view just the selected volume, while other

times it is beneficial to view all volumes blended together. Hot-keys allow for quick

toggling between the selected volume(s) and the non-selected volume(s).

• Interpolation options. The user can choose between nearest-neighbor interpolation and

trilinear interpolation.

• Visibility controls. Often it is desirable to hide some volumes (i.e., disable their visi-

bility) when many volumes have been loaded.

• Translation and rotation sensitivity. High sensitivity allows for quick, broad adjust-

ments, while low sensitivity allows for finer control.

• Automatic backups. Due to the trial-and-error nature of volume alignment, providing

automatic backups makes it easy to revisit an earlier solution.

In addition to alignment tools, we also provide basic volumetric painting tools, which

allow the user to remove any artifacts that might show up as a result of the stitching process

(Chapter 5). Users can control their brush size, color, and opacity. We also provide a feature

that prevents painting outside the valid data-regions so the user can paint confidently right

up to the edges of the volume. Furthermore, users can carve away portions of a volume if they

are undesirable; for example, when multiple volumes contain redundant data. Figure 4.10

illustrates the effects possible with painting.

Since our datasets are volumetric, we also provide a 3D view. This provides a more

intuitive perspective to the user, as they can immediately get a sense for the scope of data

with which they are working. Our data is visualized with a custom depth-sorted volumetric

particle engine that allows for a number of useful features:

• Show slice plane. One of the most useful features of the 3D view is the ability to visu-

alize the placement and orientation of the current slice in the context of the complete

volume.
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(a) View of the slicing plane in which the painting was performed

(b) Slicing plane moved back to reveal the volumetric nature of
our brush strokes

Figure 4.10: Experimenting with volumetric painting. We can see the effects of different
brush strokes, from the very thin squiggle, to the prominant brightened region near the peak
of the left-most volume. We have also performed carving of the two side volumes to better
view the uterus data of the central volume.
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(a) Min threshold = 1 (b) Min threshold = 75 (c) Min threshold = 150

Figure 4.11: Changing the 3D view minimum value threshold.

• Particle downsampling. Since rendering large numbers of particles can be computation-

ally demanding, we allow users to downsample the datasets to suit their needs. This

allows users to leverage the power of the 3D view regardless of their computational

resources.

• Particle Size. This allows users to control the particle size to their liking, based on the

anatomy being viewed.

• Opacity. This controls the opacity of each particle. Lowering the opacity allows users

to easily see inside a volume.

• Value-based opacity. With this enabled, the opacity of a given particle is determined by

multiplying the overall opacity with that particle’s value. This has the effect of making

darker regions more transparent than brighter regions, which is useful in ultrasound

data where darker values typically represent voids or shadows.

• Minimum and maximum thresholds. These values allow the user to interactively hide

data below or above these thresholds. Thus, if there is a bright object users would like

to visualize, they can remove everything below that value. This is how we arrived at

the visualizations in Figure 4.6. Figure 4.11 demonstrates the effects of increasing the

minimum threshold.

In addition to the features mentioned, we also experimented with providing a full six-

degree-of-freedom interaction modality within the volume alignment tool. To achieve this,
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Figure 4.12: Our Polhemus magnetic tracker. A smaller, cheaper alternative to the Ascension
tracker (Figure 4.2).

we employed a magnetic tracking system similar to the one we used for our tracking solution.

We incorporated the Polhemus system (Figure 4.12) to allow users to move volumes freely

as if they were holding them in their hands. While this provided a very tactile approach,

we discovered that small incremental adjustments through keyboard inputs provided much

more refined and consistent control.

Our volume alignment tool also provides options to help with training, by providing a

numeric score for feedback, as well as error vector visualiation in our 3D view. Section 4.4

describes these evaluation features in more detail.

4.4 Evaluation

To evaluate the performance of both our algorithm and users alike, we use our synthetic

volumes as test data and apply a quantitative scoring metric.
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4.4.1 Ground Truth

One of the key motivations for generating synthetic data is the availability of ground truth.

Since we know exactly how the probe is positioned for a given dataset, we can use this as

a definitively “correct” alignment solution. Figure 4.13d shows the results of aligning two

volumes based on this ground truth.

4.4.2 Scoring

Given the ground truth solution, we must determine a measure that reasonably evaluates

how close an alignment is to this correct solution, taking into account both translational

and rotational error. We introduce a score as a distance measure. A value of 0 indicates a

perfect alignment. Greater values denote poorer solutions.

To weight translational and rotational error equivalently, we base our distance measure

on the Euclidean distance between corresponding points. It is important to note that for

this to work as intended, the points we consider must be representative of the size and shape

of the volume we are aligning. Thus, we sample only within the valid data region of our

volume and compute the average Euclidean distance.

Scoring can be used interactively within our volume alignment tool (Section 4.3) to

provide guidance during user training. If users choose to, they can view their score in real

time as they make adjustments. If their score increases, they know they have made an error.

If their score decreases, they know they are on the right track. Error vectors are available in

the 3D view to help users better understand how their alignment can be improved. These

features can be disabled such that a training session can be performed without guidance, and

then displayed at the end to assess the quality of the final alignment. Figure 4.13 provides

examples of what a user might see with different alignments, as well as the corresponding

scores.
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(a) Unaligned volumes (Error = 0.017157)

(b) Extreme misalignment (Error = 0.034249)

(c) Expert manual alignment (Error = 0.001079)

(d) Ground truth (Error = 0)

Figure 4.13: Examples of error vectors and scores for different alignments.
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(a) Novice manual alignment (Error = 0.021358)

(b) Expert manual alignment (Error = 0.001079)

(c) Algorithm alignment (Error = 0.002815)

(d) Ground truth (Error = 0)

Figure 4.14: Visual comparison of alignment solutions.
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Figure 4.15: Quantitative comparison of alignment solutions. While our algorithm alignment
is not perfect, it can perform far better than a novice user.

4.5 Results

We tested both our automatic solution, as well as several manual alignments using our

synthetic data and evaluation metric. Our results (Figure 4.14 and Figure 4.15) show that

our scoring system accurately reflects the difference between a novice and expert user, and

that our automatic solution provides results on par with the expert.

Based on these results, we feel that our evaluation metric provides a reasonable method

to compare our automatic solution to manual alignments, and also serves as a useful training

tool. Prior to the introduction of this solution, alignments had to be gauged subjectively,

and thus there was no solid feedback to enable a user to perform better. With our solution,

users can experiment with different alignments and see how their score changes. This real-

time feedback allows the user to quickly analyze the data to see what makes for a good

alignment. These skills can then be applied to real world data where known alignments are

not available.

