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ABSTRACT OF THE THESIS

A Comprehensive Study of the Seminal

Monte Carlo-based Image Synthesis Algorithms

by

Ali Kouhzadi

Master of Science in Computer Science

University of California, Los Angeles, 2016

Professor Demetri Terzopoulos, Chair

This thesis presents an in-depth study on the problem of photo-realistic image synthesis

in the field of computer graphics. We briefly overview a number of required background

topics in order to better understand the proposed solutions to this problem such as

probability, Monte Carlo integration, sampling methods, reflection methods, etc.; we

then proceed to introduce some of the most important and influential Monte Carlo image

synthesis methods introduced over the past four decades. At the end, we provide a

comparison of the methods discussed using an open-source research-oriented rendering

system named Mitsuba Renderer to better understand the weaknesses and advantages of

each method.
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1. Introduction

1.1 Global Illumination and Photo-realistic Image

Synthesis

Global illumination, in contrast to local illumination, refers to a group of algorithms

concerned with simulating the interaction of light with surfaces and volumes [10, p. 470],

also called light transport simulation, with the purpose of synthesizing photorealistic im-

ages based on a scene description; in the context of computer graphics, geometrical optics

is almost exclusively used for simulating light’s behavior [13, 20] and other theoretical

frameworks (e.g. light as waves, or light as particles) are usually ignored since they are

either too complex and negatively affect efficiency, or do not have noticeable visual effects

at macroscopic levels.

First attempt at approaching image synthesis using geometrical optics can be traced

back to Arthur Appel’s 1968 paper [2], which laid the foundations for Goldstein and

Nagel’s 1971 milestone paper 3-D Visual Simulation which introduced the first method

for simulating fully computer-generated perspective views by “geometric ray tracing” and

simulating the physical process of photographing. These two seminal papers paved the

way for introduction of recursive ray tracing by Turner Whitted in 1979 [36], ray casting

by Scott D. Roth in 1982 [28], and radiosity by Cindy M. Goral et al. in 1984 [9]. In

turn, the introduction of Whitted’s recursive ray tracing and Goral et al.’s radiosity were

arguably the start of a wave of scholarly interest in global illumination and physically-

based image synthesis.

As it is discussed in [2], the most obvious method of simulating light transport is to

trace rays emitted from a light source through the scene until they reach the observer,
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but in practice this method is not feasible since it is most likely that a small number,

or even none, of the selected rays reach the observer (e.g. in an outdoor scenes); tracing

infinite beams of light emitted from a light source is also impractical for obvious reasons.

The more practical alternative method is to trace light rays (or beams of light) backward,

from the observer through the image plane and from there through the scene until some

of them reach some sort of light source. This is essentially the basis for all the global

illumination methods in computer graphics.

As it was mentioned earlier, there are two types of widely-used light transport models,

1. Local Illumination

2. Global Illumination

In local illumination approach, only direct lighting is taken into account: a light ray

that is directly emitted from the light source and bounces off a single surface directly

towards the observer [10, p. 140]. Using this approach, all the inter-reflections between

different surfaces in a scene are ignored in exchange for performance, which make it well-

suited for real-time application (e.g. video games, virtual reality). In real-time rendering

local lighting model is used by default and numerous “hacks and tricks” and ad-hoc

methods are used to efficiently synthesize natural-looking images.

Global illumination methods in contrast, take into account direct lighting as well as

in-direct lighting, meaning the process of shading a point on a surface takes into account

the direct light rays coming from the light sources, the reflected light rays coming from

other objects in the scene (inter-reflection), and refracted light rays passing through

the object itself altogether, effects of participating media, etc. producing photorealistic

images. Using global illumination, one can simulate optical phenomena like caustics,

color-bleeding, soft shadows, motion blur, etc.

Subsequent improvements on recursive ray tracing and radiosity resulted in one of the

most important contributions to the field in 1986 by James T. Kajiya: the Rendering
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Equation, also referred to as the Light Transport Equation (LTE), introduced in his

seminal paper The Rendering Equation [20] which was the starting point for Monte

Carlo Ray Tracing (MCRT).

In general we can categorize global illumination algorithms into two groups:

1. Algorithms based on point sampling and Monte Carlo integration (e.g. path tracing,

bidirectional path tracing, Metropolis light transport, etc.)

2. Algorithms based on Finite Element Method (FEM) (e.g. radiosity)

Over time and by introduction of new methods it is widely accepted that the most

general and robust approach to global illumination problem is MCRT [13, p. vi]. These

methods involve evaluating the rendering equation using Monte Carlo integration method,

hence the name Monte Carlo Ray Tracing; these methods can be categorized into two

groups of algorithms (to be discussed in more detail in chapter 2):

1. Biased

2. Unbiased

1.2 Objectives

Main goal of working on this thesis was to conduct a focused and in-depth study on the

topic of photorealistic image synthesis and physically-based rendering to prepare myself

for a career in the film and animation industry upon graduation.

Based on the materials that have been presented at SIGGRAPH in the recent years,

the film and animation industry seems to be moving toward replacing the decades old

industry-standard rendering techniques based on rasterization and ad-hoc methods, in

favor of the Monte Carlo Ray Tracing methods. Moreover, hardware manufacturers like

NVIDIA and Intel Corp. show a high level of interest, at least in theory, in a not-so-far
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future when GPU architectures based on ray-tracing could replace the current industry-

standard GPU architectures based solely on rasterization. And last but not least, the big

players in the video game industry more or less show the same level of enthusiasm and

optimism in achieving photorealism using global illumination and ray-tracing methods,

a great example being the advent of game engines like Unreal Engine 41 in recent years,

capable of taking advantage of ray-tracing to render soft shadows.

Based on the above, now seems to be the perfect time to study this particular sub-

field of Computer Graphics and understand the intricacies of these methods. This thesis

serves as a report on my investigation regarding this particular problem and on the

existing methods to solve the rendering equation.

1.3 Outline

The second chapter is dedicated to a short discussion on different pre-requisite materials

needed to understand the Monte Carlo-based rendering techniques, it will cover topics

such as basic probability concepts, Monte Carlo integration, geometrical optics, light

scattering, etc.

Third chapter discusses the seminal MCRT methods in a chronological order, starting

with a brief discussion and introduction of precursors to MCRT, namely ray-casting, ray-

tracing and its variations, and radiosity, and then moving on to advanced Monte Carlo

rendering methods covering up to Stochastic Progressive Photon Mapping algorithm in-

troduced in SIGGRAPH Asia 2009.

Chapter four contains a comparison of the introduced methods and sample rendered

images using Mitsuba2 open source renderer, along with a brief discussion on advantages

and disadvantages of these methods compared to one another.

1Epic Games, Inc.
2Website: https://www.mitsuba-renderer.org/
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Last chapter presents the conclusion, as well as a discussion on opportunities for im-

provement, along with some pointers to advanced topics like texture mapping, volumetric

rendering, etc.
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2. Background

2.1 Basic Probability Concepts

In this section a brief recap of related probability concepts required in order to discuss

Monte Carlo integration is presented which should be covered in an undergraduate prob-

ability and statistics course. The material in this section is based on [27, Chapter 13]

and [22, Chapter 1], readers not familiar with basic probability concepts are encouraged

to refer to these two references for more detailed discussions.

A continuous random variable x is a scalar or vector quantity that randomly takes

on some value from the real line R = (−∞,+∞). Behavior of x is described by the

distribution of values that it takes using a Probability Density Function, or pdf for short;

x p denotes the relationship between a pdf p associated with a random variable x.

The probability that x will take on a value in interval [a, b] is given by

Probability(x ∈ [a, b]) =

∫ b

a

p(x)dx (2.1)

A pdf (here denoted as function p) describes the relative likelihood of a random variable

taking a certain value. For instance if p(x1) = 0.6 and p(x2) = 0.3, then a random

variable with density p is twice likely to have a value near x1 than near x2.

Density p has the following characteristics:

• p(x) ≥ 0

•
∫ +∞
−∞ p(x)dx = 1
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The average value of a real function f of a one-dimensional random variable with pdf

p will take on is called its expected value or mean, denoted by E[f(x)] and obtained by

E[f(x)] =

∫ +∞

−∞
f(x)p(x)dx (2.2)

The expected value of the function f has the following properties:

• E[f(x) + g(y)] = E[f(x)] + E[g(y)]

• E[a.f(x) + b] = a.E[f(x)] + b

A measure of the amount of variation of the values a random variable might take is

described in terms of its variance, showing how far the data are spread out relative to

the mean. For one-dimensional random variable variance is obtained as follows

V (x) = E[(x− E[x])2] (2.3)

Note that it can be proven 2.3 can also be written as

V (x) = E[x2]− (E[x])2 (2.4)

Standard deviation or σ describes the distance (difference) between a value and the

mean, it is also called the standard error of a sampling distribution. Using standard

deviation one can investigate the following

1. How much variation exists from the mean?

2. How the data are spread on a specific interval?

3. The expected difference between an individual measurement and the mean.

Standard deviation is simply the square root of the variance

σ =
√
V (x) (2.5)
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Random variables and expected value can also be defined for two or more dimensions.

