
UNIVERSITY OF CALIFORNIA

Los Angeles

Visual Tracking with Spiking Neural Networks in an Oculomotor Controller for a

Biomimetic Model of the Eye

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Taasin Saquib

2022

© Copyright by

Taasin Saquib

2022

ABSTRACT OF THE THESIS

Visual Tracking with Spiking Neural Networks in an Oculomotor Controller for a

Biomimetic Model of the Eye

by

Taasin Saquib

Master of Science in Computer Science

University of California, Los Angeles, 2022

Professor Demetri Terzopoulos, Chair

Spiking neural networks (SNNs) are comprised of artificial neurons that, like their biological

counterparts, communicate via electrical spikes. SNNs have been hailed as the next wave

of deep learning as they promise low latency and low power consumption when run on

neuromorphic hardware. Current deep neural network models for computer vision often

require power-hungry GPUs to train and run, making them great candidates to replace

with SNNs. In this thesis, we develop and train an SNN-based foveation deep neural

network that enables a biomechanical model of the human eye to track a moving visual

target. Inspired by the ON and OFF bipolar cells of the retina, we use event-based data

flow in the SNN to direct the necessary extraocular muscle-driven eye movements. While

many SNNs are conversions of trained deep neural network architectures, we train our

SNN models from scratch using modified deep learning techniques. Classification tasks are

straightforward to implement with SNNs and have received the most research attention,

but visual tracking is a regression task. We use surrogate gradients and introduce a linear

layer to convert membrane voltages from the final spiking layer into the desired outputs.

Our SNN foveation network is noisier than the previously used deep neural network, but

it enhances the biomimetic properties of our virtual eye model and enables it to perform

reliable visual tracking.

ii

The thesis of Taasin Saquib is approved.

Sriram Sankararaman

Jonathan Kao

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2022

iii

To Ammu and Abbu,

for their constant support

and inspiration to be my best self.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Thesis Contributions . 2

1.2 Thesis Overview . 3

2 Related Work . 5

2.1 Neuromorphic Hardware . 5

2.2 Converting Artificial Neural Networks into SNNs 6

2.3 SNNs and Computer Vision . 7

3 The Task . 9

3.1 Retina . 9

3.2 LiNets . 11

3.3 Oculomotor Control . 13

4 Spiking Neurons . 15

4.1 Encoding Input Signals . 18

4.1.1 Rate Encoding . 20

4.1.2 Latency Encoding . 22

4.2 Outputs . 23

5 The SLiNet Model . 25

5.1 Architecture . 25

5.2 Training . 25

5.2.1 Number of Timesteps . 29

5.2.2 Surrogate Gradients . 29

v

5.2.3 Loss Calculation . 30

5.3 On Converting an ANN . 31

6 Experiments and Results . 32

6.1 Movements . 32

6.1.1 Fixation . 32

6.1.2 Smooth Pursuit . 33

6.1.3 Saccade . 33

6.2 Comparison with Human Eye Movement 35

6.2.1 Smooth Lateral Movement . 35

6.2.2 Saccade . 37

6.3 Spiking Analysis . 38

7 Conclusion . 41

7.1 Discussion . 41

7.2 Future Work . 42

A The Biomimetic Eye Model . 44

A.1 Ocular Organs and Muscles . 44

A.2 Oculomotor Control System . 44

B Mathematics of SNNs . 48

B.1 Circuit Model of a Spiking Neuron . 48

B.2 Loop Unroll . 51

B.3 Neuron Parameters . 51

References . 53

vi

LIST OF FIGURES

1.1 The biomimetic eye model . 2

2.1 Example data recorded from a DVS camera 6

3.1 Photoreceptor distribution on the retina . 10

3.2 Ray tracing in the eye model . 11

3.3 LiNet architecture . 12

3.4 Target movement and corresponding gaze correction 14

4.1 Artificial neuron model . 16

4.2 Spiking neuron model . 16

4.3 Demonstration of a Leaky Integrate-and-Fire (LIF) neuron 17

4.4 ONV and D-ONV for a moving target . 19

4.5 Rate encoding with Bernoulli trials . 20

4.6 Rate encoded ONV . 21

4.7 Negative spike inputs to a LIF neuron . 22

4.8 Latency encoded ONV . 23

4.9 Interpreting spike trains to classify inputs 24

5.1 SLiNet architecture . 26

5.2 Code comparison between a fully-connected ANN and SNN 27

5.3 Training and validation loss using ONVs . 28

5.4 Training and validation loss using D-ONVs 28

5.5 Derivatives of the Heaviside step and fast sigmoid functions 30

6.1 Fixation simulation with a SLiNet . 33

vii

6.2 Smooth pursuit eye displacement with different models 34

6.3 Saccade eye orientation with different models 36

6.4 Angular displacements from sinusoidal motion, compared to a human subject. 37

6.5 Angular displacements from saccadic motion, compared to a human subject 37

6.6 Angular velocities from saccadic motion, compared to a human subject . . . 38

6.7 Angular accelerations from saccadic motion, compared to a human subject . 38

6.8 Sample membrane voltage traces . 40

A.1 Diagram of the oculomotor control system 45

A.2 Shallow, fully connected pupil and lens controller 46

A.3 Deep, fully connected EO muscle controller 46

A.4 Foveation DNN architecture. A LiNet backbone is followed by a fully-connected

layer that outputs ∆θ and ∆ϕ. Diagram from (Nakada et al., 2019). 47

B.1 RC circuit representation of a LIF neuron 49

B.2 Unrolled computation graph for an SNN . 51

viii

LIST OF TABLES

6.1 Percentage of neurons activated in the LiNet vs the SLiNet 39

ix

ACKNOWLEDGMENTS

I would like to express my appreciation to all who made the work of this thesis possible.

First, I am grateful for Professor Demetri Terzopoulos’ support and guidance in designing

this project and providing invaluable feedback. I thank my colleagues in the UCLA

Computer Graphics & Vision Laboratory for their help and interactions. I also acknowledge

that the work of this thesis is built upon the work of Dr. Masaki Nakada who with Arjun

Lakshmipathi created the biomimetic eye model and with Honglin Chen created the

LiNets and data collection methods for training the oculomotor control system. My

thanks to Arjun and Masaki for their guidance and assistance.

x

VITA

2017 Full Stack Software Engineering Intern, Project Looma, Village Tech Solu-

tions, Palo Alto, California.

2018 Software Engineering Intern, Device Drivers, Nvidia, Santa Clara, Califor-

nia.

2019 Software Engineering Intern, Device Drivers, Nvidia, Santa Clara, Califor-

nia.

2020 B.S. (Computer Science and Engineering), University of California, Los

Angeles.

2020 Software Engineering Intern, Traffic Engineering, Splunk, San Jose, Califor-

nia.

2020–present Teaching Assistant, Computer Science Department, UCLA.

Taught CS 31 (Introduction to Computer Science I) under the direction of

Professor David Smallberg (Fall 2020).

Taught CS 32 (Introduction to Computer Science II) under the direction of

Professor David Smallberg (Winter 2021, Spring 2021).

Taught CS M51A (Logic Design of Digital Systems) under the direction of

Professor Richard Korf (Fall 2021).

2021–present Graduate Researcher, UCLA Computer Graphics & Vision Laboratory,

Computer Science Department, University of California, Los Angeles.

xi

CHAPTER 1

Introduction

The human visual system is an astounding computational machine. Photons impact the

retina and, through neural processing, enable the visual cortex to perform multiple visual

tasks quickly, with high precision, and using very little energy. Artificial neural network

(ANN) based computer vision algorithms have come far in recreating the performance

of the visual cortex in terms of accuracy, but they employ power-hungry GPUs that lag

behind the power and low-latency performance of the human brain.

Spiking neural networks (SNNs) (Jose et al., 2015), comprised of interconnected

spiking neurons that, like their biological counterparts, communicate via electrical spikes,

are hailed as the “third wave of deep learning.” This is because they feature a more

biologically-inspired neuronal model that consumes much less power than the standard

artificial neurons now commonly in use. Many traditional AI tasks can be achieved with

SNNs implemented using the appropriate hardware, which is referred to as “neuromorphic”

and currently takes the form of what are known as neuromorphic chips (Bouvier et al.,

2019).

This thesis explores the design and training of an SNN in a computer vision task. Our

work builds upon that of Lakshmipathi (2018) and Nakada et al. (2019) who developed

a biomechanical model of the human eye with a comprehensive set of ocular organs, as

well as a neuromuscular oculomotor control system for this realistic simulation model.1

Of specific interest in this thesis is one of the neural networks within the perception

subsystem of the oculomotor controller. The network, described in greater detail in the

1This model of the eye was a vast improvement over a simpler eye model created as part of the
biomechanical human musculoskeletal model developed by Nakada et al. (2018).