Combined with our magnetic tracking solution, which provides a reliable initial align-

ment, our automatic and manual alignment tools provide a robust solution to the volume
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registration problem.
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CHAPTER 5

Volume Stitching

Once an alignment has been determined with confidence, the next step to producing a new

dataset is merging the volumes together. This is achieved through a novel image stitching

algorithm that we have developed. Our solution presents a new approach to this problem,

by applying Boolean operations to identify regions of overlap, and then computing smooth

transition functions within these regions. We developed two techniques for defining these

functions: one based on distance maps, the other based on a functional minimization. While

our solution is fully automatic, we expose an optional blending parameter to enable advanced

control over the transition appearance. Figure 5.1 provides a simple 2D example that we

will consider as we discuss the different aspects of our algorithm.

5.1 Region Identification

The main idea behind our algorithm is the notion that there are three important regions to

consider for a given volume:

Figure 5.1: Simple 2D example illustrating three objects of different shapes and color. Here,
they have been naively blended through a simple average.
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(a) Square regions (b) Triangle regions (c) Circle regions

Figure 5.2: Pure regions (solid) and empty regions (striped) for the square (a), triangle (b),
and circle (c).

1. Pure Regions. Regions that contain data only from the current volume.

2. Overlap Regions. Regions that contain data from the current volume as well as others.

3. Empty Regions. Regions that contain no data from the current volume, only data from

other volumes.

To generate each of these regions, we use Boolean operations on volumetric masks in the

output space. We generate for each volume a binary mask where all voxels inside the volume

have value 1 and all values outside the volume have value 0. We can then apply the Boolean

operations of subtraction (1− 1 = 0, 1− 0 = 1, 0− 1 = 0, 0− 0 = 0) and union (1 + 1 = 1,

1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0). A pure region Pi for a given volume with mask mi is

obtained by subtracting the union of all other volume masks:

Pi = mi −

(
n⋃

j=1,j 6=i

mj

)
. (5.1)

An empty region Ei for a given volume is obtained by subtracting the current volume mask

from the union of all other volume masks:

Ei =

(
n⋃

j=1,j 6=i

mj

)
−mi. (5.2)

Overlap regions do not need to be computed explicitly as the boundaries of these regions are

already contained in the boundaries of the pure and empty regions (Figure 5.2).

57



We can regard the three regions like the three main areas of a shadow. The pure regions

are like the umbra of a shadow (pure blackness), the overlap regions are like the penumbra of

a shadow (partial occlusion), and the empty regions are like the unshadowed regions. Hence

we have named our solution “Penumbra”.

The challenge is to determine the proper contribution from each volume at each output

voxel. The pure and empty regions are trivial to solve as they contain 100% and 0% contri-

butions, respectively. The remainder of this chapter focuses on how to assign contribution

weights within the overlap regions, once they are identified, using knowledge of the pure and

empty regions to inform this decision. Like a penumbra, we would like a smooth gradation

from pure to empty.

5.2 Distance Map Approach

One approach to defining a smooth transition from pure to empty regions is to consider the

distances to each region. We would like to approach 100% as the distance to a pure region

approaches 0, and 0% as the distance to an empty region approaches 0. We can precompute

these distance maps for the pure region and empty region of each volume, producing a total of

2n distance maps. We use the algorithm of Saito and Toriwaki (1994) to efficiently compute

these distance maps across the entire output space. The input is a region mask generated

from the first step of our algorithm and the output is a monochrome image with each voxel

value representing the distance to the nearest non-zero mask value. Figure 5.3 provides a

visualization of these maps.

5.2.1 Weight Determination

Once we have precomputed the distance maps, we begin the traversal stage of the algorithm,

where we visit each output voxel and determine the contribution (weight) from each volume.

At each voxel, we first determine which volumes overlap this region by checking the associated

full-volume masks. Next, we compute the individual scale factor si for each contributing

volume. That is, if we consider a single volume in isolation, what is the interpolation value
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(a) Square pure region distance
map

(b) Triangle pure region distance
map

(c) Circle pure region distance
map

(d) Square empty region dis-
tance map

(e) Triangle empty region dis-
tance map

(f) Circle empty region distance
map

Figure 5.3: Each column corresponds to the respective shape in Figure 5.2 (square, triangle,
and circle). The top row shows the distance maps for pure regions. The bottom row shows
the distance maps for empty regions.

between its pure region and its empty region? With pi representing the nearest distance to

the pure region of volume i, and ei representing the nearest distance to the empty region of

volume i, we have

si =
ei

pi + ei
. (5.3)

Equation (5.3) produces a linear ramp between the pure and empty regions. Notice that as

ei approaches 0, si approaches 0, and as pi approaches 0, si approaches 1, as we would like.

Once we have computed the individual scale factors for each of the k contributing volumes,

we can arrive at the final weight value wi for each volume:

wi =
si∑k
j=1 sj

. (5.4)

This ensures that the total weighted sum Σk
i=1wi = 1. To arrive at the final voxel value vf ,
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we use the weighted average of all contributing voxels:

vf =
k∑

i=1

wivi. (5.5)

The results of this solution can be seen in Figure 5.13c, Figure 5.13g, and Figure 5.13k.

While better than existing techniques (see Figure 5.13), the presence of crease-like artifacts

leaves room for improvement.

5.3 Functional Approach

While our distance map approach works well, we can produce even smoother transitions

by solving a functional minimization problem. Specifically, we apply the discrete mem-

brane spline regularization functional shown below, as described by Terzopoulos (1986),

with boundary conditions set to 1 within pure regions and 0 within empty regions. For 2D

images this takes the form

F (u) =
∑

1≤i,j≤n

[
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

]
, (5.6)

and for 3D volumes it takes on the form

F (u) =
∑

1≤i,j,k≤n

[
(ui+1,j,k − ui,j,k)2 + (ui,j+1,k − ui,j,k)2 + (ui,j,k+1 − ui,j,k)2

]
. (5.7)

We compute the gradient of these equations in order to apply an iterative steepest-descent

minimization technique. The result is a smooth membrane minimizing the squared gradient

magnitude. We perform this minimization step independently for each volume to be stitched.

Figure 5.4 shows the inputs and outputs of the functional minimization for each object. We

optimize our functional minimization process by processing only the bounding box containing

our region of interest.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Functional inputs (top row) and outputs (bottom row) for each shape (square,
triangle, circle, respectively). White represents pure regions, while black represents empty
regions.

5.3.1 Weight Determination

As with our distance map solution, we must determine the contribution from each volume.

At each voxel, we look up the the scale value si of our functional output for each of the k

contributing volumes. This value si is the only difference between our functional approach

and our distance map approach. Once determined, we arrive at the final weight (5.4) and

voxel values (5.5) as before.

