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Abstract of the Dissertation
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by
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Professor Joseph M. Teran, Co-chair

We propose an extension to the Material Point Method for the simulation of granular media.

We model the dynamics with an elastoplastic, continuum assumption. The behavior of the

granular media is captured by the Drucker-Prager yield criterion that naturally represents

the frictional relationship between shear and normal stresses. We develop a stress projection

algorithm that is well suited for both explicit and implicit time integration, and uses a

non-associative flow rule to ensure volume preservation. Our approach is able to recreate

the dynamics of granular media undergoing large deformations, topological changes, and

collisions.

ii



The dissertation of Gergely Klár is approved.

Song-Chun Zhu

Stanley Osher

Joseph M. Teran, Committee Co-chair

Demetri Terzopoulos, Committee Co-chair

University of California, Los Angeles

2016

iii



Ez valami.

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sand Simulation in Graphics and Engineering . . . . . . . . . . . . . 2

1.1.2 The Material Point Method . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Elastoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Large Elastoplastic Deformations . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Multiplicative Decomposition . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Principal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Measures of Strain and Stress . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 Elastic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 The Mohr-Coulomb Yield Criterion . . . . . . . . . . . . . . . . . . . 19

2.4.2 The Drucker-Prager Yield Criterion . . . . . . . . . . . . . . . . . . . 22

2.4.3 Plastic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Work and Work Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Work Done by Elastic Forces . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Plastic Flow Rate and Potential . . . . . . . . . . . . . . . . . . . . . 33

v



2.5.3 The Total Work Rate Density . . . . . . . . . . . . . . . . . . . . . . 33

2.5.4 Plastic Dissipation Rate is Non-Negative . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 The Material Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Push Forward and Pull Back . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Interpolation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.4 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.5 Stress Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Return Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.3 Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Transfer to Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.2 Force Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Collision and Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.4 Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.5 Particle Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.6 Plasticity and Hardening . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



3.7 Gather and Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Friction Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Pile from Spout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Young’s Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.5 Hourglass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.6 Sandbox: Drawing and Raking . . . . . . . . . . . . . . . . . . . . . 75

4.1.7 High Velocity Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.8 Shoveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Further Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Hencky Strain Derivative Lemma . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 The Relationship Between Kirchhoff Stress and Hencky Strain . . . . . . . . 83

A.3 Elastic Component of the Total Work Rate Density . . . . . . . . . . . . . . 84

A.4 Plastic Rate of Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.5 Derivatives of Elasticity and Plasticity . . . . . . . . . . . . . . . . . . . . . 87

B Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vii



List of Figures

2.1 The material and spatial configurations, and the mapping between the two . 10

2.2 Multiplicative decomposition of a neighborhood . . . . . . . . . . . . . . . . 11

2.3 A yield surface in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Normal and tangential forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The Drucker-Prager yield surface in three dimensions . . . . . . . . . . . . . 23

2.6 Plastic flow direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Interpolation kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Connection between the standard and the updated Lagrangian views . . . . 51

3.3 Ray-cone intersection of the Drucker-Prager yield surface . . . . . . . . . . . 55

3.4 Projection cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Effect of hardening on the yield surface . . . . . . . . . . . . . . . . . . . . . 58

3.6 Instability of FLIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Effect of friction angle on piling. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Comparison to real world footage. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Effect of Young’s modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Sand castle collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Hourglass: initial frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Hourglass: complete simulation . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Drawing in sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Drawing in sand, closeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Raking sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Raking sand, closeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



4.11 High velocity impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Shoveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



List of Tables

4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Simulation performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



Acknowledgments

There is a set P of people I want to include here, and writing necessitates a strict ordering,

but such cannot be defined. All I can do is to start and finish with a maximal element.

Andre Pradhana became so much more than a labmate over the years. He became a

close friend, a brother-in-arms of academia, a comrade in research. Thank you, Andre, for

dragging me out of the trenches of dead-end projects, helping me through the barrage of

bugs, and having my back against the onslaught of equations.

I want to express my gratitude to my advisors, Professor Joseph Teran and Professor

Demetri Terzopoulos. Their support and guidance made it possible for me to arrive at this

definitive point in my life.

I also thank my thesis committee members, Professor Stanley Osher and Professor Song-

Chun Zhu, for dedicating their time to better my work.

Of my fellow graduate students, I thank Craig Schroeder for his ruthless teaching —

I wish I had the chance to work with him more to learn his genius. I thank Ted Gast

and Chenfanfu Jiang for their ideas and insights; Matt Wang, Masaki Nakada, Konstantine

Tsotsos, and Kresimir Petrinec for their friendship and for making the lab a cheerful place.

I thank Diana Ford, Sharath Gopal, Wenjia Huang, Daniel Ram, Tomer Weiss, and Tao

Zhou for their everyday companionship.

I am grateful for my first advisor at BUTE, Hungary, László Szirmay-Kalos, and my

Hungarian colleagues László Szécsi, Milán Magdics, Gábor Valasek, and Zalán Szűgyi.

Without the generous support of the Fulbright Science and Technology Program I would

have never considered applying to UCLA. I hope the program will help many others to

pursue their studies at the top institutions of the US.

I thank Samu and Lili for showing me all the secret emotions of love and joy that only

parenthood reveals, and I am grateful to my parents, Magdi and András, whom I might

understand a bit better now.

But most of all, I thank my most beloved, strong, and beautiful wife, without whom

xi



none of this would have been possible. She was with me from my first step towards my PhD,

and now she stands beside me at the last. I thank her for her hard work and sacrifice, her

willingness to take on this adventure with me, and her endless support over the years-long

roller coaster ride of grad school. Wherever she happens to be, I find home there.

The dissertation contains material from the paper “Drucker-Prager Elastoplasticity for

Sand Animation.” by G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and

J. Teran in ACM Trans Graph, 35(4), July 2016 and the accompanying technical document

“Drucker-Prager Elastoplasticity for Sand Animation: Supplementary Technical Document.”

by G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran in ACM

Trans Graph, 2016.

xii



Vita

2008 M.S. (Programmer Mathematician), Eötvös Loránd University, Hungary.

2010-2011 Assistant Lecturer, Eötvös Loránd University, Hungary.

2011-2014 Fulbright Science and Technology Program Fellow.

2012, summer Software Engineer Intern, NVIDIA Corporation, Santa Clara.

2014-2016 Research Assistant, University of California, Los Angeles.

2015, spring Teaching Assistant, University of California, Los Angeles.

2015, summer Software Engineer Intern, Google, Los Angeles, California.

2016, spring Visual Effects R&D Intern, DreamWorks Animation SKG, Glendale, Cali-

fornia.

xiii



CHAPTER 1

Introduction

1.1 Overview

The simulation of granular material poses an ongoing challenge in both engineering and

computer graphics. Granular materials are the focus of soil mechanics in engineering, and

they are used for the simulation of sand, rubble, and a range of different materials in computer

graphics. Depending on the circumstances, granular materials can exhibit fluid or solid

behavior (Jaeger et al., 1996; Bardenhagen et al., 2000). Sand, snow, and gravel flow down

in landslides and avalanches, but form piles and are able to support weight as well. The

uniqueness and complexity of the phenomena arises from the myriad of grains sliding and

colliding with each other. Indeed, the behavior of granular materials is so fundamentally

different from both fluids and solids that the granular state is frequently considered as a

state of matter separate from solid, liquid, or gas (Mehta and Barker, 1994).

In this dissertation, we describe our work on a continuum mechanics based approach

to the simulation of dry sand. We use a hyperelastic, finite strain assumption to model

the sand dynamics. The flow of sand and the permanent changes in its shape are viewed

as elastoplastic behavior, and captured by the Drucker-Prager yield criterion. From the

continuum-based considerations, we use the Material Point Method to derive and solve the

corresponding discrete equations. We build on the work of Mast (2013) and Mast et al.

(2014), where they use the Drucker-Prager yield criterion with MPM for the simulation of

landslides and granular column collapse. We extend their work with an implicit elastoplastic

model and adopt it for use in computer graphics.

The topic at hand has a distinct scientific beauty to it. Through complicated theory,
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spanning multiple disciplines, we arrive at simple and accessible algorithms that anyone

with a well founded knowledge in computer science would be able to implement, especially

in the case of explicit time integration. But this simplicity does not reduce the versatility of

the method, as proven by the range of related publications.

We target a dual audience: researchers and professionals interested in the intricacies of

simulating granular materials with MPM, and those who are new to this robust method

and want to gain a deeper understanding of the theory and modeling choices behind the

implementation.

While the intended application of our work is for computer graphics, this is only reflected

in the choice of experiments. Both the discussion on elastoplastic behavior and the derivation

of the extended MPM algorithm are valid for engineering applications as well. Nevertheless,

the validation of the modeling choices for these cases is beyond the scope of this dissertation.

1.1.1 Sand Simulation in Graphics and Engineering

Physically based simulation has a long history in computer graphics, relative to the age of

the field it self at least, dating back to the pioneering work of Terzopoulos et al. for elasticity,

plasticity, and fracturing (Terzopoulos et al., 1987; Terzopoulos and Fleischer, 1988a,b).

Continuum approaches have been used in a number of graphics methods for granular

materials. Zhu and Bridson (2005) animate sand as a continuum with a modified Particle-

In-Cell fluid solver. Narain et al. (2010) use an approximation of the Drucker-Prager yield

criterion, and improve on the method of Zhu and Bridson by removing cohesion artifacts

associated with incompressibility. These results inspired a number of papers that improve

and generalize the previous works. Lenaerts and Dutré (2009) use a Smoothed-Particle

Hydrodynamics (SPH) version to couple water with porous granular materials. Alduán and

Otaduy (2011) generalize to SPH the unilateral incompressibility developed by Narain et

al. Nkulikiyimfura et al. (2012) develop a GPU version of the Zhu and Bridson approach.

Chang et al. (2012) use a modified Hooke’s law to handle friction between grains. Ihmsen

et al. (2013) show how to improve the convergence of the method of Alduán and Otaduy
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(2011) and also detail refinement of base simulations by upsampling to millions of grains.

For applications where interactive simulation rates are more important than physical or

visual accuracy, methods like cellular automata (Pla-Castells et al., 2006) and height fields

have been proposed (Li and Moshell, 1993; Chanclou et al., 1996; Sumner et al., 1999; Onoue

and Nishita, 2003; Chen and Wong, 2013).

Many methods are developed by modeling interactions between individual grains or parti-

cle idealizations of grains, rather than from a continuum. Miller and Pearce (1989) simulate

interactions between particles to model sand, solid and viscous behaviors. Luciani et al.

(1995) use a similar approach. Bell et al. (2005) got very impressive results by simulating

many sand grains as spherical rigid bodies with friction. Milenkovic (1996) also simulated

individual grains to solve for piles of rigid materials via energy minimization/optimization.

Mazhar et al. (2015) use Nestov’s method to simulate millions of individual grains. Yasuda

et al. (2008) use the GPU to get real-time results with rigid grains. Alduán et al. (2009) use

an adaptive resolution version of the method by Bell et al. (2005) to improve performance.

Macklin et al. (2014) show that the extremely efficient position based dynamics methods can

be applied by casting granular interactions as hard constraints.

An alternative approach to the problem is hypoplasticity, that is a more recent theory for

the modeling of granular material. We point the interested reader to (Kolymbas, 1999) for

an introduction, to (Kolymbas, 2000) for a treatise of related topics, and to (Sikora, 1992)

for numerical examples.

1.1.2 The Material Point Method

The Material Point Method is a numerical technique well suited for simulations involving

large deformations and topological changes. Proposed by Sulsky et al. in (Sulsky et al., 1994)

and (Sulsky et al., 1995), the method combines the advantages of Lagrangian particles and

Eulerian grids.

Since its inception, the method has been used in a wide range of engineering problems.

Zhou et al. (1999) use it for geotechnical simulation of deformation and creep in landfills.

3



Więckowski (2004) applies it to large strain industrial problems of silo flow, silo filling, and

landslides. Analysis of landslides with MPM is also the focus of Andersen and Andersen

(2010). Because of the method’s ability to model large displacements, Coetzee et al. (2005)

found it advantageous for the simulation of structure supporting anchors. Sulsky et al.

(2007) successfully matches the dynamics of ice packs as predicted by FEM models, and

they propose a new model for explicit handling of leads in the ice. Fluid and thin structure

interactions are investigated by York et al. (1999, 2000), and the method has been even used

in biomechanics, where it is employed for the simulation of three dimensional mechanics of

a vascularized scaffolds under tension by Guilkey et al. (2006).

The Material Point Method was introduced to the computer graphics community by

Stomakhin et al. (2013) where they use the it for the simulation of snow. Hegemann et al.

(2013) uses MPM for self collision treatment in ductile fracture. It has been used with

success for the simulation of materials undergoing phase change in (Stomakhin et al., 2014),

and for the simulation of foams, and viscoelastic fluids by Ram et al. (2015) and by Yue et al.

(2015). Jiang (2015) provides an overview of the recent developments of MPM in graphics,

and we refer the reader to the course (Jiang et al., 2016) for an introduction.

1.2 Contributions

Our contributions are as follows:

1. We develop an implicit method for the simulation of granular material with the Drucker-

Prager yield condition.

2. We adopt the APIC transfer method to the simulation, and demonstrate that it allows

for more stable behavior.

3. We present a complete treatise for elastoplastic simulation with the Material Point

Method that can be easily extended beyond the Drucker-Prager model and granular

materials.

4



Some of our results have been published in (Klár et al., 2016a) and its supplementary

technical document (Klár et al., 2016b).

1.3 Dissertation Overview

Chapter 2 We begin by considering granular media as a continuum. We discuss the prin-

ciples of continuum mechanics, and the concepts of large elastoplastic deformations, multi-

plicative decomposition, and yield criteria. Based on these modeling choices, we demonstrate

the process of identifying the plastic flow, the quantity that defines the part of the defor-

mation that should be regarded as permanent. As the plastic flow is the key element of the

elastoplastic modeling, we provide the details of its derivation that ensures volume preser-

vation and conformance with the second law of thermodynamics.

Chapter 3 Based on the result in continuum, next we transform the results to a discrete

setting. In this chapter we provide the derivation and details of the Material Point Method

for elastoplastic simulations, and the return mapping algorithm for the Drucker-Prager yield

criterion. We adopt a viewpoint similar to that of the Finite Element Method, and present

the derivation of the algorithm through this form. The derivation by the weak form sheds

light on many important details that appear in context of elastoplasticity, and do not need

to be considered for elasticity.

Chapter 4 Next we present results computed by the implementation of our MPM solver for

granular media. We tested our system on a range of setups of dry sand. We include examples

for parameter tuning, real world footage comparison, highly dynamic scenes, and scenes

typical in animation. The material and setup parameters for each example are included

here, as well as the simulation performance results.

Appendix A Both Chapter 2 and Chapter 3 rely on a number of derivations that, while

essential, would prove to be a distraction from the topic at hand in the main text. These

5



derivations and proofs are presented here, including results on the Hencky strain and the

work done in elastoplasticity. The implicit formulation of the return mapping algorithm

requires the derivatives of several components whose computation we detail here.