Let X and Y be two continuous random variables, and f(x, y) be their joint probability

density function (joint pdf); the probability that X and Y take on values in any two-

dimensional set A is the volume under the density surface above A

P [(X, Y ) ∈ A] =

∫∫
A

f(x, y)dxdy (2.6)

Suppose the space S has associated measure µ; for instance S is the surface of a sphere

and µ measures its area. We can define a pdf p : S → R, and if x is a random variable

with x p, then the probability that x will take on a value in some region Si ⊂ S is given

by the integral

Probability(x ∈ Si] =

∫
Si

p(x)dµ (2.7)

Equation 2.7 gives the probability that x takes on a value in the region Si. In computer

graphics S is often an area (A), therefore dµ = dA = dx× dy, or a set of directions (e.g.

points on a unit sphere) therefore dµ = dω = sin θ × dθ × dϕ.

In two dimensions, the expected value of the continuous random variable X is

E[X] = µX =

∫∫ +∞

−∞
x.f(x, y)dxdy (2.8)

And for Y ,

E[Y ] = µY =

∫∫ +∞

−∞
y.f(x, y)dxdy

And finally, expected value of a function of X and Y , g(X, Y ) is

E[g(X, Y )] = µg =

∫∫ +∞

−∞
g(x, y).f(x, y)dxdy (2.9)

2.2 Estimators and their Properties

Another concept that needs to be discussed before the introduction of Monte Carlo

Integration, is how to estimate the expected value of a random variable. Summation of

8



independent identically distributed random variables xi, independent random variables

that share a common pdf p, divided by the number of the random variables gives an

estimate for the E[x],

E[X] ≈ 1

N

N∑
i=1

xi (2.10)

As N increases, the variance of 2.10 decreases; therefore a large enough N is desired

in order to decrease the error of the estimate.

A function FN of N random variables is called an estimator for a quantity Q, if its

expected value can be used as an estimate to Q, meaning Q ≈ E[FN ].

Error of an estimator FN is its difference from the exact value of Q,

error = FN −Q (2.11)

to make it more general, a more useful definition is the Mean Square Error of an

estimator, defined as

MSE = E[(FN −Q)2] (2.12)

Bias of an estimator is defined as the expected value of its error,

β[FN ] = E[FN −Q] (2.13)

An estimator FN is called unbiased if β[FN ] = 0, which in turn indicates

E[FN −Q] = 0⇒ E[FN ] = Q (2.14)

The advantage of an unbiased estimator is that it is guaranteed to produce correct

results given large enough number of samples. The variance of an unbiased estimator

is the same as its MSE. On the other hand, a biased estimator does not guarantee to

produce correct results, regardless of number of samples taken, and its variance is not

the same as its MSE.
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In the context of unbiased MCRT, variance (or MSE) shows up as noisy pixels in the

output image; however a biased MCRT method can produce images with less noise, but

results are not guaranteed to be correct.

Another important concept introduced in [22, Chapter 1] is the concept of consistency

of an estimator; an estimator is said to be consistent if it’s error converges to zero as the

number of samples increases. Therefore an unbiased estimator that is not consistent can

produce incorrect results, while a biased estimator that is consistent can produce correct

results.

To summarize, unbiased MCRT methods, as opposed to biased methods, do not contain

any systematic error; they can be stopped after any number of samples and the expected

value of the estimator will be correct regardless. The biggest problem with unbiased

algorithms is their variance which will show up in the rendered image as noise, which can

be reduced by taking more samples. Biased algorithms can also produce correct results,

but they can converge to the correct result by taking more samples [13]. In computer

graphics, first unbiased Monte Carlo method was introduced by Kajiya [20], which was

based on earlier works by Cook et al. (1984) and Whitted (1980) [33].

Examples of unbiased MCRT methods are Path Tracing [20], Bi-directional Path Trac-

ing [23, 24, 31, 32], and Metropolis Light Transport [33]. Irradiance Caching [35], Density

Estimation [30], and Photon Mapping [15] are examples of biased MCRT methods.

2.3 Monte Carlo Integration

Monte Carlo Integration method is a numerical method of approximating complex

integrals. Given a function f : S → R and a random variable x p, the expected value of

f(x) is approximated by

E[f(x)] =

∫
x∈S

f(x)p(x)dµ ≈ 1

N

N∑
i=1

f(xi) (2.15)
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We can take advantage of 2.15 to approximate any integral by an appropriate sum; to

simplify 2.15 and make it more general, we make the assumption that g = f × p, where

p is always positive and g 6= 0, giving us the following equation

∫
x∈S

g(x)dµ ≈ 1

N

N∑
i=1

g(xi)

p(xi)
(2.16)

To make estimations better in general we should try to

1. Take as many samples as possible

2. g and p should have a similar shape, in other words g
p

should have a low variance.

For a more detailed discussion on Monte Carlo integration you can refer to [27, Chap-

ters 13, 14]

2.4 Geometrical Optics and Light Rays

In the context of computer graphics, we are mostly interested in simulating the inter-

action of light with matter using geometrical optics. The true nature of light according to

Quantum Mechanics, or whether light acts exactly as particles or waves in a specific situ-

ation are not of concern here, although these topics (electromagnetic waves and photons)

will be touched very briefly in the correct context (e.g. radiometry).

It is useful to think of light travelling as hypothetical constructs such as beams and

rays [34]. A Light Beam is a very thin collection of infinitesimal Light Rays travelling

in the same direction, or one can think of it as the path in which photons travel from

the light source in some specific direction. Although a light beam usually refers to a

collection of parallel light rays, in the context of rendering they are sometimes often used

interchangeably.

Two basic rules describing light rays are [34]:

1. In a single unchanging medium, they travel in straight lines.
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2. They are reversible; meaning that one can trace their path in opposite direction.

Studying light in terms of these hypothetical constructs helps us simplify the problem

while giving an accurate approximation of the behavior of light in the real world, for

instance light scattering, reflection, and refraction.

2.5 Heckbert’s Light Transport Notation

Often a short format to describe a light transport path is desired in order to avoid

verbose descriptions of a path bouncing off of several surfaces. Often in rendering liter-

ature a notation known as Heckbert’s notation is used to describe light transport paths

and different types of reflections at each bouncing point using regular expressions. This

method was first introduced in [12]. Following symbols are used to describe different

types of light-surface interactions along a light transport path:

• E and L are two ends of a path: eye and light respectively

• D is the diffuse reflection or transmission

• G is the glossy reflection or transmission

• S is the specular reflection or refraction

2.6 Radiometry

Radiometry is concerned with the measurement of electromagnetic radiation as well as

describing light propagation and reflection [26, p. 202][27, p 281]. It forms the basis of

the physically-based rendering algorithms [27, p. 281] which are going to be discussed in

subsequent chapters. Here we will briefly go over the related concepts and terminology,

along with their definitions.

For our purposes only simulating the interaction of light with relatively large objects

(larger than light’s wavelength) is of concern; for our purposes the radiative transfer is a
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good enough model to describe these interactions at the level of geometrical optics [27,

p. 281]. We will also make the simplifying assumption that electromagnetic radiation

consists of a flow of photons and disregard their wave-particle duality; doing this we

won’t be able to account for phenomena like polarization, interference, and diffraction,

which aren’t necessary for rendering [26, p. 202].

In rendering, we are mainly concerned with four basic radiometric quantities [27,

p. 282],

1. Radiat Flux (φ)

2. Radiant Flux Area Density

• Outgoing, called Radiant Exitance, or Radiosity (B)

• Incident, called Irradiance (E)

3. Radiant Intensity, or Flux Density per Solid Angles (I)

4. Radiance (L)

An more detailed discussion on the more basic radiometric quantities starting from the

frequency, wavelength, and energy of a single photon to radiance can be found in [13,

p. 13-17], but here we will only discuss the above four quantities; material presented here

is based on [26, 13, 27].

Radiant flux of a light source, also known as radiant power, is the total amount of

energy Q, passing through space per unit time,

φ =
dQ

dt
(2.17)

Radiant flux is measured in Joules per second (J
s
), or Watts (W ).
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Radiant flux area density is defined as the differential Radiant Flux dφ per differential

area dA at a real or imaginary surface in space, and is measured in W
m2 ,

RadiantF luxAreaDensity =
dφ

dA
(2.18)

Incident and outgoing radiant flux area densities are often distinguished: if the flux is

incident on the surface this quantity is called irradiance, denoted by E(p, ~ωi), and if it

is leaving the surface, the quantity is called radiant exitance, or Radiosity, and denoted

by M(p, ~ωo) (or B in some texts), although some sources use irradiance to refer to both

incident and outgoing flux.

Using the above definition, we can see why the amount of energy received from a light

source falls off with the squared distance from the light. We can measure the irradiance

of a light source at a distance r by imagining a sphere of radius r centered at the light

source; therefore the irradiance reaching the surface of this sphere equals

E =
φ

4πr2

As we get further from the light source the radius of this imaginary sphere increases

and as a result irradiance falls off with the squared distance.

Radiant intensity (I), or simply intensity of a light source is defined as the radiant flux

per unit solid angle ~ω,

I(~ω) =
dφ

d~ω
(2.19)

Radiant Intensity can also be defined as the flux density with respect to the area on

an enclosing unit sphere; this means the radiant intensity can also be calculated using

irradiance (E),

E(r) =
I

r2
⇒ I = E(r)× r2 (2.20)
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And finally, radiance (L), is the most important radiometric quantity in rendering [27].

Radiance is the radiant flux per unit solid angle per unit projected area,

L(x, ~ω) =
dφ

d~ω.dA⊥
(2.21)

Where dA⊥ is the projected area of dA on a hypothetical surface perpendicular to ~ω.