5.3.2 Optimization

While our functional-based approach produces smoother results than our distance-based

approach, it exhibits poor efficiency, particularly on 3D data (Figure 5.5). To improve this

aspect of the solution, we implemented a multiresolution optimization (Terzopoulos, 1988),

whereby we solve the functional at a low resolution first, then scale up these results to

initialize a higher resolution minimization. This can be repeated until the final resolution is

61



Average Distance Region Functional
0

500

1,000

1,500

2,000

2,500

12.19 16.92 49.42

2,380.55

Blend method

T
ot

al
b
le

n
d

ti
m

e
(s

ec
on

d
s)

Figure 5.5: Total blend time vs the blend method. The total time includes all pre-processing
steps and the final voxel traversal phase for a merge of three volumes. The functional method
stands out significantly.

achieved. We focus now on 3D datasets, where this optimization is most relevant.

Several important considerations must be taken into account during this process. First,

we must properly combine the output of our low resolution results with our high resolution

region information during each level transition. Specifically, we must scale up our low res-

olution solution to the resolution of the current level, and scale down our high resolution

region data to the resolution of the current level, and then merge the two.

For scaling up, we use trilinear interpolation to maintain smoothness. For scaling down,

we use a simple nearest neighbor solution, since we want to avoid interpolation altogether

to preserve the binary significance of our region data.

To merge the two, we first clamp the results of our up-ressed volume to (0, 1) since 0,

and 1 are reserved for empty and pure regions, which we do not want to inherit from the low

resolution representation. Instead, we extract such voxels from our down-sampled volume

and insert them into the up-ressed volume. In other words, we are reintroducing pertinent

region information that was lost during down-sampling at the lower level.

To process each level in an equivalent manner, we must take care to normalize our
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functional output value for the given resolution. This is important for determining our

termination criteria, which should not be biased by the number of voxels processed at a

given level. For a resolution scale factor r in each dimension, and d dimensions, we can

modify (5.7) as follows:

F (u) =
∑

1≤i,j≤n

rd

[(
ui+1,j − ui,j

r

)2

+

(
ui,j+1 − ui,j

r

)2

+ ...

]
. (5.8)

We multiply each summation by rd since we have this many more voxels to consider. We

divide each component by r since everything is scaled by r. Simplifying, we have

F (u) =
∑

1≤i,j≤n

rd
[

(ui+1,j − ui,j)2

r2
+

(ui,j+1 − ui,j)2

r2
+ ...

]
=

∑
1≤i,j≤n

rd
[

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + ...

r2

]
=

∑
1≤i,j≤n

rd

r2
[
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + ...

]
=
rd

r2

∑
1≤i,j≤n

[
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + ...

]
= rd−2

∑
1≤i,j≤n

[
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + ...

]
.

(5.9)

Thus, if we would like our functional value to provide the same value at any resolution,

we must divide the result by rd−2, or equivalently multiply our termination criteria by rd−2.

For 2D data this means multiplying our termination criteria by r2−2 = r0 = 1, and for 3D

data this means multiplying our termination criteria by r3−2 = r1 = r.

Figure 5.6 shows the convergence of the functional minimization using different numbers

of resolution levels. Note that when multiple levels are used, it appears that the functional

value increases at each level, despite normalization. This is because we introduce more high-

resolution detail at each level, adding complexity to the data, and therefore increasing the

functional value. If we were to simply increase the resolution without reintroducing the lost

high-resolution data, we would see something closer to the monotonically decreasing function
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Figure 5.6: Normalized functional value vs CPU time for different choices of the number
of levels. Each plot starts after the first iteration (hence the noticeable difference when the
number of levels is one — the first iteration takes much longer to complete at high resolution).
Each plot ends at the point where the termination criteria was met. The top graph uses a
standard linear scale. The bottom graph presents the same data with a log scale for closer
inspection.
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Figure 5.7: Convergence time vs the number of levels. We can see from this that six levels
produces the optimal performance.

one might expect.

Figure 5.7 shows more concisely the performance difference for different numbers of levels.

Based upon these results, we see that six levels provides the optimal performance. Figure 5.8

shows visually what this process looks like at each level of a six-level optimization for a given

blend region. Figure 5.9 provides a comparison, demonstrating the progress made by a one-

level solution in the amount of time it took for the six-level solution to complete.

Figure 5.10 adds our optimized solution to the comparison graph. While our multiresolu-

tion approach is still slower than our distance-based region approach, it falls within the realm

of being practical, providing substantial improvement over the non-optimized functional ap-

proach. Note that increasing the termination criteria can further speed up performance (to

the point of being even faster than the distance-based region approach), though this will

produce poorer results. The termination criteria used in our graphs was chosen to offer a

good compromise between speed and quality.

65



(a) Level 1 input (b) Level 1 output (c) Level 2 input (d) Level 2 output

(e) Level 3 input (f) Level 3 output (g) Level 4 input (h) Level 4 output

(i) Level 5 input (j) Level 5 output (k) Level 6 input (l) Level 6 output

Figure 5.8: Demonstration of multiple resolution level optimization. Each input is derived
by up-ressing the previous level’s output and adding the high resolution region information.

(a) Input (b) Progress

Figure 5.9: Progress made by a one-level solution in the amount of time it took for the
six-level solution to complete.
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Figure 5.10: Total blend time vs the blend method, including our multiresolution approach
(far right). Our optimized solution provides significant gains over the unoptimized version
(second from the right).

5.4 Parameterization

We can expose some user control over the blend appearance by introducing a blending

parameter b. Our goal with this parameterization is to provide control over the relative

width of the blending region. At one extreme, we would have a maximal blend across the

entire overlap region, while at the other extreme we would have hard edges reminiscent

of Voronoi diagrams. Ideally, somewhere in between, we would achieve a transition that

sacrifices blend distance for smoothness. We arrived at such a parameterization by using b

as an exponent on s. This modifies (5.4) as follows:

wi =
sbi∑k
j=1 s

b
j

. (5.10)

This is akin to the notion of a soft maximum. As b increases, the maximal scale takes greater

precedence, increasing the associated weight relative to the others, in effect expanding the

pure region of the associated volume. Figure 5.11 demonstrates the effect of modifying b for

our distance-based region solution, while Figure 5.12 does the same for our functional-based
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(a) b = 1 (b) b = 2 (c) b = 300

Figure 5.11: Effects of increasing the blending parameter for our distance-based solution.

(a) b = 1 (b) b = 2 (c) b = 300

Figure 5.12: Effects of increasing the blending parameter for our functional-based solution.

region solution. We found experimentally that b = 1.5 provides a reasonable blend, though

this parameter can be controlled by the user for case-specific tweaking.