1

Figure 1.1: (Cross section of a detailed geometric model of the left eye. The black dots
on the retina indicate the positions of retinal photoreceptors. Image from (Nakada et al.,
2019).

paper by Nakada et al. (2021), was referred to as the foveation LiNet or locally-connected

irregular network. While the biomimetic eye model can synthesize realistic eye motion, the

“neurons” comprising the artificial neural networks in its oculomotor controller are only

high-level abstractions of biological neurons. This thesis aims for additional biological

realism through the use of spiking neurons interconnected to form SNNs. To this end,

we explore how to encode our floating-point signals into spike trains, which is the job of

photoreceptors in the mammalian retina. It remains unclear whether the visual system

uses rate or latency encoding (Rullen and Thorpe, 2001), both of which we consider in our

work. In addition, we train our SNNs on event-based data, which emulates the ON-OFF

bipolar cells of the retina. Our effort is aimed at enhancing the biological realism of the

eye model.

1.1 Thesis Contributions

More precisely, the contributions of the thesis are as follows:

1. We devise a novel foveation LiNet, based on SNNs, which we call the SLiNet, to

enable the oculomotor control of our biomimetic eye model. Unlike the previous

2

network for this model (Nakada et al., 2019), ours yields an event-based sensory

system that responds only to changes in the light intensities sensed by the eye rather

than to the absolute intensity values themselves. This is more biologically accurate

and creates a sparser input to the oculomotor controller.

2. To accomplish the above, we design an SNN architecture than can solve a regression

task, which is more difficult than the classification tasks to which SNNs have

typically been applied.

3. Unlike the typical deployment of previous SNNs, we train our SliNet from scratch.

To this end,

• we consider rate and latency encoding, the two most commonly used encoding

methods, and find the best encoding parameters for each method, and

• we use a surrogate gradient to solve the “dead neuron problem” and enable

the use of standard deep learning optimization techniques.

4. The work of Nakada et al. (2019) and the MS thesis of Lakshmipathi (2018) developed

the biomimetic eye model and demonstrated its biological accuracy by testing it on

different types of eye movements (saccade, fixation, and smooth pursuit). We use the

same experimental regimen to test our SLiNet’s performance on both conventional

and event-based data.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 surveys the relevant literature related to the use of SNNs in computer

vision.

Chapter 3 prescribes the visual tracking task of interest and presents the details of

the biomimetic eye model with which we work.

Chapter 4 compares artificial neurons to spiking neurons and explains how SNNs

3

operate, which includes exploring how to encode our inputs and interpret the output spike

trains.

Chapter 5 describes the architecture of our SNN as well as the associated training

techniques.

Chapter 6 reports our results and compares our SNN performance to that of the

previous LiNet architecture.

Chapter 7 presents our conclusions and suggests promising avenues for future work.

4

CHAPTER 2

Related Work

In this chapter, we review relevant prior research related to SNNs.

2.1 Neuromorphic Hardware

Currently, graphics processing units (GPUs), the workhorses of deep learning based

artificial intelligence using ANNs, are optimized for highly parallelized multiply-and-

accumulate (MAC) operations on floating-point numbers and consume large amounts of

power. By contrast, neuromorphic chips take advantage of the fact that spiking activation

functions only output 1’s and 0’s and hence operate with low power consumption. They

are also optimized for the asynchronous nature of spikes and can run new types of learning

algorithms.

Several major corporations are investing in the design and manufacture of neuromorphic

chips. Intel’s Loihi (Davies et al., 2018) is on its third generation, and IBM, Samsung,

and other large companies are betting on the future of this sector. However, because this

hardware is still difficult to acquire, we run our SNNs on a GPU.

In addition to neuromorphic chips, neuromorphic sensors are also under development.

Vision has been the sensory modality to receive the most attention, and dynamic vision

sensor (DVS) cameras, or “silicon retinas,” are slowly entering more and more systems.

Instead of capturing data one frame at a time, these cameras simply record if pixels in

their sensory arrays have gotten brighter or darker. If such a change occurs at any pixel,

the camera outputs a timestamped “event.” The DAVIS sensor (Brandli et al., 2014) is

one example of a DVS camera. New spiking datasets are being created with DVS sensors,

5

(a) (b)

Figure 2.1: This dataset records a DVS camera moving around a collection of shapes.
The camera has moved slightly between the frames in (a) and (b). The resulting changes
in pixel intensities are shown in (b), where pixels that have brightened are marked in red
while those that have darkened are marked in blue. Images from (Mueggler et al., 2017).

as shown in Figure 2.1.

2.2 Converting Artificial Neural Networks into SNNs

Many researchers want the benefits of SNNs, but they also prefer to avoid training them.

This has prompted research into converting trained artificial neural networks (ANNs)

into SNNs. The main advantage of this approach is that one need not work around the

non-differentiability of the spiking activation function and can effectively train a model

with standard deep learning techniques.

Diehl et al. (2015) are credited with developing early conversion techniques for fully

connected networks. Now, almost any existing neural network layer can be converted into

a spiking equivalent, including convolution and softmax layers (Rueckauer et al., 2017).

These converted models may have slightly higher error rates, but they can offer about a

2x reduction in the number of operations when compared to the original ANNs.

In this thesis, however, we aim to train SNNs directly rather than convert them from

trained ANNs. We take this approach not just because converted SNNs typically require

neurons to have high spiking frequencies, which results in the consumption of more power,

thereby undermining the benefits of using SNNs in the first place. More importantly, we

6

aim to explore event-based data in a biologically plausible setting. Converted models are

typically trained on data with events calculated after the fact and they perform poorly

when fed more realistic spiking data from a DVS sensor.

We also open the door to the use of more biologically-inspired, unsupervised learning

techniques to train our model in the future. In particular, spike timing dependent

plasticity (STDP), or Hebbian learning, has shown great promise (Kheradpisheh et al.,

2018). Winner-take-all (WTA) circuits that make use of inhibition are also of much

interest.

2.3 SNNs and Computer Vision

Traditional computer vision tasks are being addressed with SNNs. MNIST handwritten

digit classification remains a popular benchmark (Diehl and Cook, 2015), but SNNs

also perform well on more complex datasets such as ImageNet. Sengupta et al. (2019)

develop an SNN based on VGGNet and achieve a top-5 error rate of 30.04, whereas the

state-of-the-art ANN achieves a top-5 error rate of 29.48. Other complex models such

as ResNet have been trained to work directly with spiking input from a DVS camera

(Maqueda et al., 2018).

Most computer vision research with SNNs to date has chosen to work with classification

problems. It is often stated in the literature that SNNs are easier to apply to classification

problems than to regression problems. This is due to the fact that there is consensus on

how to interpret spike trains so as to classify an input, but there are many choices in how

to interpret spike trains to represent continuous quantities. The only published work on

regressions with SNNs is by Gehrig et al. (2020) and Kim et al. (2020). However, their

SNN models were converted from a trained ANN. We train our SNN from scratch and

offer an alternative approach to creating an output layer for a regression problem.

Our eye model has a biomimetic, nonuniform photoreceptor distribution, whereas the

pixels in images from datasets such as MNIST and CIFAR-10 are conventionally arranged

in structured arrays. Permutation invariant MNIST, or PI-MNIST (Le et al., 2015), is an

7

interesting dataset that alters the arrangement of pixels so that standard convolutional

layers cannot be used to classify digits and serves as the only benchmark that remotely

resembles the unstructured input of the retinal model of interest in this thesis.

8

CHAPTER 3

The Task

Our goal is to create an SNN that, when properly trained, enables the biomimetic eye

model of Nakada et al. (2019) to track a 3D object through space. The visual target of

choice is a white ball that moves against a background whose intensity varies in different

shades of grey due to changing illumination. The eye model’s oculomotor controller has

four main parts, one of which we implement as an SNN. We test our implementation

by checking that our modified controller performs certain movements with biological

accuracy and that it can successfully track the target. In this section, we provide more

details about the eye model and its oculomotor controller and focus on the retina and the

foveation deep neural network (DNN) that we replace with an SNN.

3.1 Retina

Like a biological retina, our virtual retina is situated at the back of the eye and has

photoreceptors that sense light from the scene. Each photoreceptor collects a red, green,

and blue color value. The N photoreceptors are nonuniformly distributed according to a

noisy log-polar distribution

dk = eρj

cos(αi)

sin(αi)

+

N (µ, σ2)

N (µ, σ2)

 , for 1 ≤ k ≤ N, (3.1)

where N (µ, σ2) denotes IID-sampled Gaussian noise of mean µ and variance σ2. This

distribution places most of the photoreceptors near the center of the retina, forming a

foveal region that supports high acuity central vision, with progressively diminishing

9

Figure 3.1: The photoreceptors on the retina are arranged according to a 2D noisy
log-polar distribution, which is mapped to the hemispherical fundus of the eyeball.

visual resolution towards the retinal periphery.

A visualization of the photoreceptor distribution on the retina is shown in Figure 3.1.