The reason radiance is called the most important radiometric quantity is that it repre-

sents an object’s color; it can be thought of as the number of photons arriving per unit

time at a small area from a given direction. It can also be used to describe the intensity

of light at a given point in space in a given direction. Another important characteristic

of radiance is that it always remains constant through space for a light source.

When dealing with equations involving radiance, it is necessary to distinguish whether

the radiance is incident on the surface or outgoing; incoming radiance at point p in

direction ~ω is denoted by Li(p, ~ω), while the outgoing radiance is denoted by Lo(p, ~ω),

such that

Li(p, ~ω) 6= Lo(p, ~ω) (2.22)

But,

Li(p,−~ω) = Lo(p, ~ω) (2.23)

2.7 Surface Reflection and Transmission

2.7.1 Reflection Types

In general surface reflection is split into two broad categories: diffuse reflection and

specular reflection, illustrated in figure 2.1.

Perfectly diffuse surfaces scatter the incident light equally in all directions, also called

a Lambertian reflection [13]. The reflection (or outgoing) angle, θo, can be any direction
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chosen uniformly at random from the upper hemisphere centered at the incident point.

Although in practice an ideal diffuse surface does not exist, for the purpose of this thesis

we assume a Lambertian reflection when talking about diffuse surfaces unless otherwise

noted. Matte paint is an example of a diffuse surface.

Specular surfaces scatter most of the incident light in a particular direction (or set of

directions), resulting in a glossy surface. Mirrors are examples of perfectly specular sur-

faces, reflecting all the incident light with the same angle, meaning θi = θo; surfaces which

are not perfectly specular, are called glossy specular (e.g. plastic or metallic surfaces),

for which the reflection is somewhere in-between perfectly diffuse surfaces and perfectly

specular surfaces.

Figure 2.1: Left: diffuse surfaces scatter incident light uniformly in all directions. Right:
specular surfaces scatter most of the incident light in particular set of directions.

A more detailed discussion on this subject can be found in [27, Chapter 8], which

categorizes the reflection of light into Diffuse, Perfect Specular, Glossy Specular, Retro-

Reflective (reflecting light back towards the light source).

2.7.2 Transmission or Internal Reflection

Transmission of light, or internal reflection, is the broad case when the incident light

enters a surface, travels inside the surfaces, and exits from the opposite side, e.g. glass

or water.

Snell’s Law (or Law of Refraction) describes this behavior of light based on the differ-

ence between the index of refraction of the medium light is travelling in, and the index
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of refraction of the medium the light will enter [27],

ηi sin θi = ηt sin θt (2.24)

Where,

• ηi is the refractive index of the medium light is traveling

• ηt is the refractive index of the medium light is entering

• θi is the angle between the incident light and surface normal

• θt is the angle between the transmitted light and surface normal

The index of refraction describes how much slower light travels in a medium compared

to the speed of light in vacuum (c). Internal reflection happens when the light travelling in

a medium with a relatively higher index of refraction, reaches a medium with a relatively

lower index [26].

2.7.3 Bidirectional Reflectance Distribution Function (BRDF)

Bidirectional Reflectance Distribution Function, or BRDF, describes the behavior of

light incident at a surface. A BRDF takes in two parameters: the direction of the incoming

light and the direction of the outgoing light, and returns the ratio of the outgoing radiance

Lo(p, ~ωo to the irradiance E(p, ~ωi)[26, 27],

fbrdf (~ωi, ~ωo) =
dLo(p, ~ωo
dE(p, ~ωi)

(2.25)

BRDFs have to important properties [27]:

1. Helmholtz Reciprocity, meaning have fbrdf (~ωi, ~ωo) = fbrdf ( ~ωo, ~ωi).

2. Energy conservation, meaning for any surface that is not a light source itself, the

outgoing radiance is always less than the incident radiance.
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There are two other widely used models for describing the light’s behavior at a surface:

1. Bidirectional Transmittance Distribution Function, or BTDF, describes the behav-

ior of light at surfaces that transmit the incoming light, e.g. glass or water.

2. Bidirectional Scattering Distribution Function, or BSDF, which is a generalization

of BRDFs and BSDFs, used to describe surfaces exhibiting both behaviors (reflec-

tion and transmission)[27].

2.8 Light Transport Equation

The rendering equation, also called the light transport equation (LTE), forms the

mathematical basis for all global illumination algorithms [13], which all the Monte Carlo

image synthesis algorithms try to solve.

The rendering equation is an integral equation, introduced by Kajyia in [20], which

generalizes a variety of known rendering algorithms and models a wide variety of optical

phenomena by performing a geometrical optics approximation. It can be used to compute

the outgoing radiance at any point on any surface in a scene[13]; it states that the outgoing

radiance or light transport intensity from a surface point x to another surface point x′

is the sum of the emitted light and the total light intensity which is scattered toward x

from all other surface points [20].

Although different forms and notations of Kajyia’s equation is used throughout the

literature, I find the form and notation used in [31] to be more descriptive:

Lo(p, ωo) = Le(p, ωo) +

∫
S2

fr(p, ωo, ωi)Li(p, ωi)| cos θi|dωi (2.26)

Where Lo(p, ωo) is the outgoing radiance from point p in direction ωo, Le(p, ωo) is the

emitted radiance from p in direction ωo (in case the surface is a light source), the domain

S2 is the hemisphere centered at point p, Li(p, ωi) is the incident radiance at p from some
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direction ωi in the domain scaled by fr (BRDF at point p) and cos θi (θi being the angle

between surface normal at p and ωi).

Therefore what 2.26 describes is simply as follows: the outgoing radiance at some p in

some direction ωi is the sum of the emitted light in that direction from that point, and

the aggregate of all the radiance incident on p, taken into account the surface’s BRDF

and θi.

The rendering equation in its original form does not attempt to model all interesting

optical phenomena; it only model time averaged transport intensity and does not take

phase and diffraction into account; it also assumes that the media between surfaces

(usually air) is of homogenous refractive index and does not itself participate in the

scattering of light [20].

Evaluating LTE is the main reason we are interested in Monte Carlo integration

method, and the reason MC rendering methods dominate the field of physically-based

image synthesis.

2.9 Sampling Methods

Having discussed the Monte Carlo integration method and the light transport equation,

now we need to discuss the methods by which we take the samples to complete this part

of the discussion.

One way to get a good estimate for LTE (2.26) using the Monte Carlo integration

method (2.16) is to make N as big as possible (i.e. use as many samples as possible), but

in practice this is not efficient, and arguably not practical, and therefore not desirable.

As it was mentioned earlier in 2.3, another way to improve the accuracy of the estimate is

to take samples such that g(xi)
p(xi)

in 2.16 has a low variance [19]; different sampling methods

have been introduced to achieve this goal, and we are going to briefly go over a number

of them in this section, which are often used in the literature.
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The contents of this section are based on [27, 7, 19, 22, 21, 29].

2.9.1 Uniform Sampling

The simplest method of sampling is to construct samples using independent and uni-

formly distributed random numbers. The most obvious disadvantage of this method is

that it does not guarantee to sample a function according to the function’s shape, e.g.

if we are sampling a Gaussian function, this method will result in over-sampling and

under-sampling of the function. A more specific example would be the case of sampling

the image plane, a uniformly distributed random 2D point on the surface of a particular

pixel is chosen as a sample. The problem arises when we try to take more samples using

this method: how can this method guarantee that samples are not located close to each

other?

Using this method, we may end up taking a large amount of samples in one sub-region

of the pixel of interest, while ignoring the rest of that pixel which may (or may not) be of

more importance; for instance imagine a case where shooting a ray into the scene through

point pj on some pixel Pi, hits a surface that is not visible from any light sources, if we

continue to take samples that happen to be located close to pj then the final color of Pi

will end up darker than it really is. To solve this problem, one obvious way is to take a

large number of samples to make sure we are also taking into account the samples with

more contribution.

Same problem exists when sampling an area light source, or a hemisphere centered at

an intersection point in order to calculate indirect illumination, etc. It must be clear that

the rate of convergence for this method is very low. To address this issue, we use other

sampling methods which will be discussed in the following subsections.
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2.9.2 Stratified Sampling

Stratified sampling is one of the simplest ways to address the shortcomings of the uni-

form sampling, by dividing the domain of interest into sub-regions, or strata, and then

use another sampling method (e.g. uniform sampling) on each of these strata to ”force-

fully” scatter samples over the domain in order to make sure they are not concentrated

in one area.

Figure 2.2: Left: an 8x8 plane sampled using uniform sampling; note that some grid cells
have no samples, while some have multiple samples. Right: same plane sampled using
stratified sampling; a sample is taken inside each cell.

To continue with the pixel example mentioned earlier, a pixel can be divided into

multiple sub-pixels, each sub-pixel being treated as a pixel itself; then applying another

sampling method over the sub-pixels we can avoid the hypothetical problem described

above. Same technique can be applied to sampling an area light source, or a hemisphere:

divide the area of interest into sub-regions, use other methods to sample each sub-regions.

2.9.3 Importance Sampling

Importance sampling is a method that attempts to reduce the variance of the estimate

by choosing p(xi) in 2.16 intelligently; this means that we attempt to choose a density

p(x) that has a similar shape to g(x), is simple, and is efficient to evaluate [19, 22].
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Using this method, we can try to avoid paying the extra cost of taking into account

samples which make relatively low contributions to the final estimate; instead we increase

the chance and weight of the samples with high contributions.