5.5 Results

Based on visual comparisons between existing blending solutions and our algorithm (Fig-

ure 5.13), we conclude that we have produced a quality solution that effectively generates

natural transitions in our volumetric datasets. Qualitative assessments from sonographers

and physicians alike indicate that the seams are well-hidden and that stitched volumes cannot

be easily distinguished from unstitched volumes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.13: Comparison of results. Left to right: The first column show the results of a
naive average. The second column shows an existing solution (Szeliski, 1996) generalized to
arbitrary shapes. The third column shows the results of our distance-based region solution.
The fourth column shows the results of our functional-based region solution. Each row
represents a different example. The bottom row shows 2D cross sections demonstrating the
results on real volumetric ultrasound data. Note the hard seam edges in (i). While (j) hides
the main seams well, a significant artifact remains (red arrow). These artifacts have been
greatly reduced in (k) and even more so in (l).
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CHAPTER 6

Volume Embedding

While seams between adjacent volumes are effectively eliminated by our volume stitching

process, one telltale sign that the resulting volume has been merged remains: the boundary.

The peculiar shape of a stitched volume (Figure 6.1) ruins the impression of working with a

real-world ultrasound volume. A simple solution to this problem is to crop out the boundary.

However this results in the loss of useful information (Figure 6.2a). Ideally we would like to

retain as much valid data as possible, and instead incorporate additional data to fill in the

missing regions (Figure 6.2b). We achieve this through our volume embedding process.

This process takes advantage of the prevalence of noise in ultrasound volumes by filling

in the voids with both real and synthetic noise. Simply overlaying our stitched volume onto

a noise volume, however, is not sufficient, as we see in Figure 6.3. Even with blending along

the edges of our anatomical data, the background noise data is just too inconsistent to look

natural. To appear authentic, the noise must match the variance and local appearance of

the surrounding real data. We achieve this goal by intelligently diffusing intensity values

both inwards and outwards from the stitched surface. We then apply these values to a

tone-mapped noise volume. Finally, we blend the resulting noise volume with our stitched

volume.

6.1 Real Noise

The first step of our embedding process is generating the background noise volume in which

to embed our stitched volume. To provide authenticity to our final result, we start with

noise volumes acquired from the same ultrasound hardware as our anatomy volumes. Since
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Figure 6.1: Cross section of a stitched ultrasound dataset. Note the irregular boundary.

(a) Coverage possible by cropping (b) Coverage possible by embedding

Figure 6.2: Comparison of coverage possible by resolving irregular boundaries through crop-
ping versus embedding. Note that cropping eliminates almost all benefits gained from stitch-
ing multiple volumes.

Figure 6.3: Cross section of our anatomical data naively overlayed on top of noise. Note the
unnatural transition into noise.
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(a) Probe without gel. Note the lack of data
in the ultrasound image

(b) Probe with gel. Note the appearance of
noise in the ultrasound image

Figure 6.4: Comparison of the data produced with and without gel.

an ultrasound probe cannot capture data without ultrasound gel (Figure 6.4a), we acquire

our noise volumes by coating the surface of the probe in gel (Figure 6.4b) and performing

a standard 3D scan while holding the probe in the air. This fills the volume with the noise

characteristically associated with ultrasound images.

To maintain a level of detail that matches our anatomical scans, we acquire the noise

volumes with the same angular coverage (Figure 6.5). This means we must also stitch our

noise volumes. Fortunately we can do this in a clean and consistent manner, since we do not

need to worry about aligning structures within the volumes. We developed an automatic

process to identify the necessary shape information about the noise volumes and align them

accordingly (Figure 6.6). A user-specified overlap parameter determines the angular extent

of the resulting merged noise volume.

Once these noise volumes are aligned, our tool blends them together in the same manner

as our anatomical data (Figure 6.7).

6.2 Synthetic Noise

The main challenge with using purely real noise volumes is the lack of adequate resolution.

We must scale up our noise volumes in order to accommodate the greater coverage of our

stitched data. Since the imaging hardware limits the resolution of our data, the noise volumes
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(a) First noise volume (b) Second noise volume

Figure 6.5: Cross sections of raw noise volumes. Note the inadequate angular size.

Figure 6.6: Cross section of automatically aligned noise volumes.

Figure 6.7: Cross section of blended noise volumes.
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have a lower resolution once they are enlarged relative to our anatomical data. To work

around this limitation, we introduce synthetic noise.

One way to generate this synthetic noise would be to simply apply standard noise algo-

rithms such as white noise or Perlin (1985) Noise to our 3D volume. However, such noise does

not look natural in ultrasound images due to its uniform appearance. To create synthetic

noise that appears authentic, we must consider the ultrasound image formation process.

As explained in Section 3.4.1, ultrasound images are formed by computing time delays

of acoustic echoes along a curved configuration of piezoelectric transducers. The data along

these line segments are interpolated in a non-linear fashion to produce the final 2D or 3D

image. This non-linear interpolation produces the curved noise artifacts characteristic of

ultrasound datasets.

We borrow the same principles from our synthetic data pipeline (Section 3.4.5) to gen-

erate our synthetic noise, only instead of data gathered through ray tracing, we assign each

transducer a set of points of random intensity, evenly spaced in depth. Parameters such as

the number of simulated transducers, the number of sweeps, and the depth resolution allow

fine control over the synthetic noise appearance. These parameters are exposed to the user,

allowing them to choose values that best match the noise of the anatomical data. Figure 6.8

shows the effects of changing the noise resolution parameters.

6.3 Diffusion

We begin the diffusion process by down-sampling and blurring our input volume (Figure 6.9).

We down-sample for computational efficiency, and blur to eliminate the high-frequency infor-

mation, which we do not wish to preserve. Ultimately we will be incorporating high-frequency

noise instead.

Since we wish to diffuse boundary values, we next extract all surface voxels from our

volume (Figure 6.10). This surface is based on a simple neighbor check for null values. For
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(a) rt = 10, rd = 10 (b) rt = 25, rd = 10 (c) rt = 100, rd = 10

(d) rt = 10, rd = 25 (e) rt = 25, rd = 25 (f) rt = 100, rd = 25

(g) rt = 10, rd = 100 (h) rt = 25, rd = 100 (i) rt = 100, rd = 100

Figure 6.8: Adjusting noise parameters. The transducer resolution, rt, increases to the
right, while the depth resolution, rd, increases downwards. The effect of adjusting the sweep
resolution, rs, is not shown, but has the same effect as rt, only in the sweep direction.

Figure 6.9: Cross section of our stitched volume down-sampled and blurred.
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Figure 6.10: Cross section of our boundary surface.

Figure 6.11: Cross section of diffused surface values.

a volume I : U 7→ V , where U ⊂ N3 and V ⊂ R1, we define the boundary Ω as follows:

Ω =


uijk ∈ U, I(uijk) 6= 0

∣∣∣∣∣∣∣∣∣∣∣
∃upqr ∈ U, where

i− 1 ≤ p ≤ i+ 1,

j − 1 ≤ q ≤ j + 1,

k − 1 ≤ r ≤ k + 1,

I(upqr) = 0.