Appendix B In closing, we include the pseudocode for the implementation of the complete

simulation system described in this dissertation. Starting from the time stepping procedure

of MPM, we describe the routines for both the explicit and the implicit solver, including the

steps carried out during collision handling and application of friction.
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CHAPTER 2

Elastoplasticity

2.1 Introduction

We model the behavior of sand using an elastoplastic, continuum assumption. We start the

chapter by revisiting the fundamentals of continuum mechanics and elastoplasticity, then

present the solution for identifying the change in the plastic deformation.

Elastoplasticity of solids is an easy to understand, ubiquitous phenomenon. A metal sheet

or a plastic rod both demonstrate elastic behavior when bent only slightly, and subsequently

they both return to their original shape when released. This behavior can be adequately

modeled by elasticity. However, when the bending is severe enough that the applied forces

are over a threshold, some of the deformation becomes permanent, and the sheet or rod

in question will be unable to return to its original configuration. This change in the rest

shape is called permanent, plastic, or inelastic change, and its modeling is the subject of

elastoplasticity.

While less intuitive, granular media can be described in terms of elastoplasticity as well.

When forming piles and supporting load, the material exhibits elastic behavior, and during

flowing and sliding the material experiences plastic deformations.

We model the deformations through the large deformation theory, represent plasticity by

a multiplicative decomposition, and model energy by hyperelasticity.

The permanent, or plastic, deformations are modeled by the choice of the yield criterion

that defines the yield function. The choice of the yield function is entirely a modeling

one. Based on physical observations and experiments, the yield function captures the limit

at which further loading on the material leads to permanent deformation. Different yield
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functions have been proposed in the literature to represent the behavior of different classes

of material: the von Mises yield criterion is widely used to model metals and other ductile

materials (Yu, 2007), while granular materials are modeled well by the Mohr-Coulomb yield

criterion (Chen and Saleeb, 1994a,b) and the Drucker-Prager yield criterion (Irgens, 2008)

that approximates the former to make it better suited for numerical simulations.

The flow rule, or plastic flow, defines what portion of the deformation will be considered

permanent at yielding. In other words, while the plastic deformation encodes what should

be considered permanent, the plastic flow defines the change in the plastic deformation. A

distinction is made between associative and non-associative flow rules. An associative flow

rule is in the direction of the plastic stain rate, that is the gradient of the yield function.

As we demonstrate later on, an associative flow rule is the consequence of the principle of

maximum plastic dissipation. While this principle guarantees that the system confirms to

the second law of thermodynamics, it is not concerned with conservation of volume, which

must be added as a separate constraint.

A non-associative flow rule gives more modeling freedom, and provides a means to avoid

non-physical volume loss or gain, but extra care has to be taken to avoid adding energy to

the system.

In the rest of this chapter we first introduce the notation and key theories used throughout

the dissertation. We define the relevant quantities for elastoplastic modeling, but refer the

reader to the texts of Gonzalez and Stuart (2008) and Bonet and Wood (2008) for more

details on Lagrangian and Eulerian descriptions of the continuum. After the introduction,

we focus on plasticity and the derivation of the flow rule that is the key result of this chapter.

The description of work and work rate, which plays a significant role in the derivation of the

flow rule, is presented after plasticity. We conclude the chapter by summarizing our findings.

2.2 Notation

Throughout this dissertation we use the following notations. Scalar quantities and scalar

valued functions are typeset in italic: t, F . Vectors and tensors and functions of them are

8



written bold: x, X, τ . As a consequence, when referred in scalar components, these vectors

and tensors are written as scalar: Xi, τkl.

As much as possible, we reserve uppercase letters for quantities in the reference configura-

tion, and lowercase letters for the ones in the current configuration, but literature standards

take precedence.

Temporal indices are used in superscript (Ωt), as well as the P and E to refer to plastic

and elastic quantities: CP ,bE.

We use the convention that subscripts after a comma represent partial derivatives as

in Pij,k = ∂Pij

∂Xk
. Unless otherwise stated, we use the Einstein summation convention where

repeated indices are summed over their ranges: AkiBkj = ∑
k A

T
ikBkj = [ATB]ij

Occasionally we need to consider if the problem is in two or three dimensions. In such

equations we use d for the number of dimensions.

2.3 Large Elastoplastic Deformations

Large deformation theory, also known as finite stain theory, is concerned with deformations

where the displacements within the material are on the same scale as the relevant dimensions

of the body. Since this is clearly the case for a collapsing wall of sand, this theory represents

the right choice for our modeling needs.

We denote the material in its rest configuration as Ω0, and we will refer to this as the

material configuration. We use X ∈ Ω0 to address points of the material space. We use

the term material point and particle interchangeably for the points of Ω0. The material’s

evolution over time is described by the mapping φ, generally referred to as the flow map

or the deformation map. Essentially, the location of point X at time t is defined by the

deformation map as x = φ(X, t). The deformation of the whole body is given by the image

of Ω0 under φ at time t as Ωt and it is referred to as the spatial or current configuration. This

relationship between the material and the spatial configuration is illustrated in Figure 2.1.

The deformation gradient F(X, t) = ∂φ
∂X(X, t) describes the local deformation of the
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Figure 2.1: The material (left) and spatial configurations (right), and the mapping between
the two

neighborhood around X. In other words, the infinitesimal material vector dX in the neigh-

borhood of X transforms to the spatial vector dx at time t as dx = F(X, t)dX. Consequently,

the determinant of the deformation gradient J = det F describes the local change in volume,

and it is the ratio of the infinitesimal volume in Ωt to the original volume in Ω0.

In the absence of plastic deformations, if F is sufficient to define the elastic potential or

stored strain energy function ψ then the material is said to be hyperelastic.

We write the density of the material around a material point X in the material config-

uration as R(X, t), that is, X is the center of the neighborhood in rest, and the density is

evaluated at time t. We define the Lagrangian velocity of a material point X as

V(X, t) = ∂φ

∂t
(X, t), (2.1)

When there is no risk of ambiguity, the X and t arguments will be omitted in the rest of

the dissertation.

2.3.1 Multiplicative Decomposition

To adequately capture large elastoplastic deformations, we use a multiplicative decomposi-

tion of the deformation gradient as in (Bonet and Wood, 2008). This decomposition is the

basic concept of elastoplasticity. The decomposition splits the deformation gradient F into
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Figure 2.2: Multiplicative decomposition of a neighborhood

an elastic (FE), and an inelastic, or permanent, component (FP ), such that F = FEFP (Fig-

ure 2.2). This does not change the definition of the deformation gradient as F = ∂φ
∂X , but it is

used to identify the local configuration where the neighborhood of each point would settle, if

all the external forces were removed from it. In the absence of plasticity, this unloading yields

the reference configuration up to translation. At the same time, for elastoplastic materials,

this locally unloaded state identifies the new permanent shape of the neighborhood. It is

necessary to consider the material in locally unloaded neighborhoods. Simply removing all

external forces from the object leads to a complex equilibrium of internal forces, and not to

one that is absent of any forces. Finally, it must be noted, that the neighborhoods are con-

sidered locally in a conceptual isolation. Due to this isolation, a rotation would not change

the intrinsic nature of the deformation of the neighborhood. This invariance to rotation has

significant implications, as we will point out later, and makes the modeling of anisotropic

elastoplastic materials especially complex.

With elastoplasticity, solving of the material state is a two fold problem. For an elastic

material, we want to obtain the deformation map φ at a given time. But this alone is

insufficient to determine the forces acting upon the body. Elastic forces only arise from the

elastic part of the deformation gradient (FE), thus a method is required to determine this

division of the deformation gradient.

The solution process is further complicated by the fact, that it is impossible to discern
11



FE and FP merely from the current state. Only the time rate of either can be concluded,

and the corresponding deformation gradients can be retrieved by integration of its time rate.

This dependence on the integral of the rate is called path-dependence.

In light of the need to solve for the rate of the various tensors, it might come as confusing

that the material is modeled with rate-independent plasticity. The key distinction to make

is that this rate independence refers to the conditions for yielding, and states that the yield

conditions and the flow rule are not considered to be functions of any rate variable.

2.3.2 Principal Space

As we address isotropic materials, it is sufficient for several tensor quantities, such as strain

and stress, to be expressed in principal space. This greatly simplifies the equations we

need to work with as second-order tensors can be represented as vectors, and fourth-order

tensors, such as the stiffness tensor mapping strain to stress, as matrices. Note that is a true

reduction of order, unlike the Voigt notation that only changes the representation, but keeps

the original degrees of freedom.

A further advantage of working in principal space is that constitutive models and yield

criteria of isotropic materials can always be written in terms of principal directions. In fact

most of them can be expressed solely by the tensor invariants. The invariants of a symmetric,

positive-definite second-order tensors S can be computed in term of its eigenvalues1 λ1, λ2, λ3

(Gonzalez and Stuart, 2008):

I1 = trS = λ1 + λ2 + λ3 (2.2)

I2 = 1
2
[
(trS)2 − tr(S2)

]
= λ1λ2 + λ2λ3 + λ3λ1 (2.3)

I3 = det S = λ1λ2λ3 (2.4)

1Our methods are implemented in terms of the singular value decomposition. But since the singular value
decomposition and the eigenvalue decomposition of a symmetric, positive-definite matrix are the same up to
sign, this generalization poses no danger.
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2.3.3 Measures of Strain and Stress

In our derivation of the solution process we employ a number of quantities that describe the

state of the material. Arguably, the most important of these are the measures of strain and

stress. In this section we give a summary of the ones used in the following chapters, and for

completeness we include some that are not used herein, but provide the reader a reference

that might prove useful.

2.3.3.1 Strain

Strain measures capture the stretching of a local neighborhood in Ω0 to Ωt. There are

numerous ways of representing this, resulting in different measures of stress. In the context

of elastoplasticity, the elastic left Cauchy-Green deformation tensor and the plastic right

Cauchy-Green deformation tensor are the most significant, and we use them extensively in

our derivations. We motivate their definition by first considering their simpler counterparts

that ignore plasticity.

The left Cauchy-Green deformation, or strain, tensor is defined as

b = FFT , (2.5)

and the right Cauchy-Green deformation, or strain, tensor2 is

C = FTF. (2.6)

Both of these strain tensors are symmetric and positive definite. The motivation for

the definition is evident if we consider the polar decomposition of the deformation gradient

F = RU = VR. The deformation gradient describes both the rotation and stretch of a
2A useful mnemonic for remembering which one is left and which one is right is to consider the side where

F is without the transpose.
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neighborhood, but b and C only represent the stretch, since

b = FFT = V2, (2.7)

C = FTF = U2. (2.8)

The key difference between the two Cauchy-Green strain tensors is that b operates on

spatial vectors and C operates on material vectors.

Analogous to these, the elastic left Cauchy-Green tensor and the plastic right Cauchy-

Green tensor are defined as

bE = FEFET , (2.9)

CP = FP TFP . (2.10)

Just as C and b, CP maps from material coordinates to material coordinates, while bE

maps from spatial coordinates to spatial coordinates.

bE and CP deserve special attention, because they satisfy the condition that they are

invariant under the rotation of the locally unloaded neighborhood. As a result the Kirchhoff

stress τ and the stored energy density function ψ are both independent of these rotations.

The next measure of strain we consider is the Hencky strain, given by

ε = 1
2 log(b). (2.11)

We define the elastic Hencky strain that only takes the elastic deformation into account.

εE = 1
2 log(bE) (2.12)
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2.3.3.2 Stress

The force per unit area, acting on one side of an oriented surface with a unit normal n is

called traction (t) and we can define a second order tensor σ (Hashiguchi, 2009), such that

t = σn. (2.13)

Cauchy stress: σ in (2.13) is the Cauchy stress if both n and t are given in the current

configuration. It can be shown from the conservation of angular momentum that the Cauchy

stress tensor is symmetric.

First Piola-Kirchhoff stress P is the non-symmetric second order tensor that maps surface

normals given in the reference space to traction in the current configuration. Its relation to

the Cauchy stress is given as

P = JσF−T . (2.14)

Second Piola-Kirchhoff stress S is symmetric, and maps from reference space normals to

reference space traction. Its relation to the Cauchy stress is given as

S = JF−1σF−T . (2.15)

Kirchhoff stress τ , is defined as the work conjugate of the rate of deformation tensor

(Bonet and Wood, 2008), and relates to the Cauchy stress and to the first Piola-Kirchhoff

stress by the following:

τ = Jσ = PFT (2.16)

Since it equals the Cauchy stress scaled by the change in volume, it is also a symmetric

tensor, defined over the current configuration.
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2.3.4 Governing Equations

The governing equation of our problem are the conservation of mass and the conservation

of linear momentum. We express these in the material configuration, in a Lagrangian view.

Conservation of mass, in the Lagrangian view is

R(X, t)J(X, t) = R(X, 0). (2.17)

Conservation of linear momentum results in force density balance

R(X, 0)∂V
∂t

(X, t) = ∇X ·P(X, t) +R(X, 0)g. (2.18)

Note that this equation has units of force density, but is otherwise just Newton’s second law

generalized to the continuum.

2.3.5 Elastic Energy

Here we discuss the notion of energy in the context of elastoplasticity. It is important to

carefully consider the effect the plastic flow will have on the rate of change of total energy.

The plastic flow must obey the second law of thermodynamics and as a consequence it must

not increase the rate of change of total energy. Using a hyperelastic constitutive model for

the elastic stress implies that the rate of change of total energy in the absence of plasticity

will be zero. Again, we take a Lagrangian view of the continuum for these derivations.

The total potential energy in the absence of plasticity is

EP (t) =
∫

Ω0
ψ (F(X, t)) dX. (2.19)

By the multiplicative decomposition F = FEFP . FP identifies the inelastic portion of

the deformation, therefore it does not contribute to the potential energy. Thus, the potential
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energy only depends on FE, giving

EP (t) =
∫

Ω0
ψ
(
FE(X, t)

)
dX (2.20)

For hyperelastic materials the first Piola-Kirchhoff stress is defined as the gradient of the

energy density function, but for elastoplasticity the energy loss through plasticity must be

taken into account.

The energy density function that only takes FE into account is

ψ̂(F) =ψ(FFP−1), (2.21)

and with that we can write the first Piola-Kirchhoff stress as

P(FE,FP ) =∂ψ̂

∂F
= ∂ψ

∂FE
(FE) : ∂FE

∂F
= ∂ψ

∂FE
(FE)FP−T . (2.22)

2.4 Plasticity

The maximum attainable stresses of a material are modeled by the yield condition. The yield

condition defines the points where the material starts yielding under load, that is, the points

at which the material is unable to exert any more resistance and any further deformation

becomes permanent.

The yield condition divides the stress space into an allowable and a non-physical region.

The yield function F is a scalar valued function of stress, such that F ≤ 0 in the allowable

region, and F > 0 in the non-physical. Figure 2.3 illustrates these regions in two dimensions

for a Drucker-Prager yield function in principal stress space. The line where τ1 = τ2 is

called the hydrostatic axis, and any stress can be decomposed to a component parallel and a

component perpendicular to it. The stress component perpendicular to the hydrostatic axis

is the deviatoric stress. Stress values in the first quadrant correspond to states in tension,

and values in the third quadrant are in compression.
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Figure 2.3: A two dimensional Drucker-Prager yield surface with cohesion. The green area
is the admissible region of the stress space and its boundary is the yield surface. The material
is in tension in all directions in the blue region and it is in compression in the yellow region.
This particular yield surface represents a material with cohesion as it extends to the first
quadrant. The tip of the Drucker-Prager cone is at the origin for cohesionless materials such
as dry sand. The black diagonal line represents the hydrostatic axis.