For instance, consider sampling directions over the hemisphere centered at some inter-

section point p; here we can use the Cosine of the angle θ between the surface normal ~N

at p and the sample (i.e. direction) as our density function according to which we choose

our samples: as the angle increases, cos θ decreases, hence the contribution of light in

that direction decreases. This will result in taking more samples where cos θ is higher

hence the contribution of light is higher [27, 19].

One disadvantage of importance sampling is that a poorly chosen density can result in

higher variance, in which case stratified sampling (or even uniform sampling) would end

up being much more effective than importance sampling.

2.9.4 Multiple Importance Sampling

Looking at the light transport equation (2.26) we notice that the integrand is a product

of three different functions:

Lr = fr(p, ωo, ωi)Li(p, ωi)| cos θi| (2.27)

Which begs the question whether or not using a single importance density function

(e.g. a Cosine importance function) would result in a good enough estimate? In the best-

case scenario, we may manage to choose a density that is close to 2.27, but in practice

this can rarely happen[22]. However, the form of the integrand can potentially provide

some opportunities to use more than one importance functions together.

As an example, imagine the situation where the point of interest p lies on a near-perfect

specular surface; if we based the importance density on fBRDF at p, we are effectively

ignoring all the incoming radiance that is outside the range of fBRDF .
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Multiple importance sampling (MIS), introduced by Veach and Guibas in [31, 32],

addresses the above issue: take samples using more than one importance density, and

weight samples according to their respective densities such that the final estimate has

the lowest variance. In MIS, a variety of sampling techniques (even for special cases) can

be used, wherever one (or more) particular method is not desired, the fact that we are

weighting the samples will take care of the undesired effects[27].

We can rewrite the Monte Carlo integration estimator (eq. 2.16) with MIS as follows[27,

32]:

∫
x∈S

f(x)g(x)dx ≈ 1

Nf

Nf∑
i=1

f(xi)g(xi)ωf (xi)

pf (xi)
+

1

Ng

Ng∑
j=1

f(xj)g(xj)ωg(xj)

pg(xj)
(2.28)

Where Nf is the number of samples taken from density pf weighted by ωf , and Ng is

the number of samples taken from density pg weighted by ωg.

In [32], Veach and Guibas describe three methods to compute ω:

1. Balance heuristic,

ωi =
Nipi∑
j Njpj

(2.29)

2. Cutoff heuristic, discard samples with low weights,

ωi =


0, if pi < α pmax∑

j

{
pj | pj ≥ αpmax

}
, otherwise

(2.30)

Where pmax = maxjpj, and α is a constant deciding the lower-bound for the cutoff.

3. Power heuristic, raise all weights to a power β, and then normalize,

ωi =
Nip

β
i∑

j Njp
β
j

(2.31)
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For detailed proof and an in-depth discussion please refer to [31, 32, 27, 22].
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3. Monte Carlo Ray Tracing

Methods

3.1 Precursors to MCRT

This section contains a brief overview of the methods introduced in 1970s and 1980s

which are precursors to MCRT methods, although none of the algorithms mentioned in

this section are directly implemented as part of my work. Having a general understanding

of these methods paves the way for understanding more advanced approaches such as Path

Tracing and Metropolis Light Transport.

Taking global illumination information into account to accurately render a scene was

first discussed in Turner Whitted’s seminal paper titled An Improved Illumination Model

for Shaded Display published in 1979. It is worth noting that Whitted’s method, com-

monly known as Recursive Ray Tracing, is partially based on Arthur Appel’s 1968 paper

titled Some Techniques for Shading Machine Renderings of Solids which introduced a

much simpler method commonly known as Ray Casting.

Whitted’s paper [36] has two main contributions,

• A new shading model.

• A new visible surface detection algorithm based on tracing rays from camera into

the scene.

Whitted’s proposed a new shading model is summarized in this equation:

I = Ia + kd

j=I∑
j=1

( ~N. ~LJ) + ksS + ktT (3.1)
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Where I is the reflected intensity, Ia is the reflection due to ambient light, kd denotes

the diffuse reflection constant, ~N is the unit surface normal, ~LJ is the vector in the

direction of Jth light source, S is the intensity of specular light, kt is the transmission

coefficient, and T is the intensity of transmitted light.

To make the surface less glossy, ks should be smaller and kd should be larger. Note

that Whitted’s illumination model improves the methods introduced by Phong and Blinn,

using a recursive algorithm; 3.1 in itself does not take global illumination into account

rather it approximates the reflection from a single surface. In a real scene with moderate

complexity light will reflect off of several surfaces, causing inter-reflection, before reaching

the viewer, therefore the above model needs to be evaluated for each surface that takes

part in these inter-reflections.

Whitted proposed building a tree to represent the inter-reflection of rays from a light

source to the viewer. Creating this tree requires calculating the point of intersection of

each component ray with the surfaces in the scene. This is done by recursively calling

the visible surface detection algorithm which was proposed in the same paper.

The visible surface detection algorithm is based on Arthur Appel’s aforementioned 1968

paper [2]: trace rays through image plane into the scene and find the nearest ray-object

intersection point. Whitted adds the idea of calling the method recursively for each

intersection found, and building the tree of inter-reflections using this method. Whitted

proposes the use of bounding volumes (e.g. axis-aligned bounding volumes) to reduce

unnecessary ray-object intersection tests which is itself based on a previous work [5]

published in 1976.

Once the tree is formed, the shading model is applied to each intersection point (i.e.

each tree node), taking the attenuation of light into account based on the intersection

point’s distance from the light source.
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Ray tracing is a precise algorithm to render a scene. Although this is essential for

generating realistic images, it has some limitations to simulate the behavior of light

in the real world. Rendered scenes with ray tracing have precise and sharp shadows,

sharp reflections, sharp refractions, cannot handle motion blur, and have some difficulties

showing depth of field. Simulating these ”fuzzy phenomena” was addressed by Distributed

Ray Tracing [8].

In distributed ray tracing, the rays are distributed in a time frame so that every sam-

pling happens in a different time frame. Using this approach, it is easy to generate the

following fuzzy effects without any extra sampling efforts:

• Blurred reflection by sampling the reflected ray according to the specular distribu-

tion function produces gloss.

• Blurred transparency by sampling the transmitted ray produces translucency.

• Penumbras by sampling the solid angle of the light sources.

• Depth of field by sampling the camera lens area.

• Motion blur by sampling in time.

With this method, an analytic function is used to calculate each pixel’s intensity; this

function consists of integrations over pixel region, time, lens area, and so son. Although

these integrations could be difficult to compute, it is possible to solve them using point

sampling.

Another method was introduced by John Amanatides, called Ray Tracing with Cones

(or more commonly, Cone Tracing) to address the problem of sharp shadows in ray-

traced images [1]. The proposed method is to redefine light rays as cones. Using this

approach, there is no need for super-sampling to generate soft shadows. Instead, at

the intersection point of ray and surface, the portion of the ray (i.e. cone) which is in

intersection area can be calculated instead, more intersection area means softer shadows.
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Although there are workarounds for the conventional recursive ray tracing to render soft

shadows (anti-aliasing), this new method reduce the computations significantly and is

faster. Besides, considering rays as cones, a renderer can control level of details in the

scene by manipulating the size of the cone for each ray.

Another refinement for Whitted’s method was introduced in 1986 by James Arvo [3];

ray tracing cannot simulation the diffuse reflection of indirect lights properly. To solve this

problem, Arvo proposed a new method in which a scene is rendered in several phases.

In the pre-processing phase, an illumination map is created to help the final phase to

better simulate indirect diffuse reflection. James Arvo called this method Backward Ray

Tracing, in contrast to Whitted’s ray tracing, which Arvo labeled Forward Ray Tracing.

In Arvo’s backward ray tracing, the rays are traced from the light source to the objects.

In the pre-processing step, a large number of rays are emitted from the light sources and

the reflections and refractions are then calculated recursively. At each reflection and

refraction step, the energy of the ray is reduced, to mimic the natural behavior of light.

The result of this phase is an illumination to be used by the next phase: forward ray

tracing; therefore the ray tracing algorithm runs at least twice in Arvo’s method, one

time from the point of view of each light source in the scene, and the last phase from the

camera.

Radiosity is another precursor to MCRT methods, introduced in 1984 by Goral et al.

[9]. They proposed a method to solely model the interaction of light between diffuse

surfaces. This method is based on thermal engineering and heat transfer, which was

a completely different approach compared to other global illumination methods at the

time. The key point of this approach is to simulate what exactly happens in the real

environment by considering the total energy of the light in the scene. This method

assumes that the surfaces in the scene are ideal diffuse reflectors, although in reality

such a surface does not exist. Radiosity tries to model the object-to-object reflections

between surfaces in a physically-correct manner, therefore it is considerably slower than
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the traditional ray tracing. One of the most important characteristics of this method is

that the rendering process is independent of the viewers position, meaning it can be used

as a precomputed lighting effect to use in a scene where the observer can move without

having to re-render the scene.

3.2 Path Tracing and The Rendering Equation

In 1986 Kajyia introduced the Rendering Equation which forms the mathematical

basis for almost all of the global illumination algorithms proposed since then. We briefly

discussed the rendering equation in section 2.8, here we are going to discuss the equation

as it was first introduced by Kajyia in [20].