. (6.1)

We then iterate across all output voxels and determine their distance from each surface

voxel. We use these distances to weight the contribution of the corresponding voxel intensity.

For all n surface voxels sp, we compute their contribution weight at output voxel uijk as

follows:

wijkp =
(||uijk − sp||)−1∑n
q=1 (||uijk − sq||)−1

. (6.2)

This function weights the nearest surface voxel the most, and the farthest voxel the least, as

desired. Figure 6.11 shows the results of this process.
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While we can see the effect of the diffusion in these results, they do not provide the type

of local surface diffusion we require. To provide more control over the diffusion properties,

we introduce a diffusion parameter, d ≥ 1, as an exponent on the voxel distance. This has

the effect of exaggerating the contributions of closer voxels, thereby providing tighter, more

localized diffusion. We update our weighting formula accordingly:

wijkp =
(||uijk − sp||)−d∑n
q=1 (||uijk − sq||)−d

. (6.3)

Figure 6.12 demonstrates the effects of changing d.

We can choose different values of d depending on whether we are inside the stitched

volume (I(uijk) 6= 0) or outside (I(uijk) = 0). We determined experimentally the following

values of d to produce ideal diffusion:

d =


4, if I(uijk) = 0;

6, if I(uijk) 6= 0.

(6.4)

Figure 6.13 shows the results.

6.4 Tone Mapping

To apply the intensity of our diffused low-frequency data to our high-frequency noise data, we

apply local tone mapping. Common in photography, particularly high dynamic range (HDR)

photography, tone mapping is used to map colors from one range to another (Krawczyk et al.,

2007). Often this is used to flatten or compress one range to a smaller range as required by

a viewing device or data representation.

Local tone mapping refers to adjustments made based on a local neighborhood of infor-

mation. This can take the form of removing or reducing low-frequency information, which

is our goal here. To achieve this goal, we simply blur our noise volume to remove the high-

frequency data, then divide our initial volume by the results. For a volume B : U 7→ V

77



(a) d = 1 (b) d = 2

(c) d = 4 (d) d = 8

(e) d = 16 (f) d = 32

Figure 6.12: Different values of d.
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Figure 6.13: Cross section of diffused surface values with experimentally chosen values of d.

(a) Noise volume (b) Noise volume tone mapped

(c) Noise volume with diffusion information

Figure 6.14: Removing and reintroducing low-frequency information.
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representing the blurred version of volume I, our tone-mapped image T is defined as

T =
I

B
. (6.5)

Figures 6.14a and 6.14b demonstrate the effects of this process. The result is a volume

containing mostly high-frequency information.

Once we have removed the original low-frequency information, we can reintroduce our

own low-frequency information from our diffusion volume. We simply multiply our tone-

mapped image T by our diffusion image D to arrive at a new noise image

I ′ = TD (6.6)

(Figure 6.14c). The resulting volume properly captures the local intensity of our stitched

volume.

6.5 Blending

With our background image properly augmented to match our stitched volume, we can

combine the two. To do this we overlay our stitched volume on top of the background

volume, using a user-defined feathering radius to blend the boundaries of the anatomical

data. To perform this feathering, we pre-compute a distance map (Saito and Toriwaki,

1994) based on the mask of our anatomical data. For a given voxel, we can then determine

the distance to the boundary, and blend based on a linear ramp defined by the feathering

radius.

6.6 Results

As we see in Figure 6.16, our embedding solution provides substantial improvements over

a naive approach. There is no obvious transition from anatomical data to the background

noise data. Thus, our stitched volume now takes on the distinctive ultrasound form factor

80



(a) Background volume (b) Background volume + stitched volume

Figure 6.15: Overlaying our stitched volume on top of our augmented noise volume.

(a) Naive overlay (b) Background volume + stitched volume

Figure 6.16: Comparison of methods.

without sacrificing believability. We have applied this volume embedding technique to a

large set of case studies, producing convincing results that have been directly incorporated

into the SonoSim product.
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CHAPTER 7

Translational Data Interaction and Patient Simulation

One of the overarching goals of ultrasound volume stitching is to provide adequate data

coverage to support translational interaction. While such interaction can be supported easily

through a standard keyboard and mouse solution, providing a tangible mapping to real-world

movement allows a much stronger form of interaction.

The SonoSim solution currently employs a three-degree-of-freedom rotational probe. Our

goal was to build two additional degrees of freedom on top of this. Note that we do not need a

full six-degree-of-freedom solution, as probe interaction is only meaningful when constrained

to a surface. When a real ultrasound probe is lifted from a patient’s skin, the surrounding

air prevents the ultrasound waves from propagating, resulting in a dark image. Thus, there

is no strong need for the additional degree of freedom (although we will discuss below how

compression can be included in the proposed solution).

Another significant requirement of the translation solution is that it support contoured

surfaces. That is, while the translation itself is limited to two degrees of freedom, the

coordinates may lie on a surface in three dimensions. In other words, each two dimensional

coordinate should map directly to a three dimensional position. This requirement is based

on the desire to allow for interaction with a surface conforming to the human form.

Finally, the solution should support the tracking of not only a probe, but a needle as

well. This allows for the simulation of needle guided procedures, where the probe is used as

the imaging device to help guide the insertion of a needle into the correct anatomical region.

Our solution to this problem is a 3D-printed anatomical model that uses optical tracking

of infrared LEDs to locate and identify the probe and needle. An infrared camera is located

inside/beneath the model and fitted with a wide angle lens for full coverage of the internal
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(a) Final prototype

(b) Scanning the mannequin. The ultrasound window reveals the
fetus inside.

(c) Visualization of the tracking applied to the digital model. Note
the accurate positioning relative to the edge of the model.

Figure 7.1: This prototype models the abdomen of a pregnant woman.
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surface. The model itself is printed as a thin translucent shell to allow the LED light

to shine through while diffusing ambient lighting. Tracking of the probe and needle is

accomplished by a fast and simple vision algorithm, and a mapping is performed to locate

the three dimensional position of the LED. Synchronized flashing between the LEDs and

the camera allow for distinguishing between the the probe and needle. Figure 7.1 shows our

final prototype in action.

7.1 Overview of Our Approach

While the core of our approach is optical tracking, a blend of other technologies is required

to make the entire solution complete, transparent, and robust.

The process works by embedding infrared LEDs within the tip of each device (probe

and needle). The plastic housing is semi-translucent, allowing the light to escape without

impacting the exterior form factor of the device. Since the LEDs are internal, and produce

invisible infrared light, the system is hidden from view.