Here, we have chosen N = 14,400 photoreceptors in (3.1), incrementing ρj and αi in steps

of 1 such that 0 ≤ ρj ≤ 40 and 0 ≤ αi ≤ 360. The additive Gaussian noise distribution has

mean µ = 0 and variance σ2 = 0.0025. Using fewer photoreceptors speeds up simulation

and training, but the number of photoreceptors can be scaled up to match human retinas

(which have about 6 million cone photoreceptors supporting normal color vision and about

120 million rod photoreceptors supporting monochrome low-light vision (Purves et al.,

2001)).

To compute the amount of light registered by each photoreceptor, in accordance with

the ray tracing procedure that is well-known in computer graphics (Shirley and Morley,

2003), rays are cast from the positions of photoreceptors on the retinal surface, refracted

through the deformable lens of the eye, through the pupil, again diffracted through the

cornea, and out into the 3D environment to recursively intersect with environmental

10

Figure 3.2: Rays cast from the positions of the photoreceptors through the finite-aperture
pupil and out into the scene to compute the irradiance responses of the photoreceptors
according to the ray tracing process. Image from (Nakada et al., 2019).

objects in the scene and sample the lightsources (Figure 3.2). The computed color

values returned from the recursion determine the irradiance at each photoreceptor, thus

resulting in 14,400 RGB values. We stack the RGB values of each photoreceptor into a

3N = 43,200-dimensional vector, which Nakada et al. (2018) refer to as the optic nerve

vector (ONV).

3.2 LiNets

The next step is one of visual processing analogous to that taking place in the visual

cortex of the brain. Convolutional neural networks (CNNs), which abstractly model the

connectivity of neurons in the visual cortex, have enabled much progress in computer

vision. In CNNs, each neuron is connected only to its neighboring neurons in the previous

layer, thereby forming what are known as “receptive fields”. The stylized, highly regular

receptive fields of conventional CNNs exploit the fact that ordinary images are structured

as rectangular arrays of pixels.

By contrast, the biomimetic photoreceptor distribution on the retina in our eye model

is an irregular, foveated distribution, and the ONV exiting the retina is simply a vector

of photoreceptor responses rather than a 2D pixel-array image. Therefore, the ONV

11

Figure 3.3: The LiNet architecture. We have a 14,400 photoreceptor retina that creates
the input ONV. Neurons at the first layer combine input from a handful of photoreceptors.
Because photoreceptors are more densely packed towards the center of the retina, receptive
fields get larger towards the periphery. Neurons in consecutive layers combine the fields
of view from previous layers to slowly get closer to seeing the full scene.

is incompatible with CNNs. Consequently, Nakada et al. (2019) generalized CNNs by

introducing locally-connected irregular networks or “LiNets” (Nakada et al., 2021). The

LiNet architecture is illustrated in Figure 3.3. Neurons have associated positions within

the visual field. According to these positions, each neuron is connected only to the n

nearest neurons in the previous layer, thus forming overlapping circular receptive fields at

the retinal level, which are shown as white circles in the figure. The number of neurons

in successive layers is scaled down by a factor f .

Like CNNs, LiNets consume far less memory than comparably-sized fully-connected

networks, thus accommodating retinas with large numbers of photoreceptors. However,

unlike CNNs, the receptive fields of neurons within a given layer do not share weights

(i.e., they are not convolutional), so the memory requirements of LiNets are generally

greater than those of CNNs.

12

3.3 Oculomotor Control

In addition to the retina, lens, pupil, and cornea, the biomimetic eye model includes the 6

extraocular (EO) contractile muscles. The cornea and deformable lens focus visual targets

onto the retina while the EO muscles drive the eye movements necessary to foveate and

track visual targets in motion. Each muscle requires a time-varying motor activation

signal that stimulates it to contract. An oculomotor controller is responsible for producing

the muscle activation signals that drive the eye movements needed to accomplish the

visual task of interest.

Additional details about the eye model and its oculomotor control system are provided

in Appendix A. The latter comprises a sensory subsystem and a motor subsystem, as

shown in Figure A.1. The ONV is input to the foveation DNN, which is implemented as a

LiNet. This foveation LiNet outputs 2 values, ∆θ and ∆ϕ, that represent a desired change

in the horizontal and vertical gaze angles relative to the eye’s current gaze direction.

Figure 3.4 presents an example of how we encode the motion of a white ball visual target

with these two gaze angles. The neuromuscular DNN is then fed the outputs of the

foveation LiNet and outputs an activation signal for each of the 6 EO muscles to induce

the required eye movement.

There are two viable methods for synthesizing eye movements—neuromuscular control

as employed by Nakada et al. (2019) and inverse dynamic control. Because this thesis

deals specifically with the foveation LiNet, we synthesize eye movements using inverse

dynamics control. This starts with computing the angular position in which the eye

needs to be in order to keep up with the moving visual target. Given the current angular

position and desired angular position, we can compute the angular acceleration needed to

complete the movement. From the angular acceleration we can compute the torque that

the muscles need to produce and, finally, the muscle activations necessary to produce the

desired torque. Although inverse dynamics control is less realistic than neuromuscular

control, our goal is simply to prove that our SNN-based foveation network—dubbed the

SLiNet—matches the performance of the existing LiNet foveation network.

13

(a) (b)

Figure 3.4: The ball moves from one point (a) to another (b). The red line reveals
the current gaze direction, which shifts to the left and slightly downward between the
two frames. This horizontal and vertical movement is encoded in the angles θ and ϕ,
respectively.

To this end, we will test our SLiNet in accordance with the experimental regimen of

Nakada et al. (2019). This involves moving a visual target in three different ways and

noting if the eye can successfully track it. The eye movements are defined as follows:

1. Fixation: The eye foveates the target while it remains fixed in space. The eye

appears still and stable but may make small oscillatory movements. We test that

these small oscillations exist as they enhance the biological plausibility of the model.

2. Saccade: A quick eye movement that brings the visual target from peripheral vision

to the central, foveal region of the retina. We test the extent to which our trained

foveation SLiNet yields angular displacement, velocity, and acceleration similar to

the previous LiNet model.

3. Smooth pursuit : Once the visual target is fixated upon, the eye can pursue the

target as it moves freely in space, including approaching or receding from the eye.

The trajectory of the eye movement should include realistic oscillations. We track

the orientation of the eye through time to make sure that it successfully follows the

target. Good performance here is an indication that the eye can track the target

through many different trajectories.

14

CHAPTER 4

Spiking Neurons

In this chapter, we introduce the basics of spiking neural networks. Additionally, we

detail how to encode inputs to spiking neurons and interpret their outputs to perform a

regression.

We first define the popular ANN currently in use. The corresponding neuron model is

summarized in Figure 4.1. In an ANN with L layers, W l, for l ∈ 2, . . . , L, is the weight

matrix connecting layer l − 1 to layer l. We multiply the output of the previous layer,

xl−1, with W l, add biases bl:

al = W lxl−1 + bl, (4.1)

and finally apply a rectified linear unit (ReLU) activation function:

xl = max(0, al). (4.2)

Before moving on to a spiking neuron, which is illustrated in Figure 4.2, we define some

terms. A synapse refers to the connection between two neurons which has an associated

weight w that is tuned during training. Looking at a specific neuron, all neurons in the

previous layer that are connected to it are referred to as presynaptic neurons and all

neurons connected to it in the next layer are postsynaptic neurons. The inputs are time

varying and in the form of spike trains, which are sequences of 1’s and 0’s. All spike trains

in the network are the same length, which is treated as a hyperparameter.

15

Figure 4.1: Internals of a conventional artificial neuron. The inputs, weights, and output
are usually floating point numbers, whose multiplication requires multiply and accumulate
(MAC) instructions, which typically consume considerable power.

Figure 4.2: Internals of a spiking neuron. Each weight can only be multiplied by a 1 or a
0, eliminating the need for expensive MAC instructions.

16

Input Spikes

0

1

Vo
lta

ge
 (V

)

Membrane Voltage

0 3 6 9 12 15 18 21
Time

Output Spikes

Figure 4.3: Demonstration of a LIF neuron. Input spikes to the neuron are at the top,
the neuron’s membrane voltage is in the middle, and output spikes are at the bottom.
The threshold voltage is denoted by the dashed red line. We verify that the membrane
voltage increases when there is an input spike and that there is an output spike when
the membrane voltage crosses the threshold. A reset occurs after each output spike,
represented by the steep decrease in the membrane voltage. There is also a slight leak of
membrane voltage in the absence of any input spikes (such as around timestep 6).

Each spiking neuron maintains a state variable known as the membrane voltage

U(t) = βU(t− 1)︸ ︷︷ ︸
decay

+WX(t)︸ ︷︷ ︸
input

−S(t− 1)UT︸ ︷︷ ︸
reset

, (4.3)

where matrix W stores the weights and tensor X stores the presynaptic inputs, and where

the spiking activation function is S(t).