The rendering equation is an integral equation generalizing a variety of known rendering

algorithms, and models a wide variety of optical phenomena by performing geometrical

optics approximations. It can be used to compute the outgoing radiance at any point on

any surface in a scene; it states that the outgoing radiance or light transport intensity

from a surface point x to another surface point x′ is the sum of the emitted light and the

total light intensity scattered toward x from all other surface points:

I(x, x′) = g(x, x′)×
(
ε(x, x′) +

∫
S

p(x, x′, x′′).I(x′, x′′)dx′′
)

(3.2)

In which:

• I(x, x′) measures the energy of radiation passing from point x to point x′, called

un-occluded two point transport intensity from x′ to x. It’s unit is Joules
m4sec

.

• g(x, x′) is a geometry term that encodes the occlusion of surface points by other

surface points; if it is 0 then surface points x and x′ are not mutually visible, other-

wise it will be equal to 1
r2

where r is the distance between two points (attenuation

of light, refer to 2.6).

• ε(x, x′) is the emittance term which measures the energy emitted by a surface
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at point x′ reaching a point x. It is called the un-occluded two point transport

emittance from x′ to x. It gives the energy per unit time per unit area of source

and per unit area of target; its unit is Joules
m2sec

.

• p(x, x′, x′′) is called the scattering term or more precisely un-occluded three point

transport reflectance from x′′ to x through x′; it is the intensity of energy scattered

by a surface element at x′ originating from a surface element at x′′ and terminating

at a surface element at x.

• S is the domain of integration and is the union of all surface including a global

background surface S0 which is a large enough hemisphere to act as an enclosure

for the entire scene.

The above quantities (except for S) are called un-occluded multipoint transport quan-

tities [20].

The rendering equation in its original form does not attempt to model all interesting

optical phenomena; it only models time averaged transport intensity and does not take

phase and diffraction into account. It also assumes that the media between surfaces

(usually air) is of homogenous refractive index and does not itself participate in the

scattering of light[20].

Kajiya in the same paper introduces a new global illumination method, which today is

commonly referred to as Path Tracing, which makes [20] the first to propose a general-

purpose Monte Carlo approach to image synthesis.

Path Tracing is a straightforward extension to ray tracing that makes it possible to

compute lighting effects that requires evaluating integration problems such as area lights

and indirect light reflected by diffuse surfaces. Mathematically, path tracing is a contin-

uous Markov Chain random walk technique for solving the rendering equation, in which

the unknown function used in Monte Carlo integration to approximate the integral part

of the rendering equation is sampled by tracing rays stochastically along all possible light
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paths. By averaging a large number of sample rays for a pixel we get an estimate of the

integral over all light paths through that particular pixel [13].

Like ray tracing, path tracing starts by shooting a number of rays from the view point

into the scene and continues by tracing each ray until it can reach a light source; however,

there are a number of differences between Whitted’s ray tracing and path tracing [13]

1. The illumination model; for path tracing it is described by the rendering equation

whereas ray tracing’s illumination model is Whitted’s improved model based on

Phong shading.

2. The paths these two algorithms choose in order to shade pixels; for Whitted’s ray

tracing the form of each path can be described as E[S∗](D|G)L and for path tracing

it can be described as E[(D|G|S) + (D|G)]L

Path tracing algorithm works well for many scenes, but it can exhibit high variance in

the presence of particular tricky lighting conditions; for instance consider a scene where

a light source only illuminates a small area on the ceiling and the rest of the room is

illuminated by the indirect lighting bouncing from the illuminated area on the ceiling.

Using path tracing we will almost never happen to sample a path vertex in the illuminated

region on the ceiling before we trace a shadow ray to the light. Most of the paths will

have no contribution, while a few of them will have a large contribution. The resulting

image will have high variance [27].

Most important disadvantages of the Path Tracing algorithm are the followings:

• Rendering is time consuming (very slow convergence)

• Variance in the estimation will show up as noise in the final image; this can be

eliminated by using large number of samples per pixel; in cases of complex scenes

a noise-free final image can be rendered by using 1,000 to 10,000 paths/pixel, and

even more than this amount for scenes with higher complexities.
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• Although it can trace a wide variety of paths with different patterns, it ignores the

paths of the form E(D—G)S*L; it means that paths containing multiple specular

bounces from the light source (e.g. in caustics) are ignored.

A number of methods have been proposed such as reusing paths [4] and use of noise

reduction filters [18] to deal with Path Tracing’s efficiency and noise issues.

3.3 Bidirectional Path Tracing

Bidirectional Path Tracing (BPT) is an extension to the path tracing algorithm, which

was introduced first by Lafortune and Willems [23], and advanced further in [24, 31, 32].

BPT is a Monte Carlo rendering algorithm which combines the advantages of algorithms

based on the camera position (such as ray-tracing and path tracing) and the algorithms

based on the position of the light sources in the scene (such as radiosity) [23], in order to

address the problem of slow rate of convergence in path tracing.

To better understand the advantages of bidirectional path tracing, imagine an in-door

scene illustrated by figure 3.1, where a room is illuminated only by in-direct lighting (e.g.

one or more light sources located outside the room, and a window or door frame is the

only way any light ray can find its way inside the dark room). Now consider rendering

this scene using path tracing (or distributed ray tracing), we start from the camera, shoot

rays inside the dark room, and try to connect the intersection points directly to a light

source. There is a high probability that we won’t be able to find any visible light sources

from the intersection point. Same problem persists when we continue with computing

the diffuse reflection component, no matter how many bounces taken into account, there

is a very low probability of ever finding a light source located outside this room. This

will result in high variance and the final image will end up extremely noisy.
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Figure 3.1: Example of a scene lit almost completely by indirect lighting.

It must be obvious now that taking the position of the light sources into account is

important to get the best estimate possible and lower the variance. This is exactly what

bidirectional path tracing tries to add to the original path tracing method.

Figure 3.2: Constructing paths in BPT.

The way BPT works is to shoot rays both from the camera position and a selected light

source at the same time, bounce the light from each of these starting points independently

for some number of iterations and then connect the ending vertexes using a visibility ray.
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The algorithm then proceeds to connect vertexes on one paths to all the vertex on the

other path [23, 27], forming the graph shown in figure 3.2.

Here the path starting from camera is denoted by v0, v1, ..., vNi
, where each vi+1 is a

point visible from point vi along direction ωvi+1
; note that the first point v0 is not located

on the camera itself but on the first intersection of ray shot from the camera. The path

starting from the light source is denoted by l0, l1, ..., lNj
, where each lj+1 is a point visible

from point lj along direction ωlj+1
; note that the first point l0 is located on the light

source itself, meaning we need to sample the area light source’s surface to begin the path.

Paths in figure 3.2, are formed by performing random walks according to appropriately

chosen probability distribution functions at each of the vertexes. To start building these

paths, we first must find the initial points v0 and l0.

As described by Lafortune and Willems in [23], to sample v0 and ωv0 , we can use the

following pdf :

pdf(v, ωv) =
g(v, ωv)|Cosθv|

G
(3.3)

Where θv is the angle between ωv the normal at v, g(v, ωv) is a function that is 1 for all

the contributing pairs of points and directions (e.g. not obstructed, not in the shadow,

etc.) and is 0 otherwise, and G is the normalization factor of the pdf .

We can sample l0 and ωl0 using a similar pdf :

pdf(l, ωl) =
Le(l, ωl)|Cosθl|

L
(3.4)

Where θl is the angle between ωl the normal at l, Le is the self-emitted radiance at point

l in direction ωl, and L is the normalization factor of the pdf . This pdf is derived based

on importance sampling method ensuring both amount of emitted light and direction are

sampled where the light is brighter.
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Figure 3.3: Having formed the two paths from a light source and the camera, BPT
proceeds by connecting all the vertexes on these paths using visibility rays.

Having v0 and l0, we can start the random walk by sampling directions ωv1 and ωl0

according to the BRDFs at points v0 and l0, then find the intersection point, and repeat

the process for as many iterations as needed (light source path and camera path need not

to be of the same length):

pdf(ωv) = fbrdf (vi, ωv, ωvi)|Cosθvi | (3.5)

pdf(ωl) = fbrdf (li+1, ωli , ωl)|Cosθvi+1
| (3.6)

Having formed both paths, next step is to connect all the points using visibility rays

as illustrated in figure 3.3, then add the weighted partial contributions of each sub-path

to calculate the final estimate,

F =

Nl∑
i=0

Nv∑
j=0

ωi,jCi,j (3.7)

Where Ci,j denotes the partial estimate for i random walks on the light source path and

j random walks on the camera path, and ωi,j is the weight associated with this partial
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estimate. Without going into details of computing the partial contributions, it is worth

noting that three cases are possible based on number of random walks performed:

• Direct contribution of light source to v0 when i = 0 and j = 0, meaning v0 is

directly illuminated by the light source.

• Special case, where i = 0 and j > 0, making bidirectional path tracing equivalent

to pure path tracing.

• General case, where both i > 0 and j > 0.

For detailed discussions and proofs on computing the weights and partial contributions

refer to [23, 24, 31, 32].

Although bi-directional path tracing results in less noisy images compared to the path

tracing algorithm, the resulting image still end up being noisy if enough samples are not

taken for each pixel.

3.4 Photon Mapping

Photon mapping is one of the classical Monte Carlo rendering algorithms which was

introduced by Henrik Wann Jensen in [15] based on his earlier published work in [16,

14, 17]. In this section we will discuss the classical photon mapping algorithm as it was

introduced by Jensen, and will separately discuss an improvement on this algorithm at

the end of this chapter (section 3.6), namely Progressive Photon Mapping [11].