The material is unable to support further stresses as the stress configuration reaches the

yield surface, and permanent, plastic deformations will occur. This deformation prevents

non-physical stresses.

Based on F and Ḟ , for τ stress there are three cases that need to be considered:

• Case I. If F < 0, then τ is inside the yield surface, and the deformation is purely

elastic.

• Case II. If F = 0 and Ḟ < 0, then τ is on the yield surface, moving inward; and the

deformation is still purely elastic.

• Case III. If F = 0 and Ḟ = 0, then τ is on the yield surface, staying on it; and the

deformation is plastic.

Note that the case of F > 0 and the case of Ḟ > 0 while F = 0 are non-physical, therefore

not permitted states.
18
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For the simulation of dry sand the Drucker-Prager yield condition is a common choice

in engineering, as it captures well the friction between the grains, that leads to sand’s

characteristic pile formation. The Drucker-Prager model is an approximation of the Mohr-

Coulomb model, but it is better suited for numerical simulations.

Before moving on to the derivation of plastic flow, we present the derivation of the Mohr-

Coulomb model from Coulomb friction, then address the differences between the Drucker-

Prager and the Mohr-Coulomb yield criterion.

2.4.1 The Mohr-Coulomb Yield Criterion

Consider a Coulomb friction interaction between two grains in contact. If α̃ is the coefficient

of friction, then the frictional force ff can only be as large as the coefficient of friction times

the normal force fn: ff ≤ α̃fn. The Mohr-Coulomb model generalizes this to a continuum

(Chen and Saleeb, 1994a,b). At any point in the continuum body, the Cauchy stress σ

expresses the local mechanical interactions in the material. Specifically, at point x, σ(x)

relates the force per area, or traction, t that material on one side of an imaginary plane

with normal n exerts on material on the other side, as t = σ(x)n. If we consider this

interaction to be from friction, we can use the Coulomb model to relate the frictional force

(per area) ff = dT t to the normal force (per area) fn = −nT t as dT t ≤ −α̃nT t. Here, d is

the normalized projection of the traction t into the plane orthogonal to n. This relation is

illustrated in Figure 2.4. In terms of σ, this is expressed as dTσ(x)n ≤ −α̃nTσ(x)n.

The frictional force (per area) ff = dT t is often referred to as the shear stress (at x, in
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direction n) and the normal force (per area) is often referred to as the normal stress (at x,

in direction n). If we consider all shear stresses to arise from friction, then we get a notion

of states of stress consistent with the Coulomb model of frictional interaction. That is, we

consider the stress field σ(x) as admissible (or consistent with the Coulomb model) if

dTσ(x)n ≤ −α̃nTσ(x)n (2.23)

for all x in the material and for arbitrary directions d and n with dTn = 0.

When the normal stress nTσ(x)n is positive, the material on one side of the imaginary

plane is pulling on the material on the other side. This does not arise from a contact/frictional

interaction and is a cohesive interaction. Note that Inequality (2.23) implies that in the

presence of a positive normal stress, the shear stress would have to be zero. In fact, it can

be shown that it is not possible to be consistent with Inequality (2.23) (for all d and n) with

a positive normal stress, and thus cohesion is not possible with this model.

2.4.1.1 Reformulation of Stress Admissibility

Consider the two dimensional case and states of stress consistent with Inequality (2.23). In

this case, given normal n, there are only two directions d orthogonal to it, namely d = ±Rn

where

R =

 0 −1

1 0

 . (2.24)

In this case, satisfaction of Inequality (2.23) is achieved when

±nTRσ(x)n + α̃nTσ(x)n ≤ 0 (2.25)
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for all directions n. Since the Cauchy stress must be symmetric (by conservation of angular

momentum), it has an eigendecomposition

σ = QDQT = Q

 s1 0

0 s2

QT (2.26)

where Q is a rotation matrix. Rewriting Inequality (2.25) in terms of the eigendecomposition

gives

±nTRQDQTn + α̃nTQDQTn ≤ 0 (2.27)

and since R and Q commute (2D rotations commute), satisfaction of Inequality (2.25) is the

same as

ñT (±RD + α̃D) ñ ≤ 0 (2.28)

where ñ = Qn and

RD =

 0 −s2

s1 0

 . (2.29)

Since Inequality (2.28) must be true for all ñ and choice of sign, it is equivalent to require

that the maximum of

F (ñ, h) = ñT (hRD + α̃D) ñ (2.30)

subject to ‖ñ‖2 = 1 and h2 = 1, is less than 0. Using the method of Lagrange multipliers it

can be shown that this maximum is given by

s1 + s2

2 α̃ + |s1 − s2|
2

√
1 + α̃2. (2.31)

Dividing by
√

1+α̃2√
2 we obtain that

(s1 + s2) α̃√
2
√

1 + α̃2
+ |s1 − s2|√

2
≤ 0

tr(σ(x))α +
∥∥∥∥∥σ(x)− tr(σ(x))

2 I
∥∥∥∥∥
F

≤ 0 (2.32)
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Where ‖ · ‖F is the Frobenius norm and α = α̃√
2
√

1+α̃2 .

If we solve the analogous maximization problem in three dimensions we obtain the Mohr-

Coulomb yield surface (Mast, 2013).

2.4.2 The Drucker-Prager Yield Criterion

There is a simple generalization of Inequality (2.32) that works for both two and three

dimensions given by

tr(σ(x))α +
∥∥∥∥∥σ(x)− tr(σ(x))

d
I
∥∥∥∥∥
F

≤ 0. (2.33)

where d is the number of space dimensions. The Drucker-Prager model uses Inequality (2.33)

in both two and three dimensions, because it is easier to work with than the Mohr-Coulomb

model in 3D and it is a decent approximation of Mohr-Coulomb in that case (Irgens, 2008).

In summary, the Drucker-Prager model for the stress field σ requires that

F (σ(x)) ≤ 0 (2.34)

for all points x in the domain occupied by the material, where F (σ) = tr(σ)α+‖σ− tr(σ)
d

I‖F

and d is the number of space dimensions. Note that this function is actually defined in terms

of the eigenvalues of σ as F (σ) = tr(D)α + ‖D− tr(D)
d

I‖F .

It is often mathematically convenient to express the Drucker-Prager yield condition in

terms of the Kirchhoff stress. We will find this useful when deriving and analyzing properties

of the plastic flow. Expressing the Drucker-Prager condition in terms of τ is simply the

requirement that F (τ (x)) ≤ 0 for all x in the domain.

We can think of the condition F (τ ) = tr(τ )α + ‖τ − tr(τ )
d

I‖F ≤ 0 as defining a feasible

region in stress space. Since the constraint can be evaluated as a function of the principal

stresses, we can visualize it as the cone

(τ1 + τ2)α + |τ1 − τ2|√
2
≤ 0 (2.35)
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Figure 2.5: The Drucker-Prager yield surface in three dimensions

for 2D problems, or the cone

(τ1 + τ2 + τ3)α +

√√√√√ 3∑
j=1

(
τj −

3∑
i=1

τi
3

)2

≤ 0 (2.36)

for 3D problems (Figure 2.5). The plastic flow will be chosen as a means of satisfying this

constraint. When the stress is in the feasible region, there is no plastic flow. However, when

the stress reaches the boundary of this region, the plastic flow will be chosen in a manner

that prevents the stress from leaving the feasible region. For this reason, the boundary of

the feasible region is called the yield surface, since plastic “yield” occurs when the state of

stress reaches it.

2.4.3 Plastic flow

While F is a function of the stress, and specifically we write the Drucker-Prager yield con-

dition in terms of the Kirchhoff stress, for the following bE is the natural choice addressing

the yield conditions. Since the Kirchhoff stress τ is a function of the elastic Hencky strain

εE, and that is in turn a function of bE, the choice of considering F as a function of bE

creates no contradiction.

In the presence of plastic deformations, the evolution of bE, namely ḃE, is dictated by
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Ḟ . We detail this connection between ḃE and Ḟ in the rest of the section.

The plastic flow needs to satisfy the following conditions:

1. Yield conditions

2. Principle of maximum plastic dissipation

3. Second law of thermodynamics

4. Volume preservation

The yield conditions are of primary concern when determining the plastic flow, while the

other conditions will be used to arrive at a concrete solution.

For the purpose of analysis and constitutive modeling, we will base our equations on the

elastic left Cauchy-Green tensor (bE), and the plastic right Cauchy-Green tensor (CP ), as

defined in (2.9) and (2.10). The connection between the two is expressed by the following

equation:

bE = FEFET

= FFP−1FP−TFT

= FCP−1FT

(2.37)

Using this identity, we can express the evolution of bE as

DbE

Dt
= DF

Dt
CP−1FT + F

DCP−1

Dt
FT + FCP−1DFT

Dt

= (∇v)FCP−1FT + F
DCP−1

Dt
FT + FCP−1((∇v)F)T

= (∇v)bE + F
DCP−1

Dt
FT + bE(∇v)T ,

(2.38)

where we used the fact that the deformation gradient evolves as

DF
Dt

= (∇v)F. (2.39)
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The term FDCP −1

Dt
FT is the Lie derivative of bE with respect to v. We denote this by

LvbE. The Lie derivative of bE is its rate of change independent of the deformation in the

flow. LvbE defines the plastic flow, therefore we treat the Lie derivative as the free variable

of our equation.

When the stress is within the feasible region (F < 0), the deformation is purely elastic

and the plastic deformation stays unchanged. This implies that no plastic flow takes place,

therefore LvbE = 0. From (2.38) it follows that in this case

DbE

Dt
= (∇v)bE + bE(∇v)T , (2.40)

meaning that the evolution of bE is defined by ∇v.

On the other hand, when the stress is on the yield surface (F = 0), we chose LvbE to

guarantee that Ḟ ≤ 0 is satisfied, thus preventing any future elastic stresses attaining values

outside the feasible region.

When F = 0 then the problem to be solved can be view as a constrained optimization of

a scalar valued matrix function, that is the yield function. At the yield surface, any direction

perpendicular to the surface normal will guarantee that the solution remains on the yield

surface. This is illustrated in Figure 2.6. The additional constrains are used to define the

appropriate direction.

To better capture the possible choices of LvbE, we denote it as LvbE = −γL, where L

is an arbitrary matrix. With this view, L is the direction of the Lie derivative and γ is its

magnitude. Given a direction L, we will choose magnitude γ to guarantee that Ḟ ≤ 0.

In general, the yield function is considered to be a function of stress τ . At the same time

the stress itself is a function of the elastic state bE, that in turn is a function of time. With

this in mind, we can write the yield function as F
(
τ (bE(t))

)
, and regard it as a function

of time alone. By the chain rule, we get the connection between the evolution of F and the
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Figure 2.6: Finding the plastic flow direction. The red circle is the tangent plane around
the point on the yield surface marked by the black dot. The black arrow is the normal at
that point, and red arrows illustrate possible choices for the plastic flow direction. As the
tangent plane is perpendicular to the normal, any direction chosen from it would keep the
stress on the yield surface.

plastic flow.

Ḟ
(
τ (bE(t))

)
= ∂F

∂τ

(
τ (bE(t))

)
: ∂τ

∂bE
(bE(t)) : DbE

Dt
(t)

= ∂F

∂τ

(
τ (bE(t))

)
: ∂τ

∂bE
(bE(t)) :

(
(∇v)bE + LvbE + bE(∇v)T

) (2.41)

The : operator denotes a generalized dot product to express the chain rule when differ-

entiating the composition of scalar and matrix valued functions of matrix argument.

The material derivative D
Dt

appears since we are considering the evolution of F in the

Lagrangian frame, that is, how F evolves over time for one particle of the continuum.

Recall that in the absence of plasticity LvbE = 0, therefore the rate of change of F for

purely elastic behavior can be defined as β:

β = ∂F

∂τ

(
τ (bE(t))

)
: ∂τ

∂bE
(bE(t)) :

(
(∇v)bE + bE(∇v)T

)
(2.42)
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Combining this with the convention that LvbE = −γL, we write (2.41) as

Ḟ
(
τ (bE(t))

)
= β − γ ∂F

∂τ

(
τ (bE(t))

)
: ∂τ

∂bE
(bE(t)) : L (2.43)

For determining LvbE the three cases listed in Section 2.4 must be considered.

In Case I, F
(
τ (bE(t))

)
< 0, therefore no plastic deformation occurs, so as before we get

LvbE = 0.

In Case II, the stress state is on the yield surface, F
(
τ (bE(t))

)
= 0, and Ḟ < 0. Here

the purely elastic evolution is sufficient to take the stress back to the inside with β < 0, if

LvbE = 0. Therefore this case is absent of plastic deformations again.

In Case III, F
(
τ (bE(t))

)
= 0 and Ḟ = 0, the stress is on the yield surface again, but

also staying on the surface. This is the only case when plastic flow may occur. The purely

elastic evolution can either keep the stress on the yield surface with β = 0, or take the stress

into the unfeasible region when β > 0. In the former case, no plastic deformation should

occur, giving LvbE = 0 once again. In the latter case we chose γ to balance β, so that

Ḟ
(
τ (bE(t))

)
= 0, that is

γ = β
∂F
∂τ

(τ (bE(t))) : ∂τ
∂bE (bE(t)) : L

. (2.44)

These cases can be summarized to define the plastic flow:

LvbE =


0, if F

(
τ (bE(t))

)
< 0 or

[
F
(
τ (bE(t))

)
= 0 and β ≤ 0

]
−γL, if F

(
τ (bE(t))

)
= 0 and β > 0

(2.45)

Notice how the sign of β captures the difference between Cases II. and III. When β ≤ 0

then no plastic flow is required, and when β > 0 then the choice of γ guarantees the yield

conditions.

When plastic flow occurs, (2.45) defines only the magnitude of LvbE, but not its direc-

tion. To determine the direction, and in turn close the system of equations, we employ the
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aforementioned constraints for volume preservation, and enforce the second law of thermo-

dynamics.

If ∂F
∂τ

(
τ (bE(t))

)
: ∂τ
∂bE (bE(t)) : L 6= 0, it is always possible to choose γ according to

(2.44). Thus, for a given value of bE, there are infinitely many choices of L that will ensure

that the stress remains in the feasible region. However, by the second law of thermodynamics,

the plastic flow must not decrease the entropy of the system. More specifically, it must not

instantaneously increase the rate of change of the total energy (Gonzalez and Stuart, 2008).

Notably, the rate of change of total energy is zero in absence of plasticity. Physically, plastic

deformations should only cause dissipation of energy, therefore the total energy of the system

should decrease due to plastic flow. With these considerations in mind, we refine the choice

of LvbE

To avoid distraction from the key ideas, details of the following derivations have been

deferred to Section 2.5. At each step we refer to the corresponding section.

The total energy in the system is the sum of the elastic potential energy and the kinetic

energy:

E(t) = EP (t) + EK(t), (2.46)

and its change over time satisfies

E(t+ ∆t)− E(t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0
ẇP (X, t)dXds, (2.47)

which we show in Section 2.5 with (2.83).