The 3D surface upon which the user is applying the probe and needle is similarly made

from a semi-translucent material. This allows the infrared light to pass into the interior of

the shape, where it can be detected by a camera. However, this only works when the LED

is in close contact with the surface; otherwise the light is diffused by the translucency of the

material. This is critical to the functionality of the device, as it allows the probe and needle

to be isolated from background light sources. The surface is 3D printed from a digital model,

ensuring exact correspondence between the physical world and the virtual representation.

The camera is fitted with a wide-angle lens, allowing visibility of the entire interior

surface of the model. This camera/lens combination is held securely in place to ensure that

the relationship between the imaging sensor and the model is consistent.

The infrared camera is able to see the light sources emitted by the infrared LEDs. The

brightness and diffusion of these hot-spots is determined by the proximity of the LED to

the surface. A simple vision algorithm run on a Raspberry Pi thresholds these values to
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determine when an LED comes in contact with the surface, and identifies the centroid for

tracking.

The system flashes the LEDs in sync with the image capture rate, such that only one

device will be on for a given frame. This allows the algorithm to know exactly which hot-spot

corresponds to which device.

The location and identification information is then transmitted wirelessly to the simu-

lation computer through a simple UDP protocol. The simulation computer takes the 2D

location and maps this to a 3D vector, which is then intersected with the digital model to lo-

cate the proper surface position. From there it is simply a matter of running the appropriate

visualization.

In practice this translational information would be combined with rotational information

for a complete tracking solution.

7.2 3D Printing

One of the core technologies that makes our approach possible is 3D printing. While other

manufacturing techniques could be used instead, such as a vacuum formed plastic shell de-

rived from a metal mold milled by a CNC machine, 3D printing offers quick experimentation,

and the possibility of sharing models easily with other users. The exact correspondence be-

tween the physical model and the virtual model afforded by 3D printing is at the heart of

our approach (Figure 7.2).

A key consideration is the thickness of the 3D printed shell. The shell must be thick

enough to provide structural integrity and diffuse ambient light sources, but thin enough to

allow our LED light to pass through. The shell thickness must also be consistent such that

the brightness threshold in the vision algorithm can be applied robustly.

We considered multiple thickness consistency metrics during our design process. One

approach would be to define the thickness relative to the camera position. That is, for

a given point on the exterior surface of the model, follow a vector to the camera’s optical
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(a) Digital model (b) Physical model during the printing pro-
cess

Figure 7.2: Demonstration of the precise correspondence between the digital model and the
3D print.

center. The corresponding interior surface point should be a fixed distance along that vector.

Another thickness consistency metric is to maintain a fixed minimal distance between the

exterior surface and the interior surface. This is the common definition we think of when we

imagine a shell of constant thickness. This can be thought of as placing a hemisphere on the

interior side of the exterior surface at every point. The resulting surface becomes our interior

surface. Indeed, this is the result we obtain by applying the Minkowski algorithm to our

exterior surface along with a sphere and retaining everything interior to our original surface.

This is the solution we incorporated, taking advantage of the OpenSCAD implementation

to derive our result. We chose to use a 2mm thickness, which provided a good trade-off

between translucency and physical strength.

7.3 Calibration

Since maintaining an exact correspondence between the physical model and the virtual model

is pivotal to our approach, calibration is paramount. The relationship between the image

sensor and a given point on the model must be known precisely. Thus, we must take into

account not only the standard intrinsic camera parameters (αx, αy, γ, u0, v0), but also the

lens distortion and the physical relationship between the camera and the model.
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One solution to this problem would be to calibrate the camera/lens combination with a

standard camera calibration technique such as that found in OpenCV. However, this relies

on the quality of their calibration model and does not solve the physical offset problem. Our

approach is to eliminate any in-between steps such as these and directly map known surface

points to their location in the image. We achieve this by including calibration points in our

3D model.

We can take two approaches to this calibration method: One option is to print two

physical models, one with calibration points, one without. The other option is to print

just one physical model, with calibration points that can be removed. In either case, the

calibration model is identical to the final anatomical surface model, but with additional

features added at calibration points. If going with the first option, these points could be

small LED-sized holes that allow easy placement of the light source at the correct location

for a given calibration point (Figure 7.3). For the second approach, these points must be

raised bumps on the surface, which can be removed once calibration is complete (Figure 7.4).

The two-model approach has the benefit of providing an easier calibration experience.

Since this approach can use indentations at calibration points, aligning the LED over the

feature is very tactile, making it easy to achieve and maintain the correct position. The

downside is that printing two models is time consuming, wasteful, and more expensive.

Furthermore, the two models must be aligned precisely, introducing room for error.

The one-model approach has the benefit of requiring only a single print, and there is no

danger of misalignment once calibration is complete. However the calibration process itself is

far more difficult and tedious, since the LED must be held precisely at the top of each bump.

Furthermore, the calibration points must be removed after calibration is complete, which can

be a time consuming process, and this also eliminates the opportunity to recalibrate once

complete.

For our early hemispherical test (Figure 7.3), we chose the locations of the calibration

points such that there was greater density closer to the horizon, as these areas tend to get

compressed in the image due to the nature of the lens distortion.
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Figure 7.3: Example of using two separate prints for calibration. The dome on the left
contains small holes designed to fit the LED perfectly for easy alignment.

(a) Before calibration points have been re-
moved

(b) After calibration points have been re-
moved

Figure 7.4: Example of using a single print for calibration.
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For more complex geometry, we can take advantage of the polygonal nature of the model

to choose our calibration points. This is the approach we took for our functional prototype.

We employed a mesh simplification algorithm based on quadric error (Garland and Heckbert,

1997) to reduce the number of vertices of a polygonal abdomen model to a reasonable number

(around 350) and used the vertex positions as calibration points. We refer to this new mesh

as our low-res proxy.

The calibration process simply involves iterating through each point, shining the LED

at the corresponding location, and logging the position in the image. In Section 7.6 we will

see how we use this information to map any arbitrary point using an interpolation scheme

based on our low-res proxy.

This solution provides a simple and robust means of calibrating the physical model to the

digital model. It eliminates the need to know any of the precise measurements involved, since

the algorithm finds the direct mapping between points on the model and their corresponding

points in the image plane. Thus, the model can be attached to the camera without any careful

alignment process, as long as this placement is consistent. This method is even robust to

deformations in the physical model that may result from the 3D printing process.

One drawback to using calibration points is that it requires calibration for each model. A

partial workaround to this would be to create two hemispherical calibration rigs, one smaller

than the other, with the same calibration points. From this we can extract consistent 3D

vectors for each position on the image plane, allowing us to intersect with arbitrary geometry

once calibration is complete. However, this still requires precise positioning of each new

model.