Photon mapping is a two-step biased Monte Carlo rendering algorithm which takes ad-

vantage of the concept of photon maps to optimize the sampling process in Monte Carlo

ray tracing algorithms, deal with the noise problem in unbiased MC methods, speed up

the process, and to deal with rendering caustics which can be extremely difficult or even

in certain scenarios almost impossible to achieve using unbiased Monte Carlo ray tracing
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algorithms, this is true even for methods that were introduced years after photon map-

ping such as Metropolis light transport and energy redistribution path tracing. However,

note that photon mapping sacrifices the unbiased property of other Monte Carlo render-

ing algorithms such as path tracing and Metropolis light transport to achieve this goal,

therefore the results are not guaranteed to be correct but may look visually plausible.

Before going into details about the algorithm itself, it is necessary to understand why

rendering caustics using path tracing (or similar unbiased Monte Carlo rendering algo-

rithms) is extremely inefficient and may even in some cases be practically impossible.

This particular problem sometimes is referred to as SDS path problem [11]. An SDS

path in Heckbert’s notation is a light transport path from a specular surface to a diffuse

surface and then again to a specular surface and from there to the camera. For instance,

any specular surface seen by the camera in a scene where the light source is a light bulb

(light source inside a glass bulb) is an example of an SDS path.

Imagine the scenario illustrated in figure 3.4; a light ray emitted from the light source

hits a glass surface, is refracted inside the glass object, again hits another side of that

glass objects and exits the object hitting a diffuse surface, bounces towards another highly

glossy surface (e.g. a mirror) before bouncing towards the camera.

Now let us try and trace this path from the camera: first we sample the pixel area,

shoot a primary ray inside the scene through that sample. Let’s assume this ray happens

to hit the mirror at point p1, then we are bound to perform a mirror reflection, which will

hit the point p2 on the diffuse surface. Now here is where the problem arises: we have

a reflection at a diffuse surface, therefore we need to randomly choose a direction in the

upper hemisphere centered at p2; the probability of sampling the exact direction to form

the rest of the path shown in figure 3.4 over the continuous domain of all the possible

directions in the hemisphere is exactly zero if the light source if infinitely far from the

surface, and it is very small for area light sources (the probability gets worse as the light

source gets smaller).
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Figure 3.4: This figure illustrates why rendering caustics can be very difficult and ex-
tremely inefficient.

Intuitively, we can see that the biggest issue with rendering the above scenario, is that

after the diffuse reflection at p2, we cannot guarantee to randomly sample the correct

direction which in turn makes yet another mirror reflection towards the light source. One

of the main strong points of photon mapping-based algorithms is the ability to deal with

these types of situations by introducing bias into the estimate.

Photon maps were introduced in [16] by Jensen and Christensen as a new way to store

irradiance information of surfaces, and as an improvement on James Arvo’s illumination

maps [3]. A photon map is a space partitioning data structure named kd-tree which is

used to store photons and some information about each photon such as the intersection

point, normal, and energy.

As it was mentioned in the beginning of this section, photon mapping is a two-step

rendering process:

1. Constructing two photon maps

2. Rendering the scene using a Monte Carlo ray tracing algorithm
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In the first pass, a large number of photons (packets of energy) are emitted towards

the scene from the light sources. Tracing these photons using a ray tracing-based method

(e.g. path tracing), we proceed to store the photons in the photon maps as they hit

surfaces. Russian Roulette is used to decide at each intersection whether or not the

photon gets absorbed by the surface or is reflected.

Two photon maps are stored in the first pass, one high resolution photon map for

caustics rendering named Caustics Photon Map, and one low resolution photon map for

other cases named Global Photon Map.

Caustics photon map is constructed by emitting a high density of photons toward

specular surfaces; a photon is stored in the caustics map if after hitting the specular

surface, it hits a diffuse surface (e.g. the problem we discussed earlier in this section).

We will use this map exclusively to render caustics in the second pass.

Global photon map is constructed by emitting photons toward all the objects in the

scene. Two types of photons are stored in this case: illumination photons and shadow

photons.

The concept of shadow photons was introduced by Henrik Wann Jensen in [17] as a way

to capture shadow information in a scene inside a photon map and eliminate the need for

casting shadow rays (e.g. in most ray tracing-based algorithm). The difference between

a illumination photon and a shadow photon is that former contains a positive amount of

energy but the latter contains a negative amount of energy. A shadow photon is stored

by emitting photons from light sources for one single pass then storing an illumination

photon at each hit point, but shadow photons are stored at all the hit points formed by

the consequent reflections of these photons.

Second pass of this algorithm consists of rendering the scene by a Monte Carlo ray

tracing algorithm (e.g. path tracing), using the two photon maps constructed in the first

pass to speed up the process of evaluating the light transport equation.
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In [15], the integral part of the rendering equation (introduced in section 2.8) which

computes the total incoming radiance at the hit point p over the upper hemisphere

centered at p, is split into a sum of four integrals as follows:

Lr =

∫
S2

frLi,l| cos θi|dωi+∫
S2

fr,s(Li,c + Li,d)| cos θi|dωi+∫
S2

fr,dLi,c| cos θi|dωi+∫
S2

fr,dLi,d| cos θi|dωi

(3.8)

Where Li,l denotes incoming radiance contribution directly coming from the light

sources, Li,c denotes the specular reflection contributions directly coming from the light

sources (caustics), Li,d denotes the indirect illumination (diffuse bounces), fr,s denotes

the specular part of of the BRDF, and fr,d denotes the diffuse part. Note that:

Li = Li,l + Li,c + Li,d

fr = fr,s + fr,d

(3.9)

The directions stored in the photon maps in conjunction with surface BRDFs are

enough to estimate the above integrals (except for the specular radiance case for which

a standard Monte Carlo ray tracing algorithm suffices) using nearest neighbor density

estimation.

Imagine a point x on a surface with fr as the BRDF at that point. We form a sphere

centered at x, and expand its radius r until exactly N photons in the photon map are

contained inside this sphere, then we can use them to estimate the rendering equation as

follows:

Lr ≈
N∑
p=1

fr
∆φp(x, ωi,p)

∆A
(3.10)
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Where φp(x, ωi,p) denotes the energy of the photon incident on point x from direction

ωi,p, and ∆A is an estimate for the area of the sphere that contains these N photons.

Assuming the area surrounding x is completely flat, the photons are located on a circular

surface, cross section of the sphere with radius r centered at x, therefore ∆A = πr2.

For a more detailed discussion on this method refer to the four original papers [15, 16,

14, 17] as well as Henrik Wann Jensen’s book on the same topic [13].

Photon mapping’s biggest weakness is arguably the need for a high resolution/high

density photon mapping for rendering caustics. As the caustics effects in a scene gets

more complex, more and more memory is needed to get an acceptable result, which is also

a problem when it comes to performance since emitting more photons mean more time

needed for the rendering process. Another related problem is that the nearest neighbor

density estimation performed by photon mapping tends to make the image blurry unless

a large number of photons are used.

3.5 Metropolis Light Transport

Metropolis Sampling uses random mutations to produce a set of samples with a desired

density. It was introduced in 1953 by Metropolis et al. [25] for handling difficult sampling

problems in computational physics and is the basis for the Metropolis Light Transport

algorithm [33].

This technique has the ability to generate a set of samples from any non-negative

function f : S → R that are distributed proportionally to f ’s value; the algorithm can

work without any knowledge about the properties of f , it only needs to be able to evaluate

it[19].

The Metropolis sampling algorithm generates a set of samples xi from a function f :

Ω → R which is defined over an arbitrary-dimensional state space Ω (usually Ω = Rn)

and returns a value in real numbers.
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Suppose that the first sample point x0 ∈ Ω is selected then Metropolis sampling can

generate each subsequent sample xi using a random mutation over its previous sample

xi−1 to compute a proposed sample x′; we denote this by T (x → x′). The proposed

sample may be accepted or rejected according to an acceptance probability a(x → x′);

this acceptance probability should be defined in a way that can ensure the distribution

of samples is proportional to f [27].

The acceptance probability is best obtained by

a(x→ x′) = min(1,
f(x′)

f(x)
) (3.11)

The pseudocode for the basic Metropolis sampling algorithm is

x := x 0

f o r i := 1 to n

x ’ := mutate ( x )

a := accept (x , x ’ )

i f ( random ( ) < a )

x := x ’

s t o r e ( x )

As it was mentioned earlier, the goal of all global illumination algorithms is to solve the

rendering equation for every visible point in the scene; the integral part of the rendering

equation cannot be solved by analytical integration methods mainly because the integrand

is not always known for every surface in every scene and even if it is known, it is most

likely that it cannot be solved analytically; therefore Monte Carlo integration methods are

used to approximate this integral equation. For doing so, we must make use of suitable

sampling methods to make this approximation more accurate (decrease the variance).

In Metropolis Light Transport algorithm (MLT), the sampling process is done using

Metropolis Sampling Method which was briefly introduced above.
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Metropolis Light Transport was first introduced by Eric Veach and Leonidas J. Guibas

in 1997 in a paper[33] of the same title; they recognized that Metropolis Sampling al-

gorithm could be applied to the image synthesis problem after it was appropriately re-

formulated, and they used it to develop a general and unbiased Monte Carlo algorithm

which was named Metropolis Light Transport [13, 33].