HereW t(t,∆t) is the work done by external traction t boundary conditions and ẇP (X, t)

is rate of plastic dissipation from (2.79). The rate of plastic dissipation is given in term of

the Kirchhoff stress and the plastic rate of deformation as

ẇP = τ : lP , (2.48)
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where

lP = −1
2LvbEbE−1

. (2.49)

In absence of plasticity the change in energy equals to the work done by the boundary

conditions, or the energy is exactly conserved in the lack of boundary forces, as discussed in

Section 2.5.1. In case of plasticity, theoretically the total energy may go up or down from

the work done by the mechanical stress. The integral term of (2.47) quantifies this. The

increase of total energy would be in violation of the second law of thermodynamics, therefore

the direction of the plastic flow must be chosen so that it ensures a non-negative ẇP .

The principle of maximum plastic dissipation (Hill, 1948, 1998; Bonet and Wood, 2008)

seeks to design the plastic flow in a way that maximizes ẇP to respect this concern. This

leads to a so called associative flow rule, where

lP = γ
∂F

∂τ
(2.50)

or equivalently

LvbE = −2γ ∂F
∂τ

bE. (2.51)

That is, with an associative flow rule, the plastic flow is in the direction of the gradient of

the yield function.

However, the choice of matrix L will affect the volume change in the plastic flow. Specif-

ically, it can be shown that if trL = 0, then the plastic flow will be volume preserving with

JP = det FP = 1. Since the elastic potential seeks to preserve det FE = 1 by design, a

volume preserving plastic flow will produce an overall deformation that tends to preserve

volume. However, without trL = 0 there is a potential for excessive volume loss or gain

in the model. Indeed, simply using the associative flow rule from (2.51) will tend to cause

excessive volume gain during sheering, as noted in (Mast, 2013).

This can be alleviated by the use of a non-associative flow rule, where the plastic flow

is in the direction of the deviatoric portion of the yield function’s gradient. Defining this
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direction as

G = dev
(
∂F

∂τ

)
= ∂F

∂τ
− 1
d

tr
(
∂F

∂τ

)
I, (2.52)

we can write the plastic flow

LvbE = −γGbE. (2.53)

We demonstrate in Section 2.5.4 that the flow rule defined above guarantees that ẇP is

non-negative and thus satisfies the second law of thermodynamics.

With these refinements, we arrive at the flow rule, that adheres to the yield conditions,

obeys the second law of thermodynamics, and facilitates volume preservation:

LvbE =


0, if F

(
τ (bE(t))

)
< 0 or

[
F
(
τ (bE(t))

)
= 0 and β ≤ 0

]
−γGbE, if F

(
τ (bE(t))

)
= 0 and β > 0

(2.54)

where γ is as in (2.44) and G is as in (2.52). Note that this matches our previous definition

of the plastic flow in (2.45) with L = GbE.

2.5 Work and Work Rate

2.5.1 Work Done by Elastic Forces

First we demonstrate that in the absence of plasticity, the change in energy equals to the

work done by the boundary forces.

To this end, the work done by the elastic forces is defined as

WE(t,∆t) =
∫ t+∆t

t

∫
Ω0

(
∇X ·P

)T
V dXds (2.55)
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Applying integration by parts and the divergence theorem, the equation above yields:

∫ t+∆t

t

∫
Ω0
∇ · (PTV)−P : ∇VdXds =

∫ t+∆t

t

∫
∂Ω0

tTVdS(X)−
∫

Ω0
P : ∇VdXds, (2.56)

where t = Pn is the applied traction boundary condition, and n is the outward pointing

normal.

With defining the first term of the right hand side as the work done by the boundary

conditions

W t(t,∆t) =
∫ t+∆t

t

∫
∂Ω0

tTVdS(X)ds, (2.57)

we rewrite (2.55) as

WE(t,∆t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0

P : ∇VdXds (2.58)

Using the definition of total potential energy from (2.19), its rate of change is

d

dt
EP (t) = ∂

∂t

∫
Ω0
ψ (F(X, t)) dX =

∫
Ω0

∂ψ

∂F
: ∇VdX =

∫
Ω0

P : ∇VdX (2.59)

In other words: ∫ t+∆t

t

∫
Ω0

P : ∇VdXds = EP (t+ ∆t)− EP (t) (2.60)

Using this directly in (2.58), we get

WE(t,∆t) = W t(t,∆t)− EP (t+ ∆t) + EP (t) (2.61)

This gives us the work done by elastic deformation in terms of the traction boundary condi-

tions and the change in potential energy.

Next we look at the kinetic energy to be able to write the change in total energy in terms

of work. The kinetic energy is defined as

EK(t) =
∫

Ω0

1
2V(X, t)TR(X, 0)V(X, t)dX, (2.62)
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and the rate of change of kinetic energy density is

∂

∂t

[1
2V(X, t)TR(X, 0)V(X, t)

]
=
(
R(X, 0)∂V(X, t)

∂t

)T
V(X, t). (2.63)

Assuming no external forces in (2.18) we have

R(X, 0)∂V
∂t

(X, t) = ∇X ·P(X, t). (2.64)

We integrate both sides of (2.63) over ∆t and the material domain:

∫ t+∆t

t

∫
Ω0

∂

∂t

[1
2V(X, t)TR(X, 0)V(X, t)

]
dXds =

∫ t+∆t

t

∫
Ω0

(
R(X, 0)∂V(X, t)

∂t

)T
V(X, t)dXbs. (2.65)

The left hand side is trivially the change in kinetic energy from t to t + ∆t. Substituting

(2.64) into the right hand side we get

EK(t+ ∆t)− EK(t) =
∫ t+∆t

t

∫
Ω0

(
∇X ·P

)T
V(X, t)dXbs. (2.66)

Here the right hand side is exactly the definition of elastic work from (2.55), therefore the

change in kinetic energy equals to the work done by the elastic deformation:

EK(t+ ∆t)− EK(t) = WE(t,∆t), (2.67)

and by (2.61) we ultimately arrive at

EK(t+ ∆t)− EK(t) + EP (t+ ∆t)− EP (t) = E(t+ ∆t)− E(t) = W t(t,∆t). (2.68)

That is, if only elastic forces are considered, the change in energy is balanced by boundary

traction forces.
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2.5.2 Plastic Flow Rate and Potential

So far we have only considered purely elastic deformations. In the next sections we investigate

how the definition of work changes when plasticity is taken into account as well.

With plasticity we have F = FEFP , therefore

Ḟ = ḞEFP + FEḞP , and (2.69)

ḞE = ḞFP−1 − FEḞPFP−1 (2.70)

The rate of elastic potential energy defined in (2.20) is

d

dt
EP (t) =

∫
Ω0

∂ψ

∂FE
ij

(FE(X, t))ḞE
ij (X, t)dX

=
∫

Ω0

∂ψ

∂FE
ij

(FE)F P
jk

−T
Ḟik − FE

ki

T ∂ψ

∂FE
ij

(FE)F P
jl

−T
Ḟ P
kldX.

(2.71)

Recall that when we account for plasticity, then the first Piola-Kirchhoff stress is

P(FE,FP ) = ∂ψ

∂FE
(FE)FP−T . (2.72)

With this definition, the work done by the mechanical forces is

WE(t,∆t) =
∫ t+∆t

t

∫
Ω0
Pij,jVidXds

= W t(t,∆t)−
∫ t+∆t

t

∫
Ω0

∂ψ

∂FE
ij

(FE)F P
jk

−T
ḞikdXds

(2.73)

where we used the results from (2.58) and the fact that ∇V = Ḟ.

2.5.3 The Total Work Rate Density

The total work rate per unit initial volume, or stress power density is defined as

ẇ(X, t) = τij(X, t)lij(X, t) = Pij(X, t)Ḟij(X, t) (2.74)
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with l = ḞF−1, the velocity gradient, and τ = Jσ = PFT . Physically its reasonable to

assume, that the work rate can be decomposed to an elastic recoverable and a permanent,

nonrecoverable component. In this section we seek to identify these components.

Using the definition of Pij from (2.72) this equals

ẇ(X, t) = Pij(X, t)Ḟij(X, t) = ∂ψ

∂FE
ij

(
FE(X, t)

)
F P
jk

−T (X, t)Ḟik(X, t) (2.75)

We also define the elastic component of the total work rate

ẇE(X, t) = τij(X, t)lEij(X, t) = ∂ψ

FE
ij

(FE(X, t))ḞE
ij (X, t) (2.76)

with lE = ḞEFE−1. We prove the equality in Section A.3. When compared with the

integrand in the middle of (2.71), it is clear, that ẇE(X, t) is the rate of change in elastic

potential density, that is

d

dt
EP (t) =

∫
Ω0

∂ψ

∂FE
ij

(FE(X, t))ḞE
ij (X, t)dX =

∫
Ω0
ẇE(X, t)dX (2.77)

Next, looking at the second line of (2.71), and using the definition of ẇE(X, t) and ẇ(X, t),

we can write

d

dt
EP (t) =

∫
Ω0
ẇE(X, t)dX =

∫
Ω0
ẇ(X, t)− FE

ki

T ∂ψ

∂FE
ij

(FE)F P
jl

−T
Ḟ P
kldX. (2.78)

The last term in the integral is the rate of plastic dissipation:

ẇP (X, t) = FE
ki

T ∂ψ

∂FE
ij

(FE)F P
jl

−T
Ḟ P
kl = PilF

E
ik Ḟ

P
kl . (2.79)

With these definitions we can finally decompose the total stress power density to a term due

to elastic and a term due to plastic deformations:

ẇ(X, t) = ẇE(X, t) + ẇP (X, t). (2.80)
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The term FEḞP in (2.79) is referred to as the plastic rate of deformation (Bonet and Wood,

2008).

The work then can be expressed as

WE(t,∆t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0
PijVi,jdXds

= W t(t,∆t)−
∫ t+∆t

t

∫
Ω0
ẇE(X, t) + ẇP (X, t)dXds

(2.81)

and then also

EK(t+ ∆t)− EK(t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0
ẇE(X, t) + ẇP (X, t)dXds

= W t(t,∆t)− EP (t+ ∆t) + EP (t)−
∫ t+∆t

t

∫
Ω0
ẇP (X, t)dXds

(2.82)

and thus

EK(t+ ∆t)− EK(t) + EP (t+ ∆t)− EP (t) =

E(t+ ∆t)− E(t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0
ẇP (X, t)dXds

(2.83)

That is, the change in total energy is due to the traction boundary condition and the loss

due to plasticity. This motivates why ẇP (X, t) is often referred to as plastic dissipation rate,

and, as we demonstrate in Section 2.5.4, the term indeed represents loss of energy.

The plastic rate of deformation is defined as

lP = −1
2LvbEbE−1

, (2.84)

and we prove in Section A.4 that with this definition lP satisfies

τ : lP = τ : l− τ : lE (2.85)

from (2.80).
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2.5.4 Plastic Dissipation Rate is Non-Negative

With the results so far, and using the non-associative flow rule we arrived at in (2.52) we can

show that the plastic dissipation rate is always non-negative, therefore it can only increase

entropy.

Recall that we have previously defined s = τ − 1
d
tr(τ ), and that G = ∂F

∂τ
− 1

d
tr(∂F

∂τ
)I, i.e.

it satisfies G = −γLvbEbE−1. Therefore, recalling lP = −1
2LvbEbE−1,

ẇP = τ : lP

= −τ : 1
2LvbEbE−1

= γτ : G

= γ

‖s‖F
τ : s

= γ

‖s‖F

(
s + 1

d
tr(τ )I

)
: s

= γ‖s‖F .

(2.86)

Thus all that remains to prove is that γ ≥ 0. To do this we use the constraint that ∂F
∂t
≤ 0

when F = 0.

∂F

∂t
= ∂F

∂τ
: ∂τ

∂bE
: ḃE

= ∂F

∂τ
: ∂τ

∂bE
:
(

lbE + bElT − 2γ ∂F
∂τ

bE
)

= ∂F

∂τ
: ∂τ

∂bE
:
(
lbE + bElT

)
︸ ︷︷ ︸

η

−2γ ∂F

∂τ
: ∂τ

∂bE
:
(
∂F

∂τ
bE
)

︸ ︷︷ ︸
ν

.

(2.87)

So

0 = η − 2γν =⇒ γ = η

2ν (2.88)

Note that η is what ∂F
∂t

would be in the absence of plastic flow. Thus if η ≤ 0 the material is

deforming in such a way that the yield function is going down, and therefore is undergoing
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elastic deformation which means γ = 0. Otherwise η > 0 and

ν = ∂F

∂bE
:
(

2 s
‖s‖F

bE
)

= 2 ∂F
∂bE

bE : s
‖s‖F

.

(2.89)

Applying the Hencky strain derivative lemma to F from Appendix A.1 we have

ν = ∂F

∂εE
: s
‖s‖F

= ∂F

∂τ
: ∂τ

∂εE
: s
‖s‖F

=
(

s
‖s‖

+ η̃I
)

: C : s
‖s‖F

= 2µ‖s‖F .

(2.90)

2.6 Conclusion

In summary, when determining the elastic and plastic portion of the deformation at some

time t we arrive at the following set of equations:

LvbE = F
DCP−1

Dt
FT (2.91)

LvbE =


0, if F < 0 or [F = 0 and β ≤ 0]

−γdev
(
∂F
∂τ

)
bE, if F = 0 and β > 0

(2.92)

where

γ = β
∂F
∂τ

(τ ) : ∂τ
∂bE (bE) : dev

(
∂F
∂τ

)
bE

(2.93)

With these, the rate of plastic deformation can be computed, and, by the integration of

that, the plastic deformation gradient.
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CHAPTER 3

The Material Point Method

The Material Point Method combines the advantages of grid based and particle based meth-

ods. It has been invented by Sulsky et al. (1994, 1995), and gained popularity in computer

graphics by the snow simulation method of Stomakhin et al. (2013).

The Material Point Method is a hybrid Lagrangian-Eulerian numerical technique, where

Lagrangian particles keep track of history dependent variables, while the Eulerian grid allows

for simple computation of spatial gradients. Advection is naturally handled in the Lagrangian

view, while interaction between the particles and self collision are resolved in the Eulerian

view. Since there is no need for explicitly maintained connectivity information, the method

efficiently handles large topological changes. Being a hybrid method MPM is similar to

the Particle-in-Cell (PIC) (Harlow, 1964; Harlow and Welch, 1965) and the Fluid-Implicit-

Particle (FLIP) (Brackbill and Ruppel, 1986) methods, but can be considered as a extension

of the two to solid mechanics.

In this chapter we present the derivation of the Material Point Method for elastoplastic

simulations. We adopt a Finite Element Method inspired view, where we view the particles

as quadrature points and the grid as the Finite Element mesh. With this view, we use the

weak formulation to discretize the governing equations presented in Section 2.3.4. Section 3.5

explains the additional considerations needed in MPM for the simulation of granular material

modeled by the Drucker-Prager yield criterion. Finally Section 3.6 details the operations of

each step of the simulation.
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3.1 Overview

MPM proceeds from time step to time step by executing a series of steps. Each time step

begins and ends with the particles carrying all the simulation data. No grid information

is retained between time steps, and the grids can be freely discarded. This allows for the

creation of new grid data structures at each time step, although in practice it is often more

efficient to reuse them.

The steps carried out over a time step are the following:

1. Transfer to grid (Section 3.6.1): A mass and a momentum grid are created by inter-

polating mass and momentum from the particles. The velocity grid is established by

division of momentum grid nodes by mass grid nodes.

2. Force computation on the grid (Section 3.6.2): Forces acting on each grid node are

computed from the deformation gradients stored on the particles, and the change in

velocities are computed from the forces.