Another drawback of our approach is that a large number of calibration points may

be necessary to accurately account for the curvature associated with lens distortion. Since

our interpolation scheme uses triangles (Section 7.6), these cannot easily represent such

curvature. A solution to this would be to use a different geometric representation, such as

NURBS.

We can also calibrate brightness with our approach. This involves simply recording
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(a)

(b)

Figure 7.5: Illustration and circuit diagram of our LED set up.
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the LED brightness in addition to its location information. We can then normalize this

information to a constant intensity.

7.4 LEDs

Our solution uses 920nm LEDs. These emit light completely invisible to the human eye, yet

show up well in an infrared camera. We use LEDS of standard 5mm diameter, which can be

easily contained within a standard probe or needle form factor. The LEDs are rated at 1.5v

and 40mA, which in our implementation requires an external battery source. To control the

LEDs, we use two MOSFETs (one for each LED) to switch the LEDs on with a low-voltage

signal from a Raspberry Pi. Figure 7.5 illustrates this set up.

7.5 Vision

Our tracking camera is placed under the shell, with a wide angle lens that allows the system

to see the entire interior surface (Figure 7.6). One of the benefits of our solution is the

simplicity of the vision algorithm. The system simply thresholds the input image (Figure 7.7,

magnified in Figure 7.8a) by removing all values below T (Figure 7.8b), then normalizes the

remaining pixels to T (Figure 7.8c), and computes the centroid as the center of mass, where

the density is the value of each pixel (Figure 7.8d). The normalization procedure transforms

pixel values v from [0, 255] to [0, 1] based on T to provide better robustness:

v′ = (v − T )/(255− T ). (7.1)

The benefit of this transformation is that pixels with values close to T may exhibit erratic

behavior due to noise (a small dip below T will remove that pixel from consideration). Thus,

moving these values close to 0 minimizes the impact of such fluctuations.

Identifying the centroid — as opposed to simply identifying the brightest pixel — serves

two purposes:

91



(a) RGB data. The green hue comes from
the fixed white-balance setting.

(b) Isolating the green channel. We only pro-
cess this channel for efficiency.

Figure 7.6: View from our internal tracking camera looking up at the inside/underside of
our abdomen shell (under strong lighting conditions for illustration purposes).

Figure 7.7: View from our tracking camera showing a hotspot from the probe LED.
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(a) Closeup of our hotspot (b) Hotspot thresholded

(c) Normalized to threshold value (d) Centroid identified

Figure 7.8: Our centroid identification process for the image in Figure 7.7.

1. First, this method is much more stable, as noise fluctuations get averaged out across

the patch.

2. Second, this method leverages the intensity values to provide super-resolution posi-

tioning. This enables us to get away with lower resolution images while maintaining

smooth tracking, allowing for faster processing times. It also allows more precise po-

sitioning, which is particularly important when operating within the physical world.

This also means that tracking is more consistent even as the mapping from pixel to

physical world may not be (e.g., pixels that map to faces at a shallow angle).
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(a) 2D calibration points (blue) and hotspot
centroid (red) in the camera image plane

(b) 2D calibration points connected by low-
res proxy topology; active triangle and
barycentric coordinates identified

(c) Hotspot centroid mapped to its corre-
sponding 3D position in the low-res proxy
mesh

(d) Hotspot centroid projected to the high-
res mesh

Figure 7.9: Mapping from the 2D camera image space to the final 3D position.

7.6 Mapping

Since we have defined our calibration points based on the vertices of a low-res proxy of our

model, we can easily map this mesh to the camera image plane by assigning each vertex its

corresponding 2D position recorded during our calibration phase. Then, for a given arbitrary

point in the 2D image (Figure 7.9a), our algorithm identifies which triangle in our flattened

low-res mesh contains that point (Figure 7.9b). Given the low number of triangles in our

proxy, this can be computed with a brute-force search. Next, the barycentric coordinates
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of this point are computed within the triangle, and applied to the corresponding triangle in

our 3D proxy (Figure 7.9c). Finally this vector is projected to our full-res model to identify

the final 3D surface location (Figure 7.9d). This projection is performed along the vector

defined by the origin and the 3D position in our low-res proxy mesh. We use an octree to

compute this intersection efficiently.

7.7 Visualization

To demonstrate the full capabilities of our tracking system, we developed a simple application

to provide a scan view as well as a 3D visualization of the tracking results. The scan view

allows users of the prototype to experience a scan session as they might in a true clinical

setting, where the only feedback is the ultrasound image itself. Ultimately this data will be

derived from real patient volumes, as described in the previous chapters. However, since this

work is still experimental, such data does not yet exist. Instead, we showcase the potential

of the system with simulated data, using a real-time renderer we developed. As this is not

the focus of our work, we will provide only a cursory explanation of this system.

Our renderer uses a ray-tracing technique similar to that described in Section 3.4.3,

but simplified for real-time performance. As input data, we used polygon models of the

internal organs, vasculature, and skeleton to fill our abdomen shell appropriately. We also

articulated and positioned a separate anatomical model of a baby to serve as the fetus, which

was placed into the womb. Each type of anatomy was assigned different intensity values,

darker for vasculature, brighter for skeletal geometry.

For each simulated transducer element, our system emits a single ray, computes the in-

tersection with the geometry using our octree acceleration structure, and records the value

of the corresponding anatomy. This continues along the length of the ray until we have tra-

versed the maximal depth of our scan. We rasterize the intensity information to a texture,

simulating shadows by darkening each pixel according to the number of geometry intersec-

tions encountered. We render the needle separately as it is not included in our octree due

to its dynamic nature.
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(a) 3D rendering of the tracked probe and needle
relative to the abdomen, with scan inset

(b) Scan view; The needle is visible as the white
line on the left

Figure 7.10: Screen-shots from our translational tracking demonstration simulator.

7.8 Results

To showcase the robust nature of our tracking solution, we also provide a visualization of

our prototype system itself. Since our setup is derived from digital 3D models, we were able

to easily add these to a 3D viewer. The models were textured and subsequently rendered

off-line to achieve photorealistic results that closely match the physical prototype, allowing

the user to fully appreciate the one-to-one correspondence between the real setup and the

virtual representation. Figure 7.10a shows a screen-shot of the results.

To achieve the noise artifacts in our scan visualization, we precompute a volume of noise

and rasterize the corresponding slice based on the probe position. This is then blended with

our geometry rendering to produce a reasonable illustration of an ultrasound scan. As a final

step, we perform a simple warp in the image space to simulate probe/tissue deformation.

Figure 7.10b shows a screen-shot of the results.

Our final prototype works very well in practice. The tracking is robust and consistent.

Despite concerns to the contrary, interpolation is completely transparent to the user, pro-

ducing no visible motion artifacts. The resulting experience is intuitive, and so convincing

it has led users to believe they are actually scanning hidden internal geometry. The ability

to differentiate between the probe and needle is an added bonus.