To render an image using MLT, the paths are sampled starting from the light sources

to the lens (view-point). Each path is x̄ is a sequence x0x1 · · ·xk of points on the scene

surfaces, where k ≥ 1; this sequence of light transport paths are generated by randomly

mutating a single current path using a suitable mutation strategy. Each mutation is

accepted or rejected with a carefully chosen probability, to ensure that paths are sampled

according to the contribution they make to the ideal image. Then the image is estimated

by sampling many paths and recording their locations on the image plane [33].

A function f is defined together with a measure µ such that
∫
D
f(x̄)dµ(x̄) represents

the flux that flows from the light sources to the image plane along a set of paths D.

The function f is called the image contribution function and it is proportional to the

contribution made to the image by light flowing along the path x̄ [33].

In MLT another form of the rendering equation is used which essentially the same as

Kajiya’s original rendering equation 3.2 [33]:

L(x′ → x′′) = Le(x
′ → x′′) +

∫
S

L(x→ x′)fs(x→ x′ → x′′)G(x↔ x′)dA(x) (3.12)

Where,

• S is the union of all scene surfaces

• A is the area measure on S

• Le(x
′ → x′′) is the emitted radiance leaving x′ in the direction of x′′

• L(x→ x′) is the equilibrium radiance function
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• fs is the BSDF of the surface point

• Notation x→ x′ symbolizes the direction of light flow between two points of S

• Notation x↔ x′ denotes symmetry in the argument pair

• G represents the throughput of a differential beam between dA(x) and dA(x′).

G can be obtained using

G(x↔ x′) = V (x↔ x′)× | cos θo. cos θ′i|
||x− x′||2

(3.13)

Where θo and θ′i represent the angles between the segment x ↔ x′ and the surface

normals at x and x′ respectively. V (x ↔ x′) is the visibility test and equals to 1 if two

points x and x′ are mutually visible and is otherwise zero.

The overall strategy of MLT is to sample paths with a probability proportional to f ,

and record the distribution of paths over the image plane. As it was mentioned earlier,

these paths are a sequence of sub-paths each of which is generated by a proposed mutation

to its previous sub-path which may or may not be accepted according to an acceptance

probability.

MLT estimates a finite number of measurements of the equilibrium radiance L (3.12)

equal to the number of total pixels in the final image; therefore we have to measure L

(solve the rendering equation) for every single pixel m1,m2, · · · ,mM in the final image,

M being the total number of pixels in the image [33]. Each measurement will have the

below form

mj =

∫
S×S

W j
e(x→ x′)L(x→ x′)G(x↔ x′)dA(x)dA(x′) (3.14)

Where W j
e(x→ x′) is a weight that indicates how much the light arriving at x′ from

the direction of x contributes to the value of the measurement; W j
e(x→ x′) in computer

graphics is called importance function and in physics is called flux responsivity [33].
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As it was mentioned, we need to define a function f as well as a measure µ with some

constraints; now considering the above equation (measurement of L for each pixel) the

goal is to rewrite that equation in form of f ,

mj =

∫
Ω

fj(x̄)dµ(x̄) (3.15)

Now 3.15 can be handled as a pure integration problem; we can also extract f and µ

from it:

fj(x, x
′) = Le(x→ x′)G(x↔ x′)W j

e(x→ x′) (3.16)

dµk(x0 · · ·xk) = dA(x0) · · · dA(xk) (3.17)

If we let Ω be the union of all the Ωk, and define a measure µ on Ω by the following

equation:

µ(D) =
∞∑
k=1

µk(D ∩ Ωk) (3.18)

Now we have an integral equation that can be approximated using Monte Carlo inte-

gration method.

Another important topic that needs to be discussed is choosing the right mutation

strategy. We can summarize the mutation strategies into the following cases (ξ denotes

a random variable) [27],

• Applying random perturbations to the current sample [Equation]. For example one

possibility is to perturb by adding or subtracting a scaled random variable:

xi+1 = xi ± sξ (3.19)

• Perturb using values from an exponential distribution; for example the following
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perturbation generates an exponentially distributed sample in the range [a, b]:

xi+1 = xi ± be− log b
a ξ (3.20)

• Discard the current sample and generate a new one with uniform random numbers:

xi+1 = ξ (3.21)

MLT is an unbiased algorithm, it handles general geometric and scattering models, uses

little storage, and can be orders of magnitudes faster than previous unbiased algorithms;

it performs especially well on the problems that are usually considered difficult [33].

It is known for its robustness, meaning that while it is (at least) as efficient as other

unbiased algorithms (e.g. bidirectional path tracing) in relatively simple scenes, it is

considerably more efficient in dealing with scenes with difficult settings where most of

the light transport happens along a small fraction of all of the possible paths through

the scene [13, 27]. In general scenes with regions with bright direct light, non-diffuse

reflections, caustics, glossy surfaces, and strong indirect lightings are considered difficult

rendering problems and MLT in general is capable of handling all of these situations [33].

Another key advantage of MLT with respect to previous unbiased approaches for image

synthesis is that it performs local exploration by favoring mutations that make small

changes to the current path [33]. Most important consequences of local exploration

are the average cost per sample is small (usually one or two rays per sample), when a

path that makes a large contribution to the image is found, the nearby paths are also

explored, therefore the cost of finding every single light transport path in the scene is

reduced significantly; this will make it easy to sample other paths that are similar to the

important paths by making small perturbations to them, and finally, the mutation set

is easily extended by constructing mutations that preserve certain properties of the path

while changing others.
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However MLT is not perfect in every situation; for instance caustics due to mirror

reflections are still difficult with MLT and especially in the case of point light sources it

can’t render this kind of scenes. Another difficulty with MLT is that picking the right

mutation strategy is highly scene-dependent, and it can result in high variance in the

final image [13].

3.6 Progressive Photon Mapping

As with photon mapping, the most notable advantage of PPM compared to unbiased

Monte Carlo ray tracing algorithms such as path tracing, bidirectional path tracing, and

Metropolis light transport is the ability to deal with complex caustics and the SDS path

problem which was discussed in section 3.4.

Progressive photon mapping is a multi-pass rendering algorithm based on photon map-

ping, which starts with a single ray tracing pass, and then continues with running consec-

utive photon tracing passes to iteratively increase the accuracy of the estimate compu-

tation from previous passes. As the name suggests, the rendering process is progressive,

meaning after each pass the algorithm produces visible results but as we continue with

more passes the result gets more and more close to the accurate result.

The algorithm starts by running a standard ray tracing pass to find all the visible

points in the scene from camera; a ray is reflected as long as it hits specular surfaces

and stops when a non-specular surface is hit. If the scene has a large number of surfaces

with specular components, Russian roulette can be used to terminate the ray. As a

ray hits the surfaces in the scene, we store the hit points on the surfaces with non-

specular components in their BRDFs; besides the point’s position, we store a number

of accompanying information such as ray direction ~ω, BRDF, associated pixel location,

current photon radius (decreases as we run each photon tracing path), total unnormalized

flux, etc.
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After finishing the first path, the algorithm starts running consecutive photon tracing

paths to increase the accuracy of the estimate by accumulating photons at each hit point

found in the first step. Each pass proceeds by emitting some number of photons into

the scene from the light sources and constructs a temporary photon map. The main

advantage of PPM over the original photon mapping is that after a photon tracing pass

is finished, there is no need to keep the photons in the map and they are discarded.

These passes can continue indefinitely until we are satisfied with the estimate meaning

we can use infinite number of photons without worrying about memory limitations (unlike

photon mapping), or we can set a maximum number of total photons to be taken into

account and after reaching that limit we can terminate the rendering process.

Progressive photon mapping uses progressive radiance estimate, a method introduced

in the same paper, to increase the accuracy of the estimate at each photon tracing pass

by reducing the radius of the sphere and increasing the accumulated photons at point x.

Remember that in the first pass (standard ray tracing), we allocated a current photon

radius to each stored hit point x, let’s assume this radius is a function of x and denote

it by R(x), another piece of information accompanying x is the number of accumulated

photons at x, denoted by N(x). The goal is to decrease R(x) by dR(x) to get the new

radius R′(x), and at the same time increase N(x) by some number of photons M(x) in

order to converge to the correct result. It is proven in [11] that the new radius for a pass

can be given by:

R′(x) = R(x)

√
N(x) + αM(x)

N(x) +M(x)
(3.22)

Where α = (0, 1) chosen such that total amount of photons at x after the reduction in

sphere’s radius, is larger than it was after the previous photon tracing pass completed.

Now we need to calculate the accumulated flux at point x after increasing the number

of photons and decreasing the radius. First step is to update the the value of total

unnormalized flux for point x, denoted here by τ(x, ω̄):
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τ(x, ω) =

N(x)∑
p=1

fr(x, ω, ωp)φ
′
p(xp, ωp) (3.23)

Where ω denotes the direction of incident ray at x, ωp is the direction of incident

photon, and φ′p(xp, ωp) is the flux carried by the photon p. To add the contribution of a

new photon tracing pass, considering the reduced radius R′(x) and the addition of αM(x)

photons originally, and N̂ photons in total after the radius reduction, it is proven that

the new increased total flux is:

τN̂(x, ω) = τN+M(x, ω)
N(x) + αM(x)

N(x) +M(x)
(3.24)

Where τN+M = τN +τM (which would not need the scaling factor if the radius remained

constant).