3. Collision and friction (Section 3.6.3): Collision handling is responsible for coupling

the simulated material with rigid bodies. Collision handling is performed during force

computation for implicit solvers, and performed as a separate step for explicit solvers.

Friction is computed afterwards in both cases, and it is calculated from the change of

velocity.

4. Transfer back to particles (Section 3.6.4): Grid velocities are transferred back to the

particles, and, in case of APIC transfers, each particle’s affine momentum matrix is

updated.

5. Particle update (Section 3.6.5): Particle positions are updated by interpolating the grid

velocities before friction has been applied. The deformation gradient on each particle

is updated by the gradient of the same velocities used for position update.

6. Plasticity and hardening (Section 3.6.6): Finally, the projection to the Drucker-Prager

yield surface is applied to the elastic deformation gradient of each particle, and the
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hardening variables are updated based on the projection.

Each step is described in detail in their corresponding section, and their pseudocode

implementations are provided in Appendix B.

3.2 Notation

In addition to the notation introduced in Section 2.2, we introduce the following for variables

on particles and grid nodes. We index the particles with subscript p and the grid nodes with

i or j. For example xp refers to the position of a particle, xi to the position of a grid node,

and bki is used for the kth component of the grid node position. Grid indices are tuples of

two or three elements in two or three dimensions, correspondingly.

Procedures of the algorithm at times require an array of all the values of some variable.

We use the 〈·〉 notation to denote the array of the values.

3.3 Push Forward and Pull Back

Before the derivation of the equations solved by MPM, the concepts push forward and pull

back must be addressed as they will be used repeatedly.

Quantities represented in material coordinates can be transformed to spatial coordinates,

and vice versa. This is equivalent to shifting from the Lagrangian framework to the Eulerian,

or the other way around. This transformation is possible due to the assumption that φ is

smooth and bijective. With these properties the sets Ω0 and Ωt are homeomorphic under

φ. These assumptions stem from the physical requirement that no particles should be at

the same position at the same time. Formally this means that in x = φ(X, t) X exists and

unique for all x ∈ Ωt, therefore the inverse mapping φ−1(·, t) : Ωt → Ω0 exists. These two

mappings, φ and φ−1, allow us to define the push forward and the pull back of a function.

Push forward moves functions from material coordinates to spatial coordinates. More

formally, given a function G defined over Ω0, its push forward is the function g over Ωt, such
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that

g(x) = G(φ−1(x, t)) (3.1)

Pull back moves functions from spatial coordinates to material coordinates. More for-

mally, given a function g defined over Ωt, its pull back is the function G over Ω0, such that

G(X) = g(φ(X, t)) (3.2)

As Lagrangian quantities are defined in material coordinates, and Eulerian quantities

are in spatial coordinates, the push forward of a Lagrangian function is transformed to the

Eulerian frame, and conversely, the pull back of an Eulerian function is transformed to the

Lagrangian frame.

Change of Variables

The push forward and pull back of a variable is commonly encountered in the weak form

during the discretization of the governing equations. In practice this amounts to a change

of variables in the integrals over subsets of Ω0 or Ωt.

Let S0 ⊆ Ω0 and St ⊆ Ωt, such that S0 is the preimage of St under φ(·, t). Furthermore,

let G ∈ Ω0 → R be the pull back of g, then

∫
St
g(x)dx =

∫
S0
G(X)J(X, t)dX, (3.3)

where J(X, t) is the determinant of the deformation gradient.

For surface integrals we arrive at the slightly more complicated formula: let H ∈ Ω0 → Rd

be the pull back of h, n(x) the outward unit normal on ∂St at x, N(X) the outward unit

normal on ∂S0 at X, then

∫
∂St

h(x) · n(x)ds(x) =
∫
∂S0

H(X) · F−T (X, t)N(X)J(X, t)dX. (3.4)
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3.4 Discretization

The equations to be discretized are the same as in Chapter 2, namely the conservation of

mass and the conservation of momentum:

RJ = R0 (3.5)

R0∂V
∂t

= ∇X ·P +R0g (3.6)

We formulate our equations in the Lagrangian frame as that is the natural space for

the particles. The equations are pushed forward to the Eulerian frame, where the grid

based computations take place, then they are discretized through the weak form, viewing

the particles as quadrature points.

3.4.1 Weak Form

The MPM discretization of the equations to the Eulerian grid can be viewed as a Finite Ele-

ment Method discretization through the weak form. Ignoring gravity in (3.6), and rewriting

it in index notation we get

R0(X)∂Vi
∂t

(X, t) = Pij,j(X, t). (3.7)

Let Q(·, t) : Ω0 → Rd be an arbitrary function. Then the weak form of (3.7) is

∫
Ω0
Qi(X, t)R0(X)∂Vi

∂t
(X, t)dX =

∫
Ω0
Qi(X, t)Pij,jdX

=
∫

Ω0
(Qi(X, t)Pij(X, t)),j −Qi,j(X, t)Pij(X, t)dX

=
∫
∂Ω0

Qi(X, t)Pij(X, t)Nj(X, t)ds(X)−
∫

Ω0
Qi,j(X, t)Pij(X, t)dX

(3.8)

The traction in material space, Ti(X, t) = Pij(X, t)Nj(X, t), X ∈ ∂Ω0, is given as the

boundary condition. This gives the weak form:
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∀Q(·, t) : Ω0 → Rd

∫
Ω0
QiR

0∂Vi
∂t

dX =
∫
∂Ω0

QiTids(X)−
∫

Ω0
Qi,jPijdX (3.9)

3.4.2 Temporal Discretization

For time discretization, first we approximate ∂V
∂t

as

∂Vi
∂t
≈ 1

∆t(V
n+1
i − V n

i ), (3.10)

yielding
1

∆t

∫
Ω0
QiR

0(V n+1
i − V n

i )dX =
∫
∂Ω0

QiTids(X)−
∫

Ω0
Qi,jPijdX (3.11)

The grid based part of MPM operates in Eulerian view, therefore we need to reformulate

the above equation in this frame. This is done by applying push forward to the Q,R0,V,T,

and P functions.

q(x, t) = Q(φ−1(x, t), t) (3.12)

Qi,j = ∂Qi

∂Xj

= ∂qi
∂xk

∂xk
∂Xj

= qi,kFkj (3.13)

σ = 1
J

PFT (3.14)

We are doing the discretization by freezing time at tn, and, because of this, vn and vn+1

have the following definition:

vn(x) = V(φ−1(x, tn), tn) (3.15)

vn+1(x) = V(φ−1(x, tn), tn+1) (3.16)

Note that, since x ∈ Ωtn , the definition of vn+1 uses φ−1(x, tn) and not φ−1(x, tn+1). At

the same time vn+1 represents the velocity at tn+1, therefore V must be evaluated at that

time.
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We arrive at:

1
∆t

∫
Ωtn

qi(x, tn)%(x, tn)
(
vn+1
i (x)− vni (x)

)
dx =∫

∂Ωtn
qi(x, tn)ti(x, tn)ds(x)−

∫
Ωtn

qi,j(x, tn)σij(x, tn)dX
(3.17)

3.4.3 Interpolation Functions

We define our interpolation functions as the dyadic product of second and third order splines

(Steffen et al., 2008). For a given one dimensional spline, we define the interpolation function

Ni as

Ni(x) = N( 1
∆xx− i)N( 1

∆xy − j), (3.18)

with x = (x, y) and i = (i, j) in two dimensions, and

Ni(x) = N( 1
∆xx− i)N( 1

∆xy − j)N( 1
∆xz − k), (3.19)

with x = (x, y, z) and i = (i, j, k) in three dimensions, where ∆x is the grid spacing in both

cases.

The quadratic spline is

N(x) =



1
2 |x|

3 − |x|2 + 2
3 0 ≤ |x| < 1

1
6(2− |x|)3 1 ≤ |x| < 2

0 2 ≤ |x|

(3.20)

and the cubic spline is

N(x) =



3
4 − |x|

2 0 ≤ |x| < 1
2

1
2

(
3
2 − |x|

)2 1
2 ≤ |x| <

3
2

0 3
2 ≤ |x|

(3.21)

The quadratic and cubic kernels are shown in Figure 3.1. In either case, it is a requirement

of the splines to form a partition of unity.
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Figure 3.1: Interpolation kernels

3.4.4 Spatial Discretization

For discretization in space, we approximate qi, vni , and vn+1
i with their grid based interpolants

qii, v
n
ii, and vn+1

ii . The bold index refers to grid indices, and either have the form i = (x, y)

or i = (x, y, z) in two or three dimensions, correspondingly. For a given Ni interpolation

function, the approximates are

qi(x, tn) ≈
∑

i
qniiNi(x) (3.22)

vni (x) ≈
∑

i
vniiNi(x) (3.23)

vn+1
i (x) ≈

∑
i
vn+1
ii Ni(x) (3.24)

Note that, with this definition, the derivatives of the continuous variables are simply the

discrete variables weighted by the derivative of the interpolation function, as in

qi,j(x, tn) ≈
∑

i
qniiNi,j(x). (3.25)
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With this, the spatial discretization of (3.17) becomes

1
∆t

∫
Ωtn

qniiNi(x)%(x, tn)vn+1
ij Nj(x)dx− 1

∆t

∫
Ωtn

qniiNi(x)%(x, tn)vnijNj(x)dx =∫
∂Ωtn

qniiNi(x)ti(x, tn)ds(x)−
∫

Ωtn
qniiNi,j(x)σij(x, tn)dX

(3.26)

where we use the Einstein summation convention.

Because of the weak form requirement, this must be true for all choices of qnii. In partic-

ular, we can select a class of function such that for each spatial dimension ı̂, and each grid

node ı̂, we define a qnii in the set as

qnii =


1, if i = ı̂ and i = ı̂

0, otherwise
(3.27)

Intuitively, there are two or three unknowns at each grid node for vn+1, depending on the

number of dimensions. We define the qii functions such that each choice of qii isolates a

single node and dimension. With this we get a system of equations with the same number

of equations and unknowns.

With the choice of qnii as above, (3.26) becomes a set of equations for ı̂ and ı̂:

1
∆t

∫
Ωtn

Nı̂(x)%(x, tn)vn+1
ı̂j Nj(x)dx− 1

∆t

∫
Ωtn

Nı̂(x)%(x, tn)vnı̂jNj(x)dx =∫
∂Ωtn

Nı̂(x)tı̂(x, tn)ds(x)−
∫

Ωtn
Nı̂,j(x)σı̂j(x, tn)dX,

(3.28)

in which we immediately replace ı̂ with i, and ı̂ with i for sanity’s sake:

1
∆t

∫
Ωtn

Ni(x)%(x, tn)vn+1
ij Nj(x)dx− 1

∆t

∫
Ωtn

Ni(x)%(x, tn)vnijNj(x)dx =∫
∂Ωtn

Ni(x)ti(x, tn)ds(x)−
∫

Ωtn
Ni,j(x)σij(x, tn)dX.

(3.29)

The quantities appearing on the left hand side,

mn
ij =

∫
Ωtn

Ni(x)%(x, tn)Nj(x)dx, (3.30)
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are the elements of what often referred to as the mass matrix in Finite Element Method

literature. Using this notation, we get the more compact form:

1
∆tm

n
ijv

n+1
ij − 1

∆tm
n
ijv

n
ij =∫

∂Ωtn
Ni(x)ti(x, tn)ds(x)−

∫
Ωtn

Ni,j(x)σij(x, tn)dX
(3.31)

The mass matrix can be further approximated by mass lumping. The mass lumped

matrix m̂ is a diagonal matrix, with elements that are the row sums of the mass matrix.

Using a single index to address elements along the diagonal, the lumped mass matrix is

m̂i =
∑

j

∫
Ωtn

Ni(x)%(x, tn)Nj(x)dx

=
∫

Ωtn
Ni(x)%(x, tn)

∑
j
Nj(x)dx

=
∫

Ωtn
Ni(x)%(x, tn)dx,

(3.32)

Where we used the fact, that Nj is a partition of unity, therefore ∑jNj(x) = 1. Further-

more, after changing the integration domain to Ω0, m̂i is well approximated by the particle

masses:

m̂i =
∫

Ωtn
Ni(x)%(x, tn)dx

=
∫

Ω0
Ni(φ(X))%(φ(X), tn)J(X, tn)dX

=
∫

Ω0
Ni(φ(X))R(X, tn)J(X, tn)dX

=
∫

Ω0
Ni(φ(X))R(X, 0)dX

≈
∑
p

mpNi(xp)

(3.33)

The final sum corresponds to the masses defined on the Eulerian grid1 by rasterizing the

masses of the particles. The particle to grid mass transfer is the same across the possible
1We would like to draw the attention of the reader to the subtle difference in notation of two very distinct

quantities: mij is an element of the full mass matrix, while mi is the mass defined at the ithgrid node.
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transfer options, and the mass at each grid node is defined as

mi =
∑
p

mpNi(xp). (3.34)

Using this approximation of mii = mi, and mij = 0, i 6= j, (3.31) becomes

mn
i v

n+1
ii −mn

i v
n
ii

∆t =
∫
∂Ωtn

Ni(x)ti(x, tn)ds(x)−
∫

Ωtn
Ni,j(x)σij(x, tn)dX (3.35)

The left hand side of the above can be viewed as the change in momentum from tn to

tn+1, since mn
i v

n
ii = (mvi)ni by construction, and mn

i v
n+1
ii = (mvi)n+1

i , because the particle

positions are kept fixed within a time step.

In all of our simulations the traction boundary conditions correspond to free surface

boundary conditions, meaning t = 0. This leaves only the forces arising from internal stress

to be resolved.

3.4.5 Stress Approximation

First, to derive an approximation of
∫

Ωtn Ni,j(x)σij(x, tn)dX, it is more natural to think of

the stress in terms of the elastic energy density function ψ. In the absence of plasticity, the

definition of σ is simply

σ = 1
J

PFT = 1
J

∂ψ

∂F
FT (3.36)

At the same time, in the presence of plasticity, we have to use the definition of P from

Section 2.4, leading to

σ = 1
J

∂ψ

∂FE
FP−TFT = 1

J

∂ψ

∂FE
FET (3.37)

Secondly, since the particles are viewed as quadrature points for the spatial discretization,
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we can use the following approximation:

∫
Ωtn

σij(x, tn)Ni,j(x)dX ≈
∑
p

V n
p σ

n
p ijNi,j(xnp )

=
∑
p

V n
p

1
Jnp

∂ψ

∂FE

(
FE,n
p

)
FE,n
p

T
Ni,j(xnp ),

(3.38)

where V n
p is the volume associated with the particle,2 and we use the deformation gradient

stored by particles. Each particle also maintains its initial volume as V 0
p , and the volume at

tn can be approximated from the determinant of the deformation gradient:

V n
p ≈ Jnp V

0
p , (3.39)

where V 0
p is the initial volume associated with particle p. If ∆x is the grid spacing in each

direction, and n is the seeding parameter that adds n particles to each grid cell fully contained

by the material, then the initial volume can be trivially defined as:

V 0
p = ∆xd

n
. (3.40)

Using the approximation for the integral in (3.35) gives the forces due to internal elastic

stress:

fi = −
∑
p

V 0
p

∂ψ

∂FE

(
FE,n
p

)
FE,n
p

T
Ni,j(xnp ) (3.41)

Combining (3.35), (3.41), and the assumption that t = 0, we get the final discrete

equations:
mn

i v
n+1
ii −mn

i v
n
ii

∆t = −
∑
p

V 0
p

∂ψ

∂FE

(
FE,n
p

)
FE,n
p

T
Ni,j(xnp ) (3.42)

2While the symbols are dangerously close, the notation is without ambiguity: volume, being a scalar, is
always V , and velocity is either V when written as a vector, or Vi when written in components.
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3.5 Plasticity

The plasticity theory presented in Section 2.4.3 defines the direction of the plastic flow in a

continuous setting. These results have to be translated to a discrete time, or incremental,

setting. In this section we present our return mapping algorithm that is the discrete equiv-

alent of finding the flow direction. With the return mapping we can define the projection

of the deformation gradient that projects a trial F to one that satisfies the Drucker-Prager

yield condition. Finally, we discuss our handling of hardening.

3.5.1 Return Mapping

The return mapping algorithm is the discrete equivalent to solving for a strain that satisfies

the plastic flow rule in (2.54) and that lies on or inside the Drucker-Prager yield surface.

We follow the work of Simo and Meschke (1993) to derive the discrete equations from their

continuous versions, and then we show how they can be solved leading to a procedure that

computes the projection Z(FE, α). This procedure starts by assuming there is no plastic

flow, and the return mapping algorithm shows how to project back to the surface, if the

assumption of no plastic flow is invalid.

For the rest of the section we consider the elastoplastic behavior per particle, and ac-

cordingly we adopt a Lagrangian view.

Considering the evolution of bE from time tn to time tn+1 = tn + ∆t, we define a new,

intermediate reference configuration at tn as

Ωtn =
{
x̃|∃X ∈ Ω0 : x̃ = φ(X, tn)

}
, (3.43)

and a new deformation map from this configuration onward:

φ̃ : Ωtn × [tn, T ]→ Rd, (3.44)

φ̃(x̃, t) = φ
(
φ−1(x̃, tn), t

)
. (3.45)
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Figure 3.2: Connection between the standard and the updated Lagrangian views

Intuitively, φ̃ defines the deformation regarding Ωtn as its reference configuration. In this

sense, as Ωtn replaces Ω0 of the standard Lagrangian view, φ̃ replaces φ the same way. This

is often referred to as an updated Lagrangian view (Figure 3.2).

Similarly to the deformation gradient F(X, t) that defines the deformation from the initial

configuration (Ω0) to the configuration Ωt, we define F̃ from the configuration Ωtn to the

configuration Ωt for some t ≥ tn:

F̃ = ∂φ̃

∂x̃
, (3.46)

F̃ (φ(X, tn), t) = F(X, t)F−1(X, tn), ∀X ∈ Ω0, t ∈ [tn, T ]. (3.47)

Let us define

b̆E = F̃−1bEF̃−T (3.48)

to remove the elastic effects after tn. Using (2.37), it immediately follows from the definition

b̆E(x̃, t) = F̃−1(x̃, t)F(X, t)CP−1(X, t)FT (X, t)F̃−T (x̃, t)

= F(X, tn)CP−1(X, t)FT (X, tn)
(3.49)
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where x̃ = φ(X, tn), and the evolution of b̆E is

Db̆E

Dt
= −2γF̃−1GF̃b̆E. (3.50)

With this, we consider the difference between the evolution of b̆E and bE in the absence

of plasticity at time tn < t < tn+1. In this case b̆E is constant, since Db̆E

Dt
= 0 by (3.49) and

(3.50). In contrast, we can express bE as

bE(x, t) = F̃(x, t)bE(φ̃−1(x, t), tn)F̃T (x, t), (3.51)

and that clearly changes in time with F̃. In other words, b̆E is constant along characteristics

except for the effect of plasticity, but at the same time bE is also stretched by the flow.

This isolation of the plastic deformation allows for a more intuitive discretization. Specif-

ically, combined with the initial value b̆E(x, tn) = bE(x, tn), we can use the exponential

approximation

b̆E
∣∣∣
tn+1
≈ exp

(
−2δγF̃−1GF̃

)∣∣∣
tn+1

b̆E
∣∣∣
tn
, (3.52)

where δγ ≥ 0 will be used to enforce the constraint F (τ (bE
∣∣∣
tn+1

)) ≤ 0. Multiplying the

approximation by F̃
∣∣∣
tn+1

on the left and F̃T
∣∣∣
tn+1

on the right, and recalling the definition of

b̆E, we obtain

bE
∣∣∣
tn+1

= F̃
∣∣∣
tn+1

b̆E
∣∣∣
tn+1

F̃T
∣∣∣
tn+1

≈ F̃
∣∣∣
tn+1

exp
(
−2δγF̃−1GF̃

)∣∣∣
tn+1

b̆E
∣∣∣
tn

F̃T
∣∣∣
tn+1

= F̃
∣∣∣
tn+1

F̃−1
∣∣∣
tn+1

exp (−2δγG)
∣∣∣
tn+1

F̃
∣∣∣
tn+1

b̆E
∣∣∣
tn

F̃T
∣∣∣
tn+1

= exp (−2δγG)
∣∣∣
tn+1

F̃
∣∣∣
tn+1

b̆E
∣∣∣
tn

F̃T
∣∣∣
tn+1

.

(3.53)

Using the notation b̂E = F̃
∣∣∣
tn+1

b̆E
∣∣∣
tn

F̃T
∣∣∣
tn+1

, we are looking for a solution pair δγ and
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bE
∣∣∣
tn+1

such that

bE
∣∣∣
tn+1

= exp
(
−2δγG

(
τ (bE

∣∣∣
tn+1

)
))

b̂E, and (3.54)

F (τ (bE
∣∣∣
tn+1

)) ≤ 0. (3.55)

Note that b̂E is the elastic strain we would get without the effect of plasticity. For

example, if F (τ (b̂E)) ≤ 0, then δγ = 0 and bE
∣∣∣
tn+1

= b̂E is the trivial solution pair, and

there is no plastic flow. In this sense, we can see that b̂E can be considered as the trial

elastic state obtained without any plastic flow. If this does not satisfy the constraint, then

δγ and bE
∣∣∣
tn+1

must be defined to project b̂E to bE
∣∣∣
tn+1

.

3.5.2 Projection

We use this process to define the projection Z(FE, α). FE is considered the trial elastic state,

one obtained in the absence of plastic flow. Thus, b̂E = FEFET and we seek the solution of

(3.54) to define the projection to bE
∣∣∣
tn+1

, from which we can determine Z(FE, α). This can

be done most easily by considering the singular value decomposition of FE.

If the singular value decomposition of FE is given by

FE = UEΣEVET , (3.56)

then

b̂E = FEFET = UEΣE2UET (3.57)

It can be shown, that U diagonalizes G
(
τ (bE

∣∣∣
tn+1

)
)
and bE

∣∣∣
tn+1

, that is

G
(
τ (bE

∣∣∣
tn+1

)
)

= UEĜ(ΣE,n+1)UET , (3.58)

bE
∣∣∣
tn+1

= UE(ΣE,n+1)2UET . (3.59)
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Then we may write (3.54) as

UE(ΣE,n+1)2UET = exp
(
−2δγUEĜ(ΣE,n+1)UET

)
UEΣE2UET

= UE exp
(
−2δγĜ(ΣE,n+1)

)
ΣE2UET

(3.60)

Multiplying both sides of (3.60) by UET on the left and by UE on the right, and taking

the logarithm of the results in

2 ln ΣE,n+1 = −2δγĜ(ΣE) + 2 ln ΣE. (3.61)

The model that we choose uses the Hencky strain as the measure of deformation. By

defining

εE = ln ΣE (3.62)

εE,n+1 = ln ΣE,n+1 (3.63)

we may simplify and rearrange (3.61) to

εE − εE,n+1 = δγĜ (3.64)

This is our discrete flow rule. In the return mapping algorithm, we want to solve for an

εE,n+1 that satisfies (3.64) subject to the constraint

F (τ (εE,n+1)) ≤ 0. (3.65)

Projection to the Drucker-Prager Yield Surface

In case of the Drucker-Prager yield condition, solving (3.64) and (3.65) can be seen as a

ray-cone intersection problem, as illustrated in Figure 3.3. The rays are cast from the trial

stress perpendicular to the hydrostatic axis. There are three possible cases that must be

considered. In Case I the trial stress in on or within the yield surface, consequently there is
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Figure 3.3: Ray-cone intersection of the Drucker-Prager yield surface

no need for projection, and the trial state is accepted. In Case II the material is in tension,

and there is no resistance to motion. Accordingly, the stress is projected to the tip of the

cone. In Case III there is dynamic friction, and the stress must be projected onto the yield

surface. These cases are depicted in Figure 3.4.

Recall the deviatoric component of a tensors is defined as:

dev(A) := A− 1
d

tr(A)I. (3.66)

In essence, dev(A) gives the deviatoric part of any arbitrary square matrix A of size d× d.

Matching its definition from (2.52), we can write

G = dev
(
∂F

∂τ

)
, (3.67)

and for the Drucker-Prager cone we have

∂F

∂τ
= αI + dev(τ )

‖dev(τ )‖F
, (3.68)
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Figure 3.4: Projection cases in two dimensional principal stress space. The green points are
within the Drucker-Prager cone, and no projection is needed (Case I). Red points correspond
to states of expansion, and they are projected to the tip of the cone (Case II). Blue points
experience more shear than friction could resist and must be projected back to the surface
(Case III).

thus G is simply dev(τ )
‖dev(τ )‖F

. In principal space this becomes

Ĝ = dev(τ̂ )
‖dev(τ̂ )‖F

, (3.69)

where τ̂ and Ĝ are diagonal. From Section A.2 we have

τ̂ = ∂ψ

∂εE
= 2µεE,n+1 + λtr(εE,n+1)I (3.70)

because we use the energy density

ψ(εE) = µtr((εE)2) + 1
2λtr(εE)2. (3.71)

56



Thus

Ĝ = dev(εE,n+1)
‖dev(εE,n+1)‖F

. (3.72)

Using (3.64), we can see that tr(ε) = tr(εE,n+1), since tr(Ĝ) = 0. Therefore

dev(εE)− dev(εE,n+1) = δγ
dev(εE,n+1)
‖dev(εE,n+1)‖F

, (3.73)

and collecting like terms we have

dev(εE) =
(

1 + δγ

‖dev(εE,n+1)‖F

)
dev(εE,n+1). (3.74)

Thus Ĝ = dev(εE)
‖dev(εE)‖F

. Then plugging the equation for the ray

εE,n+1 = εE − δγ dev(εE)
‖dev(εE)‖F

, (3.75)

into the equation for the cone F (τ (εE,n+1)) = 0, and solving for δγ, we obtain

δγ = ‖dev(εE)‖F +
(
dλ+ 2µ

2µ

)
tr(εE)α. (3.76)

With this we can identify the aforementioned three cases.

Case I: if δγ ≤ 0 we intersect the cone from the inside and thus do not need to project

and have εE,n+1 = εE.

Case II: if tr(εE) ≥ 0, then the sand is in extension and we project to the tip, setting

εE,n+1 = 0.

Case III: otherwise we project to the cone and εE,n+1 = εE − δγε̂E.

Finally, we return

Z(FE, α) = UeεE,n+1VT . (3.77)

The pseudocode for the algorithm that carries out these steps is listed in Algorithm 2.
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Figure 3.5: Effect of hardening on the yield surface: Three particles in a collapsing pile of
sand are colored for reference. As these particles deform plasticly, their yield surface changes
as they undergo hardening, resulting in a wider cone for projection.

3.5.3 Hardening

In modeling hardening, we adopt the model of Mast et al. (2014), where plastic deformation

can increase the friction between sand particles. The amount of hardening depends on the

amount of correction that occurred due to plasticity. In Case I, no plasticity occurred, so

δqp = 0. In Case II, all of the stress was removed, so δqp = ‖εE,n+1
p ‖F . In Case III, the

amount of plasticity that occurred was δqp = δγp. In each case, δqp ≥ 0. We define our

hardening update using

qn+1
p = qnp + δqp (3.78)

φF p = h0 + (h1q
n+1
p − h3)e−h2q

n+1
p (3.79)

αn+1
p =

√
2
3

2 sinφF p
3− sinφF p

(3.80)

The quantity qnp is the hardening state, φF p is often referred to as the friction angle, the

internal coefficient of friction is tanφF p, and (3.79) models a curve with a maximum and an

asymptote. Plausible values of φF p lie in [0, π2 ), with φF p = 0 behaving as a fluid. Feasible

hardening parameters satisfy h0 > h3 ≥ 0 and h1, h2 ≥ 0. The values we use are listed in

Table 4.2. Figure 3.5 illustrates the change in yield surface as particles undergo hardening

in 2D.
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Figure 3.6: Instability of FLIP transfers: the APIC transfer (left of each frame) is able to
keep the simulation stable even for stiff problems, where simulations using FLIP transfers
would explode (right). The particles are colored by their vertical velocity.

3.6 Algorithm

3.6.1 Transfer to Grid

For both grid-to-particle and particle-to-grid transfer we employ the Affine Particle-In-Cell

(APIC) method. APIC transfers are favorable to PIC and FLIP transfers in hybrid methods

for its ability to conserve linear and angular momentum (Jiang et al., 2015; Jiang et al.,

2016). PIC transfers suffer from excessive dissipation (Brackbill and Ruppel, 1986; Brackbill

et al., 1988), and FLIP transfers exhibit ringing instabilities caused by particle velocity modes

invisible to the grid (Brackbill, 1988; Gritton, 2014). The instabilities of FLIP transfers are

particularly troublesome when used with MPM for solid mechanics. At the same time, APIC

is able to conserve both linear and angular momentum without introducing artifacts.

More importantly, in the simulation of elastoplastic materials, FLIP transfers can lead

to severe instability issues, as demonstrated in Figure 3.6.

Disregarding the actual transfer method used, each time steps begins by the distribution

of particle masses to the Eulerian grid.

mn
i =

∑
p

mpNi(xnp ) (3.81)

This is followed by the transfer of momentum. With PIC and FLIP it is performed by

(mv)ni =
∑
p

mpvnpNi(xnp ) (3.82)
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Both PIC and FLIP are based on the simplification, that the volume represented by parti-

cle p moves with a uniform vp velocity. APIC discards this simplification, and approximates

the local velocity field surrounding each particle with an affine function

vnp (x) = vnp + Cn
p (x− xnp ). (3.83)

The Cn
p matrix is expressed by the affine momentum matrix Bn

p and the inertia like tensor

Dn
p ,

Cn
p = Bn

p (Dn
p )−1, (3.84)

where

Dn
p =

∑
i

(xni − xnp )(xni − xnp )TNi(xp). (3.85)

While this Dn
p tensor depends on the relative position of the influenced grid cells and the

particle, as well as the interpolation kernel itself, fortunately it simplifies to constant tensors

in case of the presented quadratic and cubic kernels as

Dn
p =


∆x2

4 I for quadratic N

∆x2

3 I for cubic N
, (3.86)

where ∆x is the grid spacing.

Because of the simple form of Dp, only the Bp matrix is stored and tracked by each

particle.