We now revisit the problems enumerated in Section 2.5, and see how our solution ad-

dresses each issue:
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1. Size. Scaling up our solution can be achieved easily and cheaply to accommodate

large anatomical models. This simply requires producing a larger plastic shell, while

the sensing technology stays the same. Ultimately size is limited by camera resolu-

tion and/or LED brightness, but reasonable sizes should be achievable with limited

hardware changes.

2. Contours. Our solution can accommodate complex shapes as long as all surface points

are visible to the camera. This limitation can be overcome with a multi-camera exten-

sion.

3. Disambiguation. We can robustly disambiguate between multiple devices based on our

coordinated flashing technique.

4. Proximity. This problem is non-existent in our solution, since each device is sensed at

a different time interval.

5. Residual. Since there are no mechanical processes involved in our solution, we do not

experience any residual artifacts.

6. Force. Since our solution does not detect pressure, this problem does not exist.

7. Fragility. Our solution does not require a delicate piece of hardware. All active com-

ponents can be easily protected without interfering with the system.

8. Development. We were able to produce our solution using standard off-the-shelf com-

ponents for under $100.

Thus, all problems with a pressure pad solution have been successfully solved or eliminated

with our optical tracking solution.
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CHAPTER 8

Conclusion

This dissertation covered a wide range of work geared towards solving the problem of gen-

erating and interacting with large-scale ultrasound datasets. These techniques have all been

designed with real and pressing applications in mind, and have been influential in push-

ing the boundaries of ultrasound medical training. Notably, our alignment process, volume

stitching solution, and volume embedding technique have all been directly applied to real

product deliverables that were not possible before. Our synthetic data have helped improve

these processes, and have also been used to train internal team members. Our translational

interaction solution shows promise as a future product. All our methods work together to-

wards the single goal of incorporating large-scale ultrasound datasets into medical training

simulators.

8.1 Limitations

While our work provides robust results with tangible applications, we can identify several

areas for improvement. Our synthetic data pipeline, for example, currently only produces

datasets based on sphere packing geometry (Section 3.1.2). While this has proven sufficient

for training and evaluation, it does limit the type of synthetic data that can be created.

Our automatic alignment algorithm, as presented in Section 4.2 could also use improve-

ment. While our medical team has relied on its abilities extensively, the algorithm’s value-

driven nature imposes some limitations on its ability to provide correct alignments when

shadows or echoes significantly alter the appearance between volumes.

Our translational data interaction and patient simulation system, which was presented
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in Chapter 7, offers many benefits over existing technologies, but is not without its short-

comings. We examine these limitations next:

1. Ambient light. Our solution will not work under bright lighting conditions, such as

outdoors. Large amounts of infrared light will overwhelm the light from our probe

and needle, inhibiting our tracking solution. Brighter LEDs could be used, but at the

cost of higher power consumption, increased cost, and greater risk of eye damage. In

practice, we do not envision the ambient light issue to pose a significant problem, as

most use-cases will be indoors under reasonable lighting conditions.

2. Modification. Existing probe and needle devices must be modified to include an in-

frared LED, which places additional burdens on the designs of the devices, and intro-

duces power consumption concerns.

3. Pressure sensing. While augmentations can be made to support pressure sensing based

on light intensity and diffusion, it will not be as reliable as a dedicated pressure pad. A

more robust solution would be to add pressure sensing to the probe itself. This would

provide the added benefit of allowing the user to perform pressure-related tasks (such

as compression) independent of a tracking solution. While such a hybrid approach

would be more costly than either solution by itself, it would provide the best user

experience by combining the advantages of both systems.

8.2 Future Work

8.2.1 Extensions

Based on the sphere packing limitation mentioned above, a useful extension to our syn-

thetic data pipeline would be the creation of a procedural anatomical model, simulating

more accurately the geometry of tissue and bone, perhaps with user-specified parameters

to describe the type of anatomy generated. One promising solution to this challenge would

be to incorporate fractal geometry into the model, thereby fulfilling the dense space-filling

requirement.
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We can improve our automatic alignment solution by incorporating three dimensional

extensions of common 2D feature detectors, such as histograms of oriented gradients (Dalal

and Triggs, 2005), maximally stable extremal regions (Matas et al., 2004), and scale invariant

feature transforms (Lowe, 1999). An even more ambitious approach would be to train an

artificial neural network, using our synthetic datasets to provide the large quantity of data

needed to train such a solution.

Our optical surface tracking system can be modified and improved upon by incorporating

a number of possible extensions. As mentioned in the introduction to this project, we envision

combining our translational system with existing IMU-based rotational systems to achieve

a complete tracking solution. We have also alluded to several other extensions already, such

as a multi-camera approach to support more complex geometries, and a hybrid pressure pad

solution to achieve robust pressure sensing.

To take this system even further, we can imagine adding internal projectors to provide

visual feedback on the physical model itself. In this way cutting, painting, or drawing on

the surface would feel very real. High frequency flashing of the projector in sync with the

LEDs would allow this to work without interfering with the tracking system.

Another extension that would improve the user experience would be the addition of

an automatic identification capability supporting multiple 3D shells. This can be achieved

cheaply by leveraging the existing tracking camera to process QR codes, or any other visual

encoding scheme, placed on the inside of the shell. Another solution would be to embed

RFID tags within the shells.

Finally, we can imagine improving the flexibility of our system by incorporating an in-

ternal depth sensor, which would allow for physical deformations of the model surface and

perhaps eliminate the calibration process as well. Such a system may even allow support

of arbitrary shapes without a preexisting digital model, as they could be inferred from the

depth data.
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8.2.2 Applications

As the most versatile component of our work, our optical surface tracking system lends

itself to a number of potential applications beyond ultrasound simulation. For example, our

system could be used to facilitate training of other medical procedures. We can imagine

placing an LED at the tip of a mock scalpel to allow surgical students to practice incisions.

With the internal projector modification mentioned above, the system could simulate life-

like cut marks as the scalpel moves across the surface. One could even envision a scheme to

allow interaction with the resulting skin flaps, all the way up to stitching the patient back

up.

We can imagine applications beyond the medical realm as well. For example, an artist

might print a mask, then experiment with different painting techniques. A tattoo artist

might practice their craft on our system to get a feel for how to apply their designs to the

contoured surfaces of the human body. Another application might involve generating terrain

maps for strategic planning purposes, with the ability to quickly outline regions of interest

and identify optimal transportation routes.

Perhaps the best application would be one that is universal. We can imagine creating a

version of our system that is flexible enough to support any number of use cases. With the

rise in accessibility of 3D printing, an online marketplace could be set up to allow sharing of

special-purpose applications bundled with the appropriate 3D models.
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