S(t) =

1 if U(t) > UT

0 otherwise

= H(U(t)− UT) (4.4)

U(t) used to calculate the membrane voltage of a neuron at timestep t+1. If a presynaptic

neuron spikes, we add the corresponding synapse weight to this membrane voltage. If no

spikes are input to the neuron, the membrane voltage decays exponentially. This decay

17

is controlled with the hyperparameter β. If U exceeds a certain threshold UT , then the

neuron outputs a spike and resets U to zero. This spiking behavior is captured by the

Heaviside step function, represented by H.

The membrane voltage equation is used by snnTorch (Eshraghian et al., 2021), a

Python package built on top of PyTorch, which we employ in our work. This neuron

model is known as the leaky integrate-and-fire (LIF) neuron, so named because it “leaks”

voltage in the absence of an input. Figure 4.3 demonstrates how membrane voltage is

calculated with an example LIF neuron.

To summarize, an SNN differs from the conventional ANN in two fundamental ways.

First, we replace the activation function with one that only outputs 1’s and 0’s. Second,

we have inputs that vary over time. More detailed derivations of SNN theory can be

found in Appendix B.

4.1 Encoding Input Signals

As stated previously, our ONV is a vector of dimension 43,200. SNNs, however, expect

inputs that vary over time. In addition, the floating point numbers that represent the

RGB light intensity at any retinal photoreceptor need to be meaningfully converted into

“spikes;” i.e., a series of 1’s and 0’s. This is known as converting data from the “frame”

domain to the “spiking” domain, and we explore two main conversion schemes.

In addition to generating spiking inputs, we also introduce what we refer to as the

Delta-ONV, or D-ONV for short; instead of having the eye see light intensities at the

current timestep, it sees the difference between the current and previous ONV values,

as shown in Figure 4.4. In other words, the eye detects only the changes in the scene

that manifest in intensity changes at the retinal photoreceptors. These changes are also

referred to as “event-based” data. Note that the D-ONV exhibits positive values at

photoreceptors that register brighter and negative values if they register darker. This

results in sparse input data as the eye need not repeatedly re-process what it has already

observed. The D-ONV is more biologically accurate, since ganglion cells in the retina

18

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Previous ONV

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Current ONV

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) D-ONV

Figure 4.4: We map ONV values collected from a scene by the photoreceptor distribution.
Note that ONV values are in the range [0, 1] while D-ONV values are in the range
[−1, 1]. The target has moved from one position in (a) to another in (b). (c) shows the
corresponding D-ONV. The values darken where the target was in (a) and get brighter at
the target’s location in (b).

19

0

0.5

0 3 6 9 12 15 18
Time

1

Figure 4.5: Demonstration of rate encoding with Bernoulli trials. From top are encoded
data values of 0.0, 0.5, and 1.0.

emit spikes only when there is an intensity change in the field of view (Tayarani-Najaran

and Schmuker, 2021).

Next we review the two most popular encoding methods, rate and latency encoding. It

is still unknown exactly how neurons encode various stimuli into spikes, but it is believed

that each method is used in different parts of the brain, including in the visual cortex.

Wang et al. (2016) find that retinal ganglion cells use different encoding methods for

different tasks. We empirically found that rate encoding performed better than latency

encoding on our object tracking task.

4.1.1 Rate Encoding

Rate encoding attempts to encode a neuron’s firing frequency. Each input value to the

encoder lies in the range between 0 and 1, representing the probability that the neuron

will spike at a given timestep. Then, at each timestep, we run a Bernoulli trial with the

given probability to determine if the neuron will spike. For example, if our photoreceptor

intensity value was 0, the neuron would never spike. On the other hand, a value of 1

would create spikes at each timestep. A value of 0.5 would result in approximately half of

20

0 3 6 9 12 15 18
Time

0

500

1000

1500

2000

Ph
ot

or
ec

ep
to

r

Figure 4.6: Rate encoding of a subset of photoreceptors from the ONV in Figure 4.4a.
Each horizontal line represents the spiking behavior of one photoreceptor. Only the
photoreceptors with nonzero inputs are spiking, and we can see different spike rates
corresponding to different light intensities.

the timesteps containing a spike. We show these examples over 20 timesteps in Figure 4.5.

Each of our RGB color channels are already in the range of 0 to 1, so they can directly

be rate encoded. In Figure 4.6 we present a subset of the input spikes that result from

rate encoding the ONV from Figure 4.4a. We can see a few different firing rates in the

figure, with excited neurons firing at every timestep and other neurons not firing at all.

With the D-ONV, however, we have values in the range of -1 to 1. This is a problem

because we cannot have a negative probability assigned to whether or not an input neuron

will spike. The solution is to take the absolute value of the probability, and if a spike is

generated, it will carry a value of -1 instead of 1. This means that neurons in the next

layer will decrease their internal voltages if they receive a spike with value -1. Figure 4.7

shows what happens when a neuron receives negative spikes as input.

The inputs to the rate encoder can also be scaled up before being turned into spikes.

This is referred to as the gain, which we treat as a hyperparameter. For example, given

gain g and input x, our new input becomes g × x. Values above 1 are clipped to 1.

21

Input Spikes

1

0

1

2

Vo
lta

ge
 (V

)

Membrane Voltage

0 3 6 9 12 15 18 21
Time

Output Spikes

Figure 4.7: A LIF neuron that receives both positive (red) and negative (blue) spikes
as input. The membrane voltage increases with positive input spikes and crosses the
threshold voltage to output spikes. Around timestep 5 the neuron resets, but there is also
another input spike. This spike adds to the membrane voltage, causing it to stay above
the threshold after the reset. When the negative spikes arrive as input, the membrane
voltage decreases.

Larger gain values seemed to create a smoother decrease in loss and better training

performance. This makes sense intuitively because more spikes are created in the input

layer, giving downstream neurons more opportunities to fire. However, larger gain values

also lead to higher validation loss and result in models that cannot track the target during

inference. We limit the amount of gain to 2.0, meaning that photoreceptors with values

0.5 and above spike at every timestep.

4.1.2 Latency Encoding

Latency encoding focuses on the timing of spikes rather than the spiking frequency.

Each neuron is allowed to fire once in the simulated time interval; neurons with higher

probabilities of firing emit their spike earlier than neurons with lower probabilities. This

encoding method results in sparser inputs to the SNN when compared to rate encoding

and, consequently, also makes it difficult for the model to converge.

22

0 3 6 9 12 15 18
Time

0

500

1000

1500

2000

Ph
ot

or
ec

ep
to

r

Figure 4.8: Latency encoding of a subset of photoreceptors from the ONV in Figure 4.4a.
Each horizontal line represents the spiking behavior of one photoreceptor, which spikes
once in the 20 timestep interval. Excited photoreceptors spike earlier than less excited
ones, which spike later.

Figure 4.8 contains spikes that result from latency encoding the ONV from Figure 4.4a.

In the figure, we see that very excited neurons fire at the first timestep and partially

excited neurons fire sometime afterwards. The spikes at the last timestep represent inputs

of 0.0.

4.2 Outputs

A problem associated with using SNNs is related to interpreting the output spike trains.

For classification problems, each output neuron is associated with one possible class. The

output spike trains are then integrated over a number of timesteps and the output label

is that of the neuron with the most spikes, as illustrated in Figure 4.9.

Our application in this thesis, however, takes the form of a regression problem that

involves outputting predictions for modifying two gaze angles. Thus far, SNN research

has focused on classification as there is no standard way to interpret spikes into floating

point values.

23

Figure 4.9: An example on how spike trains can be interpreted for the purposes of a
classification task. Here, each spike train is integrated to count the spikes during a time
interval. These counts are then passed to a softmax layer. Each neuron is assigned to a
possible class, and the predicted label is that of the neuron with the most spikes.

To solve this regression problem, we utilize a linear layer to transform outputs from

our SNN into the desired angular modifications ∆θ and ∆ϕ. One option would be to

consolidate the output spike train somehow, such as with a sum or average, and then

normalize the values. A technique that has not been explored much, but is suggested

in the snnTorch package, is to utilize the membrane voltages of the last layer. We pass

each neuron’s membrane voltage at the last timestep through a linear transformation that

outputs our two angular changes. This technique helps with backpropagation learning, as

the network can learn what membrane voltages it should target to have at the end of the

computation. Note that the network outputs values at each timestep, but our predicted

values are the model’s outputs at the final timestep.

24

CHAPTER 5

The SLiNet Model

In this chapter, we discuss how the architecture of our foveation DNN is based on that of

the LiNet, which was described in Section 3.2.

5.1 Architecture

We base our SNN architecture on the LiNet that was designed for this task by (Nakada

et al., 2021). The existing LiNet DNN has 5 locally-connected layers plus one final

fully-connected layer, as illustrated in Figure A.4. Each layer has 1/5 the number of

neurons of the previous layer.

To build our spiking LiNet, or SLiNet, we start with a 4 layer foveation LiNet and

replace the ReLU units with spiking neurons. We retain the fully-connected output layer

to transform the membrane voltages into the two gaze angles. Our SLiNet model is

summarized in Figure 5.1. We compare code samples implementing an ANN and an SNN

in Figure 5.2.