At this point the algorithm can proceed to estimate the radiance at point x for the

current photon tracing pass, which can be calculate using:

L(x, ω) ≈ 1

πR(x)2

τ(x, ω)

Nemitted

(3.25)

Where Nemitted is the total number of emitted photons so far. Note that the algorithm

assumes the photon density and illumination inside the disc is constant.
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4. Sample Results and Comparison

of MCRT Algorithm

We presented an overview of some of the most important and highly cited Monte Carlo

ray tracing algorithm in chapter 3 in chronological order:

1. Path tracing (PT) [20]

2. Bidirectional path tracing (BPT) [23, 24, 31, 32]

3. Photon mapping (PM) [15, 16, 14, 17]

4. Metropolis light transport (MLT) [33]

5. Progressive photon mapping (PPM) [11]

In order to better understand the differences between these algorithms and their ad-

vantages and disadvantages, it is important to compare them based on the images they

produce using different scene settings. For this purpose, I decided to use a research-

oriented rendering system named Mitsuba1 developed and maintained by Wenzel Jakob.

We are going to look at some sample results for each of the algorithms discussed in

chapter 3 and compare their performance both in terms of time and accuracy (e.g. amount

of noise) on a three different scenes widely used throughout the rendering literature to

assess the performance of rendering algorithms. For all cases Mitsuba renderer is used

on an Intel Core i7 clocked at 2.6 GHz with eight logical cores.

Three different scenes were selected to perform the tests. First we use the Cornell box

scene which only contains diffuse surfaces, to assess the performance and accuracy of the

1Website: https://www.mitsuba-renderer.org/
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above algorithms in such scenes. Next we will use the torus scene (from [6]) to assess the

performance and accuracy when it comes to SDS path problems (complex caustics effect

which was discussed in section 3.4). Finally, one of the scene from [33] is used to assess

the performance in the situation described in figure 3.1 where the primary source of light

in a scene is indirect lighting.

Figure 4.1: PT, BPT, and MLT results as the number of samples taken per pixel increases.
Note that in this example MLT needs more samples to converge to better estimates
compared to PT and BPT, but at the same time it’s performance is better than PT, and
much better than BPT. Refer to table 4.1 for rendering times.

As it is demonstrated in figure 4.1, taking more samples results in a decrease in noise.

Also note that MLT needs more samples to converge to the correct result but at the

same time examining the rendering times in table 4.1, it performs better than PT and
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much better than BPT in terms of rendering time. Table 4.1 also demonstrates that

in terms of rendering time and efficiency, BPT performs worse than PT and MLT, and

MLT performs better than the other two algorithms. These results show that taking both

accuracy and rendering time into consideration, MLT is the best approach among these

three for scenes consisting of all diffuse surfaces.

Figure 4.2: This scene demonstrates the problem of finding SDS paths by unbiased
Monte Carlo rendering algorithms. Note that PT and BPT get worse as they use more
samples since these algorithms cannot find the correct path, therefore paths with little
contribution are taken into account instead of the correct paths of SDS form, hence the
noise in the results.

The second scene consists of a torus with diffuse surface located completely inside a

glass cube in order to test each of these algorithms for the SDS path problem. Figure 4.2
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is the result of rendering this scene with PT, BPT, and MLT with an increasing number

of samples per pixel. Figure 4.2 clearly shows that among these unbiased MC methods

only MLT is capable of dealing with this scene, while PT and BPT get worse as they

take more samples. You can find the rendering times in table 4.2.

Figure 4.3: This set of images demonstrate the problem of tracing paths to a blocked
light source (indirect illumination by blocked light source) in PT. On the other hand,
BPT and MLT can converge to the correct result quickly by taking more samples. Also
note that the caustics effect in this scene is different from SDS problem, hence all three
algorithms seem to be capable of handling it reasonably well.

The third scene demonstrates the problem of blocked light sources and indirect illu-

mination of the scene (refer to section 3.3). As it is demonstrated in figure 4.3 and

mentioned in section 3.3, PT cannot efficiently deal with these types of scenes. Not only
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have caustics effect in this scene, but the primary light source is blocked and the scene

is illuminated indirectly by the walls and the ceiling. Here MLT again outperforms PT

and BPT when both rendering time and accuracy are taken into account. For rendering

times refer to table 4.3.

Cornell Box rendering (256× 256) times in seconds (unbiased algorithms)
Algorithm 25 SPP 400 SPP 841 SPP
PT 1s 17s 37s
BPT 6s 92s 200s
MLT 3s 14s 27s

Table 4.1: Rendering times for results in figure 4.1 (Cornell Box scene).

Torus scene [6] rendering (256× 256) times in seconds (unbiased algorithms)
Algorithm 25 SPP 400 SPP 841 SPP
PT 2s 22s 47s
BPT 3s 49s 109s
MLT 3s 33s 69s

Table 4.2: Rendering times for results in figure 4.2 (torus scene with caustics).

Room scene [33] rendering (256× 256) times in seconds (unbiased algorithms)
Algorithm 25 SPP 400 SPP 841 SPP
PT 2s 31s 67s
BPT 8s 138s 294s
MLT 4s 20s 38s

Table 4.3: Rendering times for results in figure 4.3 (room scene with indirect illumina-
tion).

As the results up to this point demonstrate, Metropolis Light Transport outperforms

both Path Tracing and Bidirectional Path Tracing and is capable of dealing with all the

shortcomings of other unbiased rendering algorithms; therefore we can argue MLT is the

best choice among the unbiased rendering algorithms we discussed here both in terms of

performance and robustness.

Now we will proceed to examine the results for the biased algorithms we discussed in

chapter 3 for the same set of test scenes.
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Figure 4.4: PM and PPM results improve as the number of photons emitted into the
scene is increased for PM, and as we perform more photon tracing passes in PPM. Refer
to table 4.4 for rendering times.

Figure 4.5: This scene demonstrates the most important advantage of biased rendering
algorithms we discussed. As the results show, PM and PPM have no trouble converging
to a good estimate for the caustics in this scene unlike unbiased algorithms.
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Figure 4.6: Here the problem with PM is only lack of sufficient number of photons stored
in the photon map, and PPM is reaching a good estimate as more photon tracing passes
are completed.

Cornell Box rendering (256× 256) times in seconds (biased algorithms)
Algorithm 250k photons/pass 500k photons/pass
PM 53s 4s
PPM (3 passes) 2s 56s
PPM (75 passes) 29s 52s

Table 4.4: Rendering times for results in figure 4.4 (Cornell box scene).

Torus scene [6] rendering (256× 256) times in seconds (biased algorithms)
Algorithm 250k photons/pass 500k photons/pass
PM 54s 61s
PPM (3 passes) 22s 58s
PPM (75 passes) 222s 438s

Table 4.5: Rendering times for results in figure 4.5 (torus scene with caustics).
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Room scene [33] rendering (256× 256) times in seconds (biased algorithms)
Algorithm 250k photons/pass 500k photons/pass
PM 38s 76s
PPM (3 passes) 2s 4s
PPM (75 passes) 35s 71s

Table 4.6: Rendering times for results in figure 4.6 (room scene with indirect illumina-
tion).

Overall we can conclude that except for the SDS path problem, Metropolis light trans-

port is still an efficient and robust unbiased Monte Carlo rendering algorithm, not only

it converges to the correct results usually faster than the alternative, the results are not

as noisy as PT and BPT results. On the other hand, Progressive Photon Mapping seems

to be an algorithm that can yield good results in general, including SDS path scenarios

by performing more photon tracing passes.
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5. Conclusion

In this thesis, a report on my investigation on the problem of global illumination

and photorealistic rendering using Monte Carlo techniques is presented. The focus was

mostly on the classical algorithms such as path tracing, bidirectional path tracing, photon

mapping, and Metropolis light transport. These four algorithms are arguably among the

most important publications in rendering literature, and they are without a doubt the

most influential algorithms in the field of photorealistic rendering consistently cited in

the literature up to this day. Most of what is introduced in the past two decades or so

has been improvements over these classical algorithms.

With the direction that the entertainment industry, both in films and in video games,

has been pursuing in the past few years it is not hard to see there is a strong will and

a new trend of moving towards ray tracing-based algorithms and slowly abandon the

ad-hoc real-time rendering techniques which are common place today. This is true even

for interactive applications such as virtual reality and video games for which I can name

two great examples: Unreal Engine 41 and Brigade Renderer2.

It is also worth noting that although film and animation studios have been using some

forms of ray tracing to render specific effects that are hard or expensive to solve using

rasterization-based methods, the trend of moving towards Monte Carlo ray tracing and

phyically-based rendering is fairly recent.

Another reason behind this new found interest in these decades old algorithms is the

advances in hardware such as multicore processors, GPUs with thousands of processing

units, as well as the availability of fast and cheap memory in recent years. The ad-

vances in hardware has been so dramatic that these past few years at SIGGRAPH we

1Epic Games, Inc.
2OTOY, Inc.
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can see hardware manufacturers such as NVIDIA and Intel starting to talk about the

next generations of graphics hardware based on ray tracing3 (rather than the current

rasterization-based graphics pipelines).

Based on the above observations, my main goal in pursuing this topic for my Master’s

thesis was to arm myself with the required knowledge to enter this field as a Software

Engineer and be part of this new revolution in the entertainment industry, and fortunately

I have been successful at achieving this goal.

3For instance at SIGGRAPH 2013 a course was organized titled ”Ray Tracing is the Future and Ever
Will Be” discussing this issue.
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