We rasterize the particle momentum to the grid using the definition of affine velocity

from (3.83):

(mv)ni =
∑
p

mpvnp (xi)Ni(xnp ) =
∑
p

mp

(
vnp + Cn

p (xi − xnp )
)
Ni(xnp ) (3.87)

Then the grid velocities are simply determined by dividing the momentum by mass:

vni = (mv)ni
mn

i
(3.88)
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3.6.2 Force Computation

As the next step of the algorithm, forces are computed per grid node, and in turn, these

forces will be used for updating the grid velocities. The velocity update can happen through

either explicit or implicit integration. The explicit integration works well with problems of

low stiffness, but requires smaller time steps. The implicit integration allows for larger time

steps, that could get prohibitively small for stiff problems with explicit integration. However,

the implementation of an implicit integrator is significantly more complex.

Since the forces in (3.41) depend on the FE,n
p of the particles, and that is the only term in

fi that depends on time, we can write the equation as a function of all the elastic deformation

gradients, using the 〈·〉 symbol to include all values of a variable.

fi(〈FE
p 〉) = −

∑
p

V 0
p

∂ψ

∂FE

(
〈FE

p 〉
)

FE
p

T∇Ni(xnp ) (3.89)

3.6.2.1 Explicit Integration

With explicit integration we compute the forces based on the current state, and use those

to update the velocities.

v?i = vni + ∆t
mn
i

fi(〈FE,n
p 〉) (3.90)

In case of explicit integration, it is more convenient to compute the forces separately,

including all external forces, then apply them per grid node.

fni = −
∑
p

V 0
p

∂ψ

∂FE

(
FE,n
p

)
FE,n
p

T∇Ni(xnp ) + f ext(xi) (3.91)

v?i = vni + ∆t
mn
i

fni (3.92)

Collision handling is performed on these velocities and friction is applied as a final step

to arrive at the final velocities of the time step. Denoting the grid velocities after collision
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response as v̄i, we can outline the different velocity computations during a time step as

vi
explicit update−−−−−−−−−→ v?i

collision−−−−−→ v̄i
friction−−−−−→ vn+1

i (3.93)

3.6.2.2 Implicit Integration

The key difference between the implicit and explicit integrations is that with implicit the

updated velocities are used to compute the forces acting on the grid nodes. Furthermore, the

collision handling has a profound effect on the velocities, and therefore must be accounted

for. We enforce collision response through a set of Gk constraints.

With all this considered, the implicit velocity update is

v̄i = vni + ∆t
mn
i

fi(〈FE,n+1
p 〉) +

∑
k

∇Gkiλk (3.94)

Gk ≥ 0 (3.95)

λk ≥ 0 (3.96)

Gkλk = 0 (3.97)

A collision object-grid node pair is considered collision-free, if Gk(〈x̄i〉) ≥ 0, where x̄i =

xni + ∆tv̄i.

This approach is implicit in plasticity, but not in hardening or friction. In the absence

of plasticity, the update rules above are the Karush-Kuhn-Tucker (KKT) conditions for

minimization (Nocedal and Wright, 2006).

The resulting system is nonlinear, that we solve using Newton’s method. The collision

constraints are solved by projection, and each FE,n+1
p is updated by (3.114) and (3.77).

Because of plasticity the system is asymmetric, and we solve it using GMRES. We ob-

served that the solution converges adequately within three iterations, in less than 1% of the

occasions takes more than four. Based on this, we limit GMRES to 15 iterations and allow

more Newton iterations.
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In contrast, in the absence of plasticity, either the Conjugate Gradient method can be

used in each Newton step, or the optimization solver presented in (Gast and Schroeder, 2014;

Gast et al., 2015).

We present the details for the computation of the derivatives required by Newton’s

method in Section A.5.

After the velocity update friction needs to be applied to get the final velocities, giving

the following outline:

vi
implicit update−−−−−−−−−→ v̄i

friction−−−−−→ vn+1
i (3.98)

3.6.3 Collision and Friction

Interaction with the rigid object in the simulated environment is achieved by collision han-

dling and application of friction.

We represent each collision object as signed distance function φ(x), where φ(x) = 0

represents the surface, and φ(x) < 0 the inside of the obstacle.

Conceptually, we want to enforce φ(xp) ≥ 0 for each particle. While it is tempting in its

simplicity to perform collision handling between the particles and collision objects directly,

it would lead to severe artifacts. The direct update of particle positions creates deformations

that are not captured by the deformation gradient, therefore lead material states, where the

actual shape and the internally represented state drift further and further apart.

This drift can be avoided by updating the grid velocities instead, to get the desired

particle positions. Since Fp is updated from vn+1
i , any change in the positions driven by

vn+1
i will be reflected correctly on the deformation gradient.

In its most scrupulous form, we would want to adjust vn+1
i such that the updated particle

positions satisfy φ(xp) ≥ 0. At the same time, doing so would significantly complicate the

collision handling process, therefore we adopt the approach of (Gast et al., 2015) instead.

With this approach, we set constraints on the deformed grid. We define the deformed
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grid node locations as

x̄i = xni + ∆tv̄i. (3.99)

Since a particle close, but outside of an obstacle would activate grid nodes within, therefore

the enforcing φ(x̄i) would not be reasonable. Instead, we distinguish three kinds of colli-

sion behaviors, no-slip, slip, and separating. The constraints for each kind in the form of

Gk(〈x̄i〉) ≥ 0 or Gk(〈x̄i〉) = 0 are set, and can be applied independently for each grid node.

No-slip constraints imply that any particles colliding with the obstacle should remain

fixed at that relative location. This is enforced by setting the velocities of the colliding grid

nodes to

vn+1
i = vo(x̄i, t

n+1), (3.100)

where vo is the obstacle’s velocity. This gives the constraint for velocity

Gk(x̄i) = x̄i − xni −∆tvo(x̄i, t
n+1) = 0. (3.101)

The constraint can be enforced by directly setting the velocity according to (3.100).

Slip constraints restrict the motion to be tangential to the surface, therefore sliding on it,

but never separating or going deeper. If a grid node is already inside an obstacle (φ(xni ) < 0),

then it must remain at its current depth:

φ(x̄i) = φ(xni ). (3.102)

If a grid node is outside of the obstacle at its original location, then no collision constraint

is enforced. By allowing for this, some penetration is allowed, and the collision will be

addressed once it happens.

An unsatisfied constraint in the form

φ(x) ≥ a, or (3.103)

φ(x) = a (3.104)
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can be enforced using the normal direction of the signed distance function, ∇φ, by the update

rule

x← x− (φ(x)− a)∇φ(x). (3.105)

Separating constraints allow movement along or away from the obstacle. The con-

straints encompass two cases. If a node is already inside the obstacle, then it should not

move any further in:

φ(x̄i) ≥ φ(xni ). (3.106)

If a node is originally outside (φ(xni ) > 0), then it should not penetrate:

φ(x̄i) ≥ 0. (3.107)

The two cases can be succinctly expressed as

φ(x̄i) ≥ max(0, φ(xni )). (3.108)

The constraints are enforced as in the case of slipping constraints.

3.6.4 Transfer to Particles

With the final grid velocities of the time step, vn+1
i , obtained, particle velocities can be

updated. The PIC and FLIP velocities at each grid node are

vPIC
p =

∑
i

vn+1
i Ni(xnp ), (3.109)

vFLIP
p =

∑
i

(
vn+1

i − vni
)
Ni(xnp ). (3.110)

With FLIP transfers, the particle velocities are set as the linear combination of the two by

the α FLIP ratio:

vn+1
p = α(vnp + vFLIP

p ) + (1− α)vPIC
p . (3.111)
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With PIC and APIC, the particle velocities are simply the PIC velocities:

vn+1
p = vPIC

p . (3.112)

APIC needs to maintain the affine momentum matrix Bp as well, which is updated by

Bn+1
p =

∑
i

vn+1
i (xni − xnp )T . (3.113)

3.6.5 Particle Update

Next, particle positions and deformation gradients are updated. As the deformation gradient

is the source for all elastic stresses, it is crucial that it accurately reflects the changes of the

body. To this end, the update schemes of position and deformation gradient have to match

each other.

The implicit integration solves for the updated velocities by taking into account the

deformation gradients defined by the new velocities. Therefore, the update of FE
p needs to

follow the results of the integration, and those are the velocities before friction has been

applied. That is, both the deformation gradient and the position update is written in terms

of v̄i.

The deformation gradient evolves according to (2.39). Since the particles are advected

by the flow, the material derivative can be computed as a standard forward Euler step:

F̂E,n+1
p = FE,n

p + ∆t(∇v̄)pFE,n
p , (3.114)

where (∇v̄)p is computed as

(∇v̄)p =
∑

i
v̄n+1

i

(
∇Ni(xnp )

)T
. (3.115)

The particle positions are updated by interpolating the deformed grid node locations

defined in (3.99). For each particle this results in an update similar to the PIC velocity
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update, but it based on v̄n+1
i instead of vn+1

i :

xn+1
p =

∑
i

x̄n+1
i Ni(xnp ) =

∑
i

(xi + ∆tv̄n+1
i )Ni(xnp ) = xnp + ∆t

∑
i

v̄n+1
i Ni(xnp ). (3.116)

Note that only the elastic deformation gradient FE
p is used in the algorithm, therefore

neither the plastic deformation gradient FP
p nor the total deformation gradient Fp is stored.

For purely elastic materials Fp = FE
p , and FE

p can be used for Fp everywhere.

3.6.6 Plasticity and Hardening

The plastic projection of the deformation gradient is performed at the end of each simu-

lation step. The projection steps guarantees that the stress state associated with the final

elastic deformation gradient is on or within the material’s yield surface. Each particle of an

elastoplastic material must undergo projection according to:

FE,n+1
p = Z(F̂E,n+1

p ), (3.117)

where Z is the projection operator defined by (3.77), and FE,n+1
p is the final elastic deforma-

tion gradient.

The hardening variable is updated based on the projection according to Section 3.5.3.

For elastic materials, FE,n+1
p = F̂E,n+1

p .

3.7 Gather and Scatter

Several computations involve summation over the grid cells to get values on particles, and

vice versa. In practice these are never implemented as an iteration over the whole grid or

all of the particles. The interpolation kernel defines the support of each particle on the grid,

and the influence between grid nodes and particle are zero outside of that.

For a given particle, the affected nodes in can be identified with ease, but the same is

not true starting from the grid nodes. This poses interesting challenges for efficient parallel
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implementations.

Update of particle variables from grid nodes can be done in parallel, as it is a typical

gather operation, where each concurrent thread reads from the same resource, but writes to

distinct memory locations.

At the same time, care must be taken for implementations of particle-to-grid transfers,

as different particles will have to access the same grid nodes, marking this as a scatter

operation. In CPU implementation the two most common approaches are dividing the

domain into disjoint bands, and the use of individual grids for each parallel thread. For an

efficient GPU implementation we point the reader to the talk by the author (Klár, 2014).

68



CHAPTER 4

Results

We demonstrate the efficacy of our method by simulating several setups of dry sand. The

setups have been chosen to demonstrate key behaviors of dry sand and effects of different

model parameters. Table 4.1 lists the simulation setup details, and Table 4.2 lists the material

parameters for each test case.

4.1 Simulation Setup

4.1.1 Friction Angle

The test demonstrates the piling behavior of a collapsing sand column. We used a fixed

height/radius ratio of 4. The ground plane is set to have no-slip velocity boundary conditions

to best match the experiments by Lajeunesse et al. (2004). We run tests with 20◦, 25◦, 35◦,

and 40◦ friction angles, and as illustrated in Figure 4.1, the higher the angle, the more more

weight can the pile support due to the resulting higher friction angle.

4.1.2 Pile from Spout

In this test we compare our simulation results to real world footage. In both cases sand in

poured on a high frictional surface with a constant flow rate. Our model is able to capture

the avalanche instability typical for similar setups (Yoshioka, 2003).
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Frame rate Scheme ∆t Particle # ∆x Grid resolution Particles/cell

Castle 72 Implicit 1 × 10−3 7.95 × 105 0.01 300 × 140 × 200 8
Friction angle 120 Explicit 1 × 10−4 1.20 × 106 0.001 432 × 144 × 432 32
Hourglass 48 Explicit 1 × 10−4 4.60 × 105 0.0025 160 × 360 × 160 8
Butterfly 24 Explicit 2.5 × 10−4 3.84 × 106 0.0045 220 × 55 × 220 8
Butterfly close 48 Explicit 1 × 10−4 4.1 × 106 0.0014 280 × 140 × 210 2
Raking 24 Explicit 2.5 × 10−4 3.84 × 106 0.0045 220 × 55 × 220 8
Raking close 24 Explicit 1 × 10−4 4.3 × 106 0.0021 336 × 96 × 288 2
Pile from spout 120 Implicit 1.5 × 10−4 9.94 × 105 0.00083 240 × 96 × 240 32
Impact 240 Explicit 5 × 10−5 6.6 × 106 0.0078 256 × 256 × 256 9
Shovel 24 Explicit 1 × 10−4 1.96 × 106 0.005 160 × 100 × 100 8
Young’s modulus 24 Implicit 7.5 × 10−4 see below 0.016 256 × 64 4

Table 4.1: Simulation setup. Young’s modulus test particle counts: 742/739/746/745. Note
that ∆t denotes the maximum allowed time step size. The actual ∆t is adaptive and may be
restricted by CFL condition when the particle velocities are high. In all of our simulations
we use a CFL number of 1, i.e., we do not allow particles to move further than ∆x in a time
step.

% E ν Friction angle h0/h1/h2/h3

Castle 2200 3.537 × 105 0.3 — 35/0/0.2/10
Friction angle 2200 3.537 × 105 0.3 20/25/30/35/40 —
Hourglass 2200 3.537 × 105 0.3 — 35/9/0.3/10
Butterfly 2200 3.537 × 105 0.3 — 35/9/0.2/10
Butterfly close 2200 3.537 × 105 0.3 — 35/9/0.2/10
Raking 2200 3.537 × 105 0.3 — 35/9/0.2/10
Raking close 2200 3.537 × 105 0.3 — 35/9/0.2/10
Pile from spout 2200 3.537 × 105 0.3 30 —
Impact 1582 3.537 × 106 0.3 22 —
Shovel 2200 3.537 × 105 0.3 — 35/9/0.2/10
Young’s modulus 2200 103,4,5,6 0.3 — 35/9/0.3/10

Table 4.2: Material parameters are provided for all of test cases. Friction angle φF and
hardening parameters h0, h1, and h3 are listed in degrees for convenience.

4.1.3 Young’s Modulus

The test demonstrates the effects of different Young’s modulus values. Measured data for

different kinds of sand are accessible, but simulations that focus on visual accuracy might

opt to use lower values that allow for higher ∆t. The Young’s modulus for medium dense

sand is in the range of 30-50 MPa (Kézdi and Rétháti, 1974), however we have found that

a Young’s modulus even as low as 100 kPa leads to visually adequate dynamics. Values in

the range of 10 kPa or lower lead to “bouncy”, gelatin-like behavior. Figure 4.3 illustrates

the effect on a number of selected values.
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Figure 4.1: Effect of friction angle on piling.

4.1.4 Castle

Two way coupling with other bodies simulated by MPM can be done readily with our frame-

work. Different particles can have different constitutive models associated with them, al-

lowing for the interaction of multiple materials. The constitutive model needs to be able

to compute stress values and their derivatives for a given configuration and the rest of the

system is oblivious to the underling computations.

This is demonstrated in our “sand castle” test case, where an elastic ball hits a collapsing

sand castle. Frames of the simulation are included in Figure 4.4
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Figure 4.2: Comparison to real world footage.