5.2 Training

Here we go over the various decisions made while training our SLiNets.

Our training data set consists of 22.5k data points. We use 20k to create a training

set and set aside 2.5k for validation. We do not create a testing set as we evaluate our

work through the simulation of the eye model. The data points are collected from the

eye model itself. It is kept in a fixed position, looking forward. The ball visual target is

25

Figure 5.1: Our spiking foveation LiNet architecture, the SLiNet. The first four layers
reflect that of the LiNet, but employ spiking neurons (yellow) rather than the conventional
neurons with ReLU activation functions. The fourth layer passes the membrane voltages
through a linear transform, which produces an output of dimension two, representing the
changes in gaze angles ∆θ and ∆ϕ.

moved to random points in the field of view, and the corresponding ONVs are collected.

The labels are the angular displacement between the eye’s current gaze direction and

the direction of the ball in the field of view. To create our D-ONV data set, we simply

subtract each ONV from the previous one.

For the LiNet, we use a factor f of 5, meaning each subsequent layer has one-fifth

the number of neurons as the previous layer. A number was not reported for k, the

number of inputs combined at each neuron. We conducted a hyperparameter sweep and

use a value of 25. We re-trained the LiNet since we did not have access to the previously

trained model. Training was done with a batch size of 16 and a learning rate of 0.001.

No regularization was added to the model, and the weights were initialized with He

initialization. The same hyperparameter values are used when training our SLiNet.

We train our models for around 100 epochs, which is about when the loss values

start to plateau. We plot the training and validation losses for both a 5-layer LiNet

26

1 def forward(self , x):

2 x = self.fc1(x)

3 x = torch.relu(x)

4

5 x = self.fc2(x)

6 x = torch.relu(x)

7

8 # Output layer

9 out = self.fc3(x)

10 return out

(a)

1 def forward(self , xTensor):

2 # Init LIF Layers to replace Relu

3 mem0 = self.lif1.init_leaky ()

4 mem1 = self.lif2.init_leaky ()

5

6 out = None

7

8 for t in range(numSteps):

9 x = xTensor[t]

10

11 x = self.fc1(x)

12 x, mem1 = self.lif1(x, mem1)

13

14 x = self.fc2(x)

15 x, mem2 = self.lif2(x, mem2)

16

17 # Output layer

18 out = self.fc3(mem2)

19 return out

(b)

Figure 5.2: Code comparison between a fully-connected ANN (a) and SNN (b). Differences
in (b) include the addition of spiking neurons, time-varying input, and the use of a linear
transform that transforms membrane voltages from the last spiking layer. Note that
“lif” is a layer of spiking neurons and that “fc” is a fully connected layer. A LIF neuron
outputs a tuple with two values: a spike (or a lack thereof) and the current membrane
voltage.

and our 4-layer SLiNet. Figure 5.3 shows plots for each model trained with the ONV

and Figure 5.4 shows plots for each model trained with the D-ONV. In both plots we

can see that the LiNet achieves loss values one order of magnitude smaller than the

spiking models. However, the spiking models still converge to low-loss values. The LiNet

validation loss is much higher when using the D-ONV, which may indicate that it will

have trouble generalizing to our test scenarios.

We treat β as a hyperparameter, although it can also be trained in different ways.

We choose not to tune it on a per-layer or individual neuron basis with backpropagation.

However, we do treat the threshold voltage for each neuron as a trainable parameter. By

default, all neuron thresholds are set to 1.0, but we find that randomly initializing these

thresholds to values in the range [0, 1] yields the best results.

When a neuron outputs a spike, we can either reset the membrane voltage to zero

27

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

 -
M

SE

LiNet training loss
LiNet validation loss
SNN training loss
SNN validation loss

Figure 5.3: The LiNet converges very quickly and achieves very low loss values. There is
no indication of overfitting from either model as the validation losses continue to decrease
with the training losses.

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

0.15

0.20

Lo
ss

 -
M

SE

LiNet validation loss
LiNet validation loss
SNN validation loss
SNN validation loss

Figure 5.4: When using the D-ONV, the LiNet again converges quickly, but has high
validation loss, whereas our SLiNet still converges to reasonably low loss values.

28

or subtract the threshold voltage from the current membrane voltage. We refer to these

options as “reset” and “subtract,” respectively. With the subtract method, the neuron

will have a non-zero membrane voltage if it had accumulated a large amount of voltage

before the spike. On the other hand, the resetting method results in sparser spiking and

potential energy savings, but it presents a bigger challenge to learning as it is more lossy.

We use the subtraction method in our neurons.

5.2.1 Number of Timesteps

The length of the spiking input, otherwise referred to as the number of timesteps, is a

hyperparameter of our SLiNet. This hyperparameter determines how many timesteps

each neuron is afforded to accumulate voltage and emit spikes. More timesteps allow more

downstream neurons to fire, which may help computation, but will also consume more

energy to run. Conversely, models using a lower number of timesteps may train quickly,

but they will have difficulty converging to a low enough loss value. The typical number of

timesteps ranges from the hundreds to thousands. After conducting a hyperparameter

sweep, we empirically found that 20 timesteps was enough for our model to converge.

Higher numbers of steps were more difficult to train and did not seem to affect performance.

5.2.2 Surrogate Gradients

On the backpropagation pass, we encounter the Heaviside step function through our

spiking activation function. Its local derivative is 0 everywhere except for the time of the

spike, where it is infinite. This is the main barrier to deep learning with spiking neural

networks, as our gradient will either become 0 or infinity after reaching this function on

the backward pass. snnTorch handles this by passing through the gradient when there is a

spike and 0 when there is not. This enables some learning, but is not good enough for our

task. We experimented with surrogate gradients, which are functions that approximate

the Heaviside step function but are differentiable everywhere (Neftci et al., 2019). The

spiking activation is still used in the forward pass, but the surrogate gradient is used on

29

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: We compare the Heaviside step and fast sigmoid functions (blue) and their
derivatives (red). The derivative of the Heaviside step function is 0 everywhere except at
the location of the threshold, where it is infinity. This is problematic during backpropaga-
tion, where the derivative will either be set to zero or explode. By contrast, the derivative
of the fast sigmoid function is smooth and allows gradients to flow through the neuron.

the backward pass.

The approximation of choice is the fast sigmoid function, so named as it is faster to

compute than the standard sigmoid function. The function and its derivative are plotted

in Figure 5.5. We find that our model fails to converge without the use of a surrogate

gradient.

5.2.3 Loss Calculation

The SLiNet computation graph can be unrolled exactly like a recurrent neural network

(RNN), so backpropagation through time (BPTT) is used during training. Specifics of

the unrolled computation graph can be found in Figure B.2. The SLiNet can also be

encouraged to reach correct outputs at earlier timesteps by collecting the output from

30

each timestep, calculating the loss at each timestep, and summing all of these losses

together. This unfortunately requires more memory than our GPU has capacity for, so

we could not experiment with this method. Because our model required a relatively low

number of timesteps to run, we utilized BPTT and looked back through all 20 timesteps.

5.3 On Converting an ANN

The ideas from this chapter are relevant only if one is training a SLiNet from scratch, which

is the approach taken in this thesis. However, we did want to compare the performance of

our trained SLiNet to that of one converted from an ANN. Inspired by Rathi et al. (2020),

we tried an approach where we first scaled the weights and biases as an initialization

step. We then trained this model on the data using the fast sigmoid surrogate gradient.

Unfortunately, this model failed to converge. Hence, we cannot report on differences

between training and converting a SLiNet on our object tracking task.

31

CHAPTER 6

Experiments and Results

We test the operation of our foveation SLiNet in two ways. First, we move the target

in three different trajectories and observe if the eye can track it. Second, we use data

collected from human subjects to see if the eye movements resulting from the use of our

SLiNet are realistic. Both types of tests are used in the work of Nakada et al. (2018).

We compare results using both the ONV and the D-ONV, with LiNet performance

treated as a baseline. In each subsection, we plot the angular displacement of the ball

with a black line and compare that to the movement generated by our 4-layer SLiNet

(blue line) and a 5-layer LiNet (orange line).

6.1 Movements

6.1.1 Fixation

This test does not involve any movement of the target. We keep the target fixed in a

location directly in front of the eye and observe how well it is kept fixated in the foveal

region of the retina. An unrealistic model would fixate perfectly on the ball and not move,

whereas a more realistic model allows the target to drift around the foveal region. These

small movements are similar to micro-saccades in human eyes where a movement in one

direction is balanced with a consecutive movement in the opposite direction. Figure 6.1

shows this type of movement generated from the use of our SLiNet using the D-ONV

across four timesteps.

32

(a) (b) (c) (d)

Figure 6.1: In (a), the ball has just entered the eye’s field of view. In (b) the eye has
fixated on the ball. In (c)-(d) we see micro-saccades in opposite directions, with a slight
movement in (c) and a correction to reach the position in (d).

6.1.2 Smooth Pursuit

The smooth pursuit test moves the target slowly in both the horizontal θ and vertical ϕ

directions. We observe if our SLiNet can successfully track this motion in both directions

at the same time; the results are summarized in Figure 6.2.

In Figure 6.2a, we compare the performance of the models when using the ONV.

The LiNet performs much better here, tracking the ball almost perfectly. The eye still

successfully tracks the target with the SLiNet, but it fixates on a position a few degrees

off from the center of the ball. In Figure 6.2b, we plot the eye gaze that results from

using the D-ONV. Here, the LiNet struggles to keep the target in the center of its field

of view while the SLiNet follows its motion almost perfectly. However, the motion that

results from using the SLiNet is also more noisy. This is a result of micro-saccadic motion,

where the eye moves slightly in one direction and then moves in the opposite direction in

the next movement to compensate.

Our SLiNet, albeit noisy, tracks the target successfully using either the ONV or

D-ONV.

6.1.3 Saccade

In a real saccade, the eye moves rapidly to fixate on a new location. To re-create this

movement, we allow the eye to fixate on the ball and then rapidly move it to a new point

within the eye’s field of view. The results are summarized in Figure 6.3. Note that the

33

5

0

5

10

de
gr

ee
s

Theta
Actual
SNN
LiNet

0 60 120 180 240 300 360 420 480
Time

10

5

0

5

10

de
gr

ee
s

Phi
Actual
SNN
LiNet

(a)

5

0

5

10

de
gr

ee
s

Theta
Actual
SNN
LiNet

0 60 120 180 240 300 360 420 480
Time

10

5

0

5

10

de
gr

ee
s

Phi
Actual
SNN
LiNet

(b)

Figure 6.2: We compare the smooth movement of the target with the eye’s gaze direction
using different foveation networks. (a) The LiNet performs better using the ONV, but
the SLiNet also keeps the target roughly in the center. (b) The SLiNet is far better at
tracking the target when using a D-ONV.

34

seemingly instantaneous jumps in the black line represent saccadic movement where the

ball rapidly moves to a new location in the eye’s field of view.

In Figure 6.3a, we input an ONV to our two models. They exhibit similar performances,

successfully tracking the target and keeping it focused on the center of the retina. When

using the D-ONV, shown in Figure 6.3b, we see a difference between the two models.

The SLiNet tracks the target better, exhibiting the same noisy motions as in the smooth

motion test; however, the LiNet causes the eye to drift away from the target after about

4 consecutive saccadic motions.

Our SLiNet, albeit noisy, tracks the target successfully. It also keeps the target in the

center of the fovea when using the D-ONV, unlike the LiNet.

6.2 Comparison with Human Eye Movement

In this section we compare the angular displacement, velocity, and acceleration of our eye

model to those of real human subjects. We use two movement patterns for the target to

do so. The human recordings for smooth movement come from the work of Schraa-Tam

et al. (2008), while the recordings for saccadic movement come from Thomas (1969).

6.2.1 Smooth Lateral Movement

We compare the angular displacements that result from moving our target back and forth

in the horizontal direction. As seen in Figure 6.4, this results in a sinusoidal curve. Both

models successfully track the ball when using the ONV, as seen in Figure 6.4b. The

motions are relatively smooth, whereas the curve from the human subject in Figure 6.4a

includes noisy movement. Our SLiNet produces these noisy movements when using the

D-ONV, shown in Figure 6.4c. The LiNet’s motion is not realistic and causes the eye to

drift away.

35

10

5

0

5

10

de
gr

ee
s

Theta
Actual
SNN
LiNet

0 25 50 75 100 125 150 175
Time

10

5

0

5

10

de
gr

ee
s

Phi
Actual
SNN
LiNet

(a)

10

5

0

5

10

de
gr

ee
s

Theta
Actual
SNN
LiNet

0 25 50 75 100 125 150 175
Time

10

5

0

5

10

de
gr

ee
s

Phi
Actual
SNN
LiNet

(b)

Figure 6.3: We compare the saccadic movement of the target with the center of the
eye’s gaze using the SLiNet and LiNet foveation networks. (a) Both models have similar
performance, and are able to track the ball accurately. (b) The LiNet drifts away from
the target after the fourth saccadic movement, whereas the SLiNet successfully tracks the
target with a slightly noisy movement.

36

(a)

0 50 100 150 200 250 300 350 400
Time

6

4

2

0

2

4

6

de
gr

ee
s

SNN
LiNet

(b)

0 50 100 150 200 250 300 350 400
Time

8

6

4

2

0

2

4

6

de
gr

ee
s

SNN
LiNet

(c)

Figure 6.4: Comparison of angular displacements on horizontal motion. (a) Human. (b)
ONV input. (c) D-ONV input.

(a)

10

5

0

5

de
gr

ee
s

Theta
SNN
LiNet

42 45 48 51 54 57
Time

5

0

5

de
gr

ee
s

Phi
SNN
LiNet

(b)

10

5

0

5

de
gr

ee
s

Theta
SNN
LiNet

42 45 48 51 54 57
Time

7.5

5.0

2.5

0.0

2.5

5.0

7.5

de
gr

ee
s

Phi
SNN
LiNet

(c)

Figure 6.5: Comparison of angular displacements on saccadic motion. (a) Human. (b)
ONV input. (c) D-ONV input.

6.2.2 Saccade

We again use saccadic motion, but this time note the angular velocity and acceleration

of our eye model’s movements in addition to the eye gaze direction. We compare these

movements to those of a real human subject.

When comparing angular velocities in Figure 6.6 and angular accelerations in Figure 6.7,

we see that our SLiNet produces very similar curves to those of the human subject. The

D-ONV traces deviate from the human traces slightly, but they have similar characteristics.

However, the angular displacements in Figure 6.5 are not as close to that of the human

subject. There is still a slight ”bump” in all of the curves, but not as pronounced as we

see in the human’s. It is important to note that the human curves do not have reported

37

(a)

0

1

2

3

de
gr

ee
s/

s

Theta
SNN
LiNet

40 41 42 43 44 45 46 47 48 49
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
gr

ee
s/

s

Phi
SNN
LiNet

(b)

0

1

2

3

de
gr

ee
s/

s

Theta
SNN
LiNet

40 41 42 43 44 45 46 47 48 49
Time

0.0

0.5

1.0

1.5

2.0

2.5

de
gr

ee
s/

s

Phi

SNN
LiNet

(c)

Figure 6.6: Comparison of angular velocities on saccadic motion. (a) Human. (b) ONV
input. (c) D-ONV input.

(a)

0.5

0.0

0.5

1.0

1.5

2.0

de
gr

ee
s/

s^
2

Theta
SNN
LiNet

40 41 42 43 44 45 46 47 48 49
Time

0.5

0.0

0.5

1.0

1.5

2.0

de
gr

ee
s/

s^
2

Phi
SNN
LiNet

(b)

1

0

1

2

de
gr

ee
s/

s^
2

Theta
SNN
LiNet

40 41 42 43 44 45 46 47 48 49
Time

0.5

0.0

0.5

1.0

1.5

de
gr

ee
s/

s^
2

Phi
SNN
LiNet

(c)

Figure 6.7: Comparison of angular accelerations on saccadic motion. (a) Human. (b)
ONV input. (c) D-ONV input.

amplitudes.

6.3 Spiking Analysis

Unfortunately, we did not have access to neuromorphic hardware to validate the low-power

benefit claims of SLiNets. Instead, we analyze the sparsity of computation in a SLiNet

versus the LiNet. We look at the number of neurons in each layer that have a non-zero

activation in the LiNet and the nuber of neurons that emit at least one spike in the

SLiNet.

Running our networks using the ONV examples from Figure 4.4a and Figure 4.4b,

we see a similar amount of activated neurons in the LiNet and SLiNet. However, with

38

Layer Number of Neurons LiNet Activations (%) SLiNet Activations (%)

1 8,640 32 2.4
2 1,728 21 7
3 345 33 17
4 69 39 45
5 13 31 -

Table 6.1: Comparing the percentage of neurons activated in each layer of the LiNet and
the SLiNet when using the ONV from Figure 4.4c as input. An activated neuron in the
LiNet outputs a non-zero value while an activated neuron in the SLiNet outputs at least
one spike in the simulated time interval. There are significantly fewer activated neurons
in the first few layers when using the SLiNet, thus demonstrating the sparse computation
that results from using the D-ONV and spiking neurons.

the D-ONV from Figure 4.4c, the SLiNet uses much fewer neurons in the first few layers,

which contain most of them. We summarize these results in Table 6.1 and present the

membrane voltages over time for a subset of neurons from the first layer of our SLiNet in

Figure 6.8.

39

Figure 6.8: A plot of membrane voltages over time for a subset of 100 neurons from the
first layer of our SLiNet, processing the ONV from Figure 4.4c. We see consistent spiking
patterns from certain neurons, similar to real neuron spike trains. Many neurons are also
not excited and have relatively flat voltage traces.

40

CHAPTER 7

Conclusion

This thesis has made two significant additions to the biomimetic eye model of Nakada

et al. (2018); Lakshmipathi (2018); Nakada et al. (2021). First, we replaced the foveation

LiNet with a more biologically plausible spiking neural network (SNN). Second, we

trained our SLiNet on event-based data, allowing the eye to detect changes in the scene

when performing visual tracking. In addition, our spike encoding method emulates the

processing done by neurons at the retinal level and allows for sparse computation when

compared to traditional ANNs. Finally, backpropagation training an SNN from scratch

to solve a regression task was a novel achievement.

7.1 Discussion

Across all of our tests, the SLiNet was successfully able to track the target when using

either the ONV or the D-ONV. The LiNet did not perform well with the D-ONV as

input. We note, however, that the use of a D-ONV with our SLiNet resulted in noisier

eye movements. This makes sense intuitively, as small movements are utilized to generate

events that the eye can process to confirm where the ball is. Without these micro-saccadic

movements, there would be fewer input events and the eye would likely struggle to track

the ball.

Our SLiNet did not perfectly match the training performance of the LiNet. The LiNet

converges very quickly and achieves lower training and validation loss values. However,

our SLiNet still converges to a usable state. The LiNet’s relatively large validation loss

was an indication that it would struggle while using the D-ONV.

41

Additionally, our SLiNet was able to run using a relatively low number of timesteps.

This is likely tied to the use of a gain factor in our rate encoding scheme, which encourages

more neurons to spike more frequently.

Training our SLiNet from scratch allows for the use of more natural spike encoding

methods when compared to converted SNNs. However, we were not able to comapare

our model’s performance with that of a converted SNN. Nevertheless, we believe that

our work lays the groundwork for exploring different learning mechanisms, which is more

general than tuning network parameters for a specific task.

7.2 Future Work

Many learning techniques are being studied outside of standard backpropagation. This

includes spike time dependent plasticity (STDP), which is inspired by a theory of how

neurons in the brain reinforce certain pathways (Diehl and Cook, 2015). More experimental

network layers, such as neuron ensembles with inhibition (Bekolay et al., 2014), can also

inspire more biologically plausible networks and help identify how certain parts of the

visual cortex work.

We are also interested in exploring why latency encoding was unusable with our model.

It potentially offers significant power savings over rate encoding and would be a valuable

topic for future research.

Related to the biomechanical human musculoskeletal model of Nakada et al. (2018),

we would like to explore the results of using two SLiNet-controlled eyes. The ONV as it

stands is still a rather gross approximation in binocular vision, since the nervous system

splits input from each eye into left and right regions at the optic chiasm. Exploring new

architectures to process the visual input in this manner may offer interesting solutions.

Finally, all the SNNs in our work were emulated using GPU hardware. Given access

to neuromorphic hardware, we would like to verify the power and latency improvements

proposed by our hybrid SNNs. We would also like to verify if our output spike interpretation

42

method scales to other regression problems.

43

APPENDIX A

The Biomimetic Eye Model

In this appendix we provide more detail about the biomimetic eye model of Nakada et al.

(2019).

A.1 Ocular Organs and Muscles

Light enters the eye through the pupil, and the iris is the muscle that controls the amount

of light that makes its way to the retina. The iris is controlled in the simulation by two

muscles: the pupillary sphincter, which constricts the pupil, and the pupillary dilator,

which opens up the pupil. The pupil constricts when there is a large amount of light and

it dilates when there is a low amount.

The cornea and lens serve to refract light to focus it onto the retina. Similar to the

iris, the lens lengthens and shortens. The lens lengthens to focus on more distant objects

and shortens to focus on closer objects.

Three pairs of extraocular (EO) muscles work together to move the eyeball with 3

degrees of freedom. One pair controls horizontal movement, one pair controls vertical

movement, and the last pair creates a twisting motion.

All the muscles are simulated as Hill-type models.

A.2 Oculomotor Control System

A diagram of the oculomotor control system is shown in Figure A.1.

A single muscle activation signal dilates and constricts the pupil. This activation

44

Figure A.1: Diagram of the eye’s oculomotor control system. Note that SNN in this
figure stands for “shallow neural network”, not spiking neural network, and DNN stands
for “deep neural network.” The system is comprised of a sensory subsystem (top) and
a motor subsystem (bottom). Using ray-tracing (a), rays are cast from the positions of
photoreceptors on the retina (b) into the 3D scene, from which a 43,200 dimensional
ONV of photoreceptor responses is computed. SNN 1 (c) and SNN 2 (e) input the ONV
and output pupil (d) and lens (f) muscle activations responsible for luminance and focal
accommodation, respectively. The ONV is also input to the foveation DNN 1 (highlighted
in red), which is implemented as a LiNet, and which we replace with an SNN in this
thesis. It outputs gaze angle changes, ∆θ and ∆ϕ, required to track a moving visual
target under observation within the field of view. These are input to the neuromuscular
DNN 2 (h), which outputs the activation signals that drive the EO muscles (i) to produce
the required eye movement. Diagram adapted from (Nakada et al., 2019).

45

Figure A.2: The shallow, fully connected neural network architecture (labeled SNN 1 and
SNN 2 in Figure A.1). Used to control the pupil and the lens. I1 to In represent the ONV
intensities that are input to the network. A change in muscle activation is output, which
is added to the current activation value and passed back as input for the next timestep.
Due to this connection the network is recurrent. Diagram from (Nakada et al., 2019).

Figure A.3: The 6 layer, fully connected neural network used to control the EO muscles
(labeled DNN 2 in Figure A.1). The current muscle activation values and angular
displacement of the target are input to the network. Like the controller depicted in
Figure A.2, this controller outputs changes in muscle activations and is recurrent. Diagram
from (Nakada et al., 2019).

46

21,600
10,800

5,400
2,700

⋮

⋮
⋮

⋮
⋮

⋮ ⋮⋮⋮
		∆

		∆

43,200-D ONV

1,350

⋮
⋮

⋮
⋮

FC

Figure A.4: Foveation DNN architecture. A LiNet backbone is followed by a fully-
connected layer that outputs ∆θ and ∆ϕ. Diagram from (Nakada et al., 2019).

is provided by a shallow fully connected neural network whose architecture is shown

in Figure A.2. Unlike the iris, the lens is modeled with damped springs. It uses the

same shallow neural network architecture as the iris and uses one activation value to

control lens curvature. The neural network that controls the EO muscles is a deep, fully

connected network, shown in Figure A.3. Like the other muscle controllers it outputs

an activation value for each of the six muscles inducing them to contract. The neural

networks are implemented as fully connected, recurrent models. Finally, the foveation

DNN is illustrated in Figure A.4.

47

APPENDIX B

Mathematics of SNNs

To implement an SNN, we use snnTorch (Eshraghian et al., 2021). The main way that

SNNs differ from conventional ANNs is that the activation function only outputs either

a 1 (a “spike”) or a 0 (no spike) and that inputs vary over time. Neurons maintain an

internal voltage that increases when their inputs spike and decays in the absence of input

spikes. These changes allow SNNs to replace floating point multiplications with simple

additions because synapse weights are only multiplied by 1’s or 0’s.

B.1 Circuit Model of a Spiking Neuron

The fundamental unit of an SNN is the leaky integrate-and-fire (LIF) neuron. It can be

represented as an RC circuit, as shown in Figure B.1. From the circuit, using Kirchoff’s

current law, we obtain

Iin(t) = IR + IC . (B.1)

Next, we derive equations for IR and IC by defining V , the voltage across the resistor,

and Q, the charge on the capacitor. Using Ohm’s law, I = V/R, and the relationship

Q = CUmem(t), we write equations for the resistor,

IR(t) =
Umem(t)

R
, (B.2)

and the capacitor,

IC(t) =
dQ

dt
= C

dUmem(t)

dt
. (B.3)

48

+

-

Figure B.1: The RC circuit representation of a leaky integrate and fire neuron.

Placing these definitions into our original equation, we obtain

Iin(t) =
Umem(t)

R
+ C

dUmem(t)

dt
(B.4)

and

RC
dUmem(t)

dt
= −Umem(t) +RIin(t). (B.5)

The units of the RHS are in voltage, while the term dUmem(t)
dt

is in units of voltage/time.

Therefore, the units of RC must be in time, and we refer to this as the time constant τ .