Figure 4.3: Effect of Young’s modulus: Sand with a very low Young’s modulus tends to
be bouncy. The behavior is more like sand as the Young’s modulus approaches its physical
value.
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Figure 4.4: Sand castle collapse

4.1.5 Hourglass

Our hourglass example tests the quality of our results in multiple ways. The image of sand

flowing through an hourglass is so prevalent, that everyone1 has a solid intuition as to how

the dynamics should look. In the top section, the majority of the grains are stationary,

exhibiting an almost solid like behavior. Through to the neck, the sand is pouring like a

liquid, and in the bottom portion the grains settle, forming a pile and supporting their own

weight.

Our simulation is able to capture all these behaviors, as illustrated in Figure 4.5 for the

initial frames, and in Figure 4.6 for the complete simulation.
1Admittedly, almost everyone.
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Figure 4.5: Hourglass: initial frames

Figure 4.6: Hourglass: complete simulation

74



4.1.6 Sandbox: Drawing and Raking

These four tests demonstrate the interaction with collision objects. The drawing in the sand

and the raking of the sand in style of a Japanese rock garden illustrates features of the

simulation that can be used in animated scenes.

Both cases have been run for the whole sand box (Figures 4.7 and 4.9), and have been

rendered from a top-down vantage point, and both have been rerun for a close-up view

(Figures 4.8 and 4.10). The close-up version only uses a portion of the original domain, but

that is simulated at a higher resolution. The increased resolution results in higher number

of simulated particles for the subdomain than the total number of particles in the original

simulations.

4.1.7 High Velocity Impact

The test simulates a steel ball hitting a sand bed at 6m/s velocity. The setup creates a stiff

system, with energetic effects on the sand. The robustness and stability of our method is

demonstrated by the stable and almost noise-free impact dynamics. The impact results in a

smooth and symmetric crown splash, free of directional artifacts.

Figure 4.11 shows frames of the simulation.

4.1.8 Shoveling

Our shoveling test case is again an example simulation that might come up in a typical

animated scene. Unlike the sandbox examples, shoveling creates larger deformations in the

sand (Figure 4.12).

4.2 Performance

In explicit simulations the particle to grid operations are the most costly. These are clas-

sical scatter operations, and their parallelization requires either intricate synchronization
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Figure 4.7: Drawing in sand

Figure 4.8: Drawing in sand, closeup
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Figure 4.9: Raking sand

Figure 4.10: Raking sand, closeup

77



Figure 4.11: High velocity impact

Figure 4.12: Shoveling
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Min/frame Threads CPU
Castle 6.80 4 Intel Xeon X5650 2.67GHz
Friction angle 4.10 4 Intel Xeon W3680 3.33GHz
Hourglass 2.00 12 Intel Xeon E5-2690 v2 3.00GHz
Butterfly 10.31 10 Intel Xeon E5-2690 v2 3.00GHz
Butterfly close 21.23 8 Intel Xeon E5-2690 v2 3.00GHz
Raking 9.78 10 Intel Xeon E5-2690 v2 3.00GHz
Raking close 32.84 8 Intel Xeon E5-2690 2.90GHz
Pile from spout 4.34 8 Intel Xeon X5650 2.67GHz
Impact 9.27 8 Intel Xeon X5690 3.47GHz
Shovel 24.84 4 Intel Xeon X5690 3.47GHz
Young’s modulus 49× 10−4 1 Intel Xeon X5650 2.67GHz

Table 4.3: Simulation performance.

techniques or a significant memory overhead. The former can be alleviated in GPGPU im-

plementation by taking advantage of the special memory architecture of the hardware and

its fast atomic instructions (Klár, 2014), and the overhead of the latter can be diminished

by the use of sparse data structures, such as OpenVDB (Museth, 2013).

Table 4.3 collects the timing results for the test cases presented in this chapter. The

reported times reflect the wall-clock timing for completing a frame at the given frame rate,

including the time spent on logging and I/O operations.

4.3 Rendering

We are able to run simulations with a large enough number of particles that can be rendered

directly. Each particle is represented by a sphere so it can receive and cast shadows on

its environment. The sphere radii are uniform in a simulation, and the colors are chosen

randomly from brown tones.

Secondary render particles were not employed in the examples, but it is certainly possible

to add such techniques to our framework. It is up to the given application to decide, if a

lower resolution simulation augmented with passive particles would give beneficial quality-

performance trade-offs.
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CHAPTER 5

Conclusion

In this document we described a simulation framework for granular materials. We based

our modeling on a continuum assumption, and used elastoplasticity theory to formulate the

problem. We extended the Material Point Method for elastoplastic simulations. The Material

Point Method is well suited for the simulation of history dependent materials with large

deformations, topological changes and self collisions. The Drucker-Prager yield condition is

used for the modeling of the permanent deformations of the material, and it allows us to

simulate the dynamics with high visual accuracy. We demonstrate this efficacy over several

examples of dry sand in various setting. Our main contributions are the derivation of an

implicit integration method for elastoplasticity, the addition of APIC transfers for improved

stability, and an end-to-end description of the theory of elastoplasticity, solution for the

plastic flow, and the return mapping algorithm.

The focus of our discussion was on using the Drucker-Prager yield condition for cohe-

sionless materials, and creating results worthy of the attention of the sand pile enthusiasts

around the world. At the same time much of the results are applicable to other yield condi-

tions and materials. We are excited about the prospect of future work that opens the way

for new materials based on our framework.
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APPENDIX A

Further Derivations

A.1 Hencky Strain Derivative Lemma

Consider symmetric positive definite matrix B ∈ Rd×d with d = 2 or 3. Use B = UΛUT to

denote the eigenvalue decomposition of B where Λ is diagonal and positive definite. Define

ε(B) = 1
2 ln(B) = Uln(Λ 1

2 )UT . In particular, if B = FFT , then ε is the Hencky strain. We

can also write B(ε) = e2ε.

Lemma: Suppose that f(B) is a scalar function of B which is invariant under coordinate

changes, and f̂(ε) = f(B(ε)), then

∂f̂

∂ε
= 2 ∂f

∂B
B. (A.1)

Proof: First note that f̂ will also be invariant under coordinate change and therefore

can be written as a function of the invariants of ε. That is f̂(ε) = f̃(I1, I2, I3). This means

we have
∂f̂

∂ε
= ∂f̃

∂I1

∂I1

∂ε
+ ∂f̃

∂I2

∂I2

∂ε
+ ∂f̃

∂J

∂J

∂ε
(A.2)

where ∂I1
∂ε

= I, ∂I2
∂ε

= I1I − εT , ∂J
∂ε

= Jε−T . Therefore, if ε is diagonal then ∂f̂
∂ε

will be as

well. Note that from frame invariance we have f̂(ε) = f̂(RTεR) for any rotation R. Which

81



means

∂f̂

∂ε

∣∣∣∣∣∣
ε

: δε = ∂f̂

∂ε

∣∣∣∣∣∣
RT εR

: RT δεR

∂f̂

∂ε

∣∣∣∣∣∣
ε

: δε = R
∂f̂

∂ε

∣∣∣∣∣∣
RT εR

RT : δε

∂f̂

∂ε

∣∣∣∣∣∣
ε

= R
∂f̂

∂ε

∣∣∣∣∣∣
RT εR

RT

R
∂f̂

∂ε

∣∣∣∣∣∣
ε

RT = ∂f̂

∂ε

∣∣∣∣∣∣
RT εR

(A.3)

Plugging in R = U we have U∂f̂
∂ε

∣∣∣
ε
UT = ∂f̂

∂ε

∣∣∣
UT εU

and is therefore diagonal.

Deriving

∂f

∂B
: δB = ∂f̂

∂ε
: δε

= UT ∂f̂

∂ε
U : UT δεU

= UT ∂f̂

∂ε
U : diag(UT δεU)

(A.4)

From ε = 1
2U log(Λ)UT we have

δε = 1
2(δU log(Λ)UT + UδΛΛ−1UT + U log(Λ)δUT )

UT δεU = 1
2(UT δU log(Λ) + δΛΛ−1 + log(Λ)δUTU)

(A.5)

Since U is orthonormal UT δU is skew and therefore diag(UT δεU) = diag(δΛ)Λ−1. Similarly

from B = UΛUT we have diag(UT δBU) = 1
2diag(δΛ). Continuing the derivation we have
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∂f

∂B
: δB = 1

2UT ∂f̂

∂ε
U : diag(δΛ)Λ−1

= 1
2UT ∂f̂

∂ε
U : diag(UT δBU)Λ−1

= 1
2UT ∂f̂

∂ε
UΛ−1 : diag(UT δBU)

= 1
2UT ∂f̂

∂ε
UΛ−1 : UT δBU

= 1
2
∂f̂

∂ε
UΛ−1UT : δB

= 1
2
∂f̂

∂ε
B−1 : δB

(A.6)

Thus ∂f
∂B = 1

2
∂f̂
∂ε

B−1 which yields ∂f̂
∂ε

= 2 ∂f
∂BB.

A.2 The Relationship Between Kirchhoff Stress and Hencky Strain

Claim: For any isotropic constitutive model ψ, τ = ∂ψ
∂ε
.

Proof: We have

P = ∂ψ

∂F

P = ∂ψ̃

∂B
F + FT ∂ψ̃

∂B

P = 2 ∂ψ̃
∂B

F

PFT = 2 ∂ψ̃
∂B

FFT

τ = 2 ∂ψ̃
∂B

B.

(A.7)

By the Hencky strain derivative lemma applied to ψ̃(B) we have τ = ∂ψ
∂ε
.
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A.3 Elastic Component of the Total Work Rate Density

We prove that the elastic component of the total work rate defined as ẇE = τ : lE satisfies

the following:

τij(X, t)lEij(X, t) = ∂ψ

FE
ij

(FE(X, t))ḞE
ij (X, t) (A.8)

Recall that τ = PFT , P = ∂ψ
∂FE FP−T and lE = ḞEFE−1. With this we have

τ : lE = ∂ψ

∂FE
FP−TFT : ḞEFE−1

= ∂ψ

∂FE
(FFP−1)T : ḞEFE−1

= ∂ψ

∂FE
(FEFPFP−1)T : ḞEFE−1

= ∂ψ

∂FE
FET : ḞEFE−1

(A.9)

Writing the same in index notation gives the proof to our claim:

τ : lE = τij(X, t)lEij(X, t) = ∂ψ

∂FE
ik

FE
jkḞE

ilFE
lj

−1

= ∂ψ

∂FE
ik

ḞE
ilFE

lj

−1FE
jk

= ∂ψ

∂FE
ik

ḞE
il δlk

= ∂ψ

∂FE
ij

ḞE
ij

(A.10)

where δlk is the Kronecker delta:

δlk =


1 if l = k

0 if l 6= k

(A.11)
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A.4 Plastic Rate of Deformation

We prove that the choice for lP as

lP = −1
2LvbEbE−1 (A.12)

satisfies

τ : l = τ : lE + τ : lP . (A.13)

First we demonstrate that the total work rate can be written in terms of the rate of

the elastic left Cauchy-Green tensor (ḃE), if we assume no plastic deformation takes place

(DCP −1

Dt
= 0):

τ : l = τ : 1
2
(
∇vbE + bE(∇v)T

)
bE−1

, (A.14)

because, recalling l = ḞF−1,

τ : ḞF−1 = τ : 1
2
(
∇vbE + bE(∇v)T

)
bE−1

= 1
2τ : ∇v + 1

2τ : bE(∇v)TbE−1

= 1
2tr (τ∇v) + 1

2tr
(
τbE(∇v)TbE−1)

= 1
2tr (τ∇v) + 1

2tr
(
bEτ (∇v)TbE−1)

= 1
2tr (τ∇v) + 1

2tr
(
bE−1bEτ (∇v)T

)
= 1

2tr (τ∇v) + 1
2tr

(
τ (∇v)T

)
= 1

2tr (τ∇v) + 1
2tr (τ∇v)

= τ : ∇v

= τ : ḞF−1

(A.15)

Here we used the properties that bE and τ commutes, that is τbE = bEτ ; that τ is

symmetric; that A : B = tr(ATB), for any A and B; that tr(ABC) = tr(CAB); and

(2.39), that provides ∇v = ḞF−1.
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Next, we prove that the elastic component of the total work rate can be written in terms

of bE as

τ : lE = τ : 1
2 ḃEbE−1 (A.16)

because, recalling lE = ḞEFE−1,

τ :
(
ḞEFE−1) = τ : 1

2 ḃEbE−1

= τ : 1
2(ḞEFET + FEḞET )bE−1

= τ : 1
2(ḞEFETFE−TFE−1 + FEḞETbE−1)

= τ : 1
2(ḞEFE−1 + FEḞETbE−1)

= 1
2τ : (ḞEFE−1 + FEḞETbE−1)

= 1
2τ : (ḞEFE−1) + τ : (FEḞETbE−1)

= 1
2tr

(
τ ḞEFE−1)+ 1

2tr
(

τ
(
FEḞETbE−1

)T)
= 1

2tr
(
τ ḞEFE−1)+ 1

2tr
(
τbE−T ḞEFET

)
= 1

2tr
(
τ ḞEFE−1)+ 1

2tr
(
τbE−T ḞEFE−1FEFET

)
= 1

2tr
(
τ ḞEFE−1)+ 1

2tr
(
τbE−T ḞEFE−1bE

)
= 1

2tr
(
τ ḞEFE−1)+ 1

2tr
(
bEτbE−T ḞEFE−1)

= 1
2tr

(
τ ḞEFE−1)+ 1

2tr
(
τbEbE−T ḞEFE−1)

= 1
2tr

(
τ ḞEFE−1)+ 1

2tr
(
τ ḞEFE−1)

= τ :
(
ḞEFE−1)

(A.17)

Finally, from the difference of these follows the definition of the plastic rate of deforma-
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tion:

τ : lP = τ : l− τ : lE

= τ : 1
2
(
∇vbE + bE(∇v)T

)
bE−1 − τ : 1

2 ḃEbE−1

= τ : 1
2
[(
∇vbE + bE(∇v)T

)
− ḃE

]
bE−1

= τ : 1
2
[(
∇vbE + bE(∇v)T

)
−
(
∇vbE + bE(∇v)T + LvbE

)]
bE−1

= τ : −1
2LvbEbE−1

.

(A.18)

A.5 Derivatives of Elasticity and Plasticity

As part of an implicit formulation, we encounter the combination

Y(F) = ∂ψ

∂F
(Z(F, α)) = W(Z(F, α)), (A.19)

where W(F) = ∂ψ
∂F(F). This corresponds to projecting a deformation gradient for plastic-

ity and then using the result as part of a force computation. This function Y must be

differentiated, resulting in the rank-four tensor

M = ∂Y
∂F

(F). (A.20)

The tensor M has 34 = 81 entries in the thee dimensional case and no symmetries. Both

the construction and application of M are somewhat expensive, and both can be avoided.

If F = UΣVT , then it turns out that Z(F, α) = UẐ(Σ, α)VT and W(F) = UŴ(Σ)VT ,

where Ẑ(Σ, α) and Ŵ(Σ) are diagonal matrices. It follows then that Y(F) = UŶ(Σ)VT ,

with Ŷ(Σ) = Ŵ(Ẑ(Σ, α)), where Ŷ(