This is a standard ordinary differential equation. Solving it analytically to determine that

Umem(t) = U0e
−t
τ would not be useful in a discrete-time neural network. Instead, starting

from

τ
dU(t)

dt
= −U(t) +RIin(t), (B.6)

we use the definition of the derivative to write

τ
U(t+∆t)− U(t)

∆t
≈ −U(t) +RIin(t) (B.7)

and, ultimately,

U(t+∆t) ≈ U(t) +
∆t

τ
(−U(t) +RIin(t)). (B.8)

49

With the above, we achieve the desired neuron model with a membrane potential

that increases with input current and decays in the absence of any input. The equation

involves many hyperparameters, which would be difficult to tune. Therefore, the snnTorch

package simplifies the equation as follows:

U(t+∆t) = (1− ∆t

τ
)U(t) +

∆t

τ
RIin(t). (B.9)

We remove a term by assuming that Iin(t) = 0, as this input current will be replaced by

the presynaptic inputs to the neuron, thus obtaining

U(t+∆t) = (1− ∆t

τ
)U(t). (B.10)

Next, we denote the decay rate (1− ∆t
τ
) = β (with ∆t << τ for reasonable accuracy) to

write

U(t+∆t) = βU(t). (B.11)

Because we want to work with discrete timesteps, we can assume ∆t = 1. We also

assume that R = 1 in order to reduce the number of hyperparameters. Thus, we have the

usable equation

U(t+ 1) = βU(t) +WX(t+ 1), (B.12)

where W is a learnable parameter that weighs input spikes X. With S(t) as our spiking

function, we add a term to reset the membrane voltage when a neuron outputs a spike,

and our final equation is

U [t+ 1] = βU(t)︸ ︷︷ ︸
decay

+WX(t+ 1)︸ ︷︷ ︸
input

−S(t)UT︸ ︷︷ ︸
reset

, (B.13)

with

S[t] =

1 if U(t) > UT ,

0 otherwise.

(B.14)

50

Figure B.2: Computation graph for an SNN, similar to an RNN. X(t) is the time-varying,
spiking input. After multiplication by the weights, the spikes become input current to the
neuron. The membrane voltage U(t) and spiking activation S(t) functions are derived
in Section B.1. Finally, the loss values L are computed at each timestep. Diagram from
(Eshraghian et al., 2021).

B.2 Loop Unroll

From a computational graph perspective, SNNs are very similar to recurrent neural

networks (RNNs), and we can use backpropagation through time (BPTT) to train our

networks. The unrolled computation graph is shown in Figure B.2.

B.3 Neuron Parameters

We detail more neuron design choices regarding the type of spiking neuron that we use in

our work:

Inhibition is an interesting option. In real neurons, the activation of one neuron can

51

inhibit other neurons from firing. Our more traditional architecture would have very

sparse spiking with this type of learning enabled, so we do not use it. However, spiking

RNNs may benefit from this feature.

Neurons can be distinguished by what is known as their order. A second-order neuron

accounts for the fact that when a presynaptic neuron fires, it takes time for the signal

to reach the current neuron. This is accounted for by adding a second hyperparameter

α. These models are more complex to train and resulted in higher loss values, so we use

first-order spiking neurons in our work.

52

REFERENCES

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D.,
Choo, X., Voelker, A., and Eliasmith, C. (2014). Nengo: A Python tool for building
large-scale functional brain models. Frontiers in Neuroinformatics, 7(48):1–13. 42

Bouvier, M., Valentian, A., Mesquida, T., Rummens, F., Reyboz, M., Vianello, E., and
Beigne, E. (2019). Spiking neural networks hardware implementations and challenges:
A survey. ACM Journal on Emerging Technologies in Computing Systems, 15(2). 1

Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck, T. (2014). A 240 × 180
130 db 3 µs latency global shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341. 5

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G.,
Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty,
D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.-H., Wild, A., Yang,
Y., and Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip
learning. IEEE Micro, 38(1):82–99. 5

Diehl, P. and Cook, M. (2015). Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9. 7, 42

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). Fast-
classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8. 6

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., Bennamoun,
M., Jeong, D. S., and Lu, W. D. (2021). Training spiking neural networks using lessons
from deep learning. arXiv preprint arXiv:2109.12894. 18, 48, 51

Gehrig, M., Shrestha, S. B., Mouritzen, D., and Scaramuzza, D. (2020). Event-based
angular velocity regression with spiking networks. CoRR, abs/2003.02790. 7

Jose, J. T., Amudha, J., and Sanjay, G. (2015). A survey on spiking neural networks in
image processing. In El-Alfy, E.-S. M., Thampi, S. M., Takagi, H., Piramuthu, S., and
Hanne, T., editors, Advances in Intelligent Informatics, pages 107–115, Cham. Springer
International Publishing. 1

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
Stdp-based spiking deep convolutional neural networks for object recognition. Neural
Networks, 99:56–67. 7

Kim, S., Park, S., Na, B., and Yoon, S. (2020). Spiking-yolo: Spiking neural network
for energy-efficient object detection. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(07):11270–11277. 7

53

Lakshmipathi, A. S. (2018). Biomimetic modeling of the eye and deep neuromuscular
oculomotor control. Master’s thesis, University of California, Los Angeles. 1, 3, 41

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent
networks of rectified linear units. 7

Maqueda, A. I., Loquercio, A., Gallego, G., Garcia, N., and Scaramuzza, D. (2018).
Event-based vision meets deep learning on steering prediction for self-driving cars. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7

Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., and Scaramuzza, D. (2017). The
event-camera dataset and simulator: Event-based data for pose estimation, visual
odometry, and slam. The International Journal of Robotics Research, 36(2):142–149. 6

Nakada, M., Chen, H., Lakshmipathy, A., and Terzopoulos, D. (2021). Locally-
connected, irregular deep neural networks for biomimetic active vision in a simulated
human. In 2020 25th International Conference on Pattern Recognition (ICPR), pages
4465–4472. 2, 12, 25, 41

Nakada, M., Lakshmipathy, A., Chen, H., Ling, N., Zhou, T., and Terzopoulos, D.
(2019). Biomimetic eye modeling & deep neuromuscular oculomotor control. ACM
Trans. Graph., 38(6). viii, 1, 2, 3, 9, 11, 12, 13, 14, 44, 45, 46, 47

Nakada, M., Zhou, T., Chen, H., Weiss, T., and Terzopoulos, D. (2018). Deep learning
of biomimetic sensorimotor control for biomechanical human animation. ACM Trans.
Graph., 37(4). 1, 11, 32, 41, 42

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Processing Magazine, 36(6):51–63. 29

Purves, D., Augustine, G., Fitzpatrick, D., et al. (2001). Anatomical Distribution of
Rods and Cones. Sinauer Associates. 10

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep spiking neural
networks with hybrid conversion and spike timing dependent backpropagation. 31

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conver-
sion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in Neuroscience, 11. 6

Rullen, R. and Thorpe, S. (2001). Rate coding versus temporal order coding: What
the retinal ganglion cells tell the visual cortex. Neural computation, 13:1255–83. 2

Schraa-Tam, C., Lugt, A., Frens, M., Smits, M., Broekhoven, P., and Geest, J. (2008).
An fmri study on smooth pursuit and fixation suppression of the optokinetic reflex using
similar visual stimulation. Experimental brain research. Experimentelle Hirnforschung.
Expérimentation cérébrale, 185:535–44. 35

54

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in Neuroscience, 13. 7

Shirley, P. and Morley, R. K. (2003). Realistic Ray Tracing. A. K. Peters, Ltd., Natick,
MA, USA, 2 edition. 10

Tayarani-Najaran, M.-H. and Schmuker, M. (2021). Event-based sensing and signal
processing in the visual, auditory, and olfactory domain: A review. Frontiers in Neural
Circuits, 15. 20

Thomas, J. G. (1969). The dynamics of small saccadic eye movements. The Journal of
Physiology, 200(1):109–127. 35

Wang, L., Qiu, Y.-H., and Zeng, Y. (2016). Coding properties of three intrinsically
distinct retinal ganglion cells under periodic stimuli: A computational study. Frontiers
in Computational Neuroscience, 10. 20

55

	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Overview

	2 Related Work
	2.1 Neuromorphic Hardware
	2.2 Converting Artificial Neural Networks into SNNs
	2.3 SNNs and Computer Vision

	3 The Task
	3.1 Retina
	3.2 LiNets
	3.3 Oculomotor Control

	4 Spiking Neurons
	4.1 Encoding Input Signals
	4.1.1 Rate Encoding
	4.1.2 Latency Encoding

	4.2 Outputs

	5 The SLiNet Model
	5.1 Architecture
	5.2 Training
	5.2.1 Number of Timesteps
	5.2.2 Surrogate Gradients
	5.2.3 Loss Calculation

	5.3 On Converting an ANN

	6 Experiments and Results
	6.1 Movements
	6.1.1 Fixation
	6.1.2 Smooth Pursuit
	6.1.3 Saccade

	6.2 Comparison with Human Eye Movement
	6.2.1 Smooth Lateral Movement
	6.2.2 Saccade

	6.3 Spiking Analysis

	7 Conclusion
	7.1 Discussion
	7.2 Future Work

	A The Biomimetic Eye Model
	A.1 Ocular Organs and Muscles
	A.2 Oculomotor Control System

	B Mathematics of SNNs
	B.1 Circuit Model of a Spiking Neuron
	B.2 Loop Unroll
	B.3 Neuron Parameters

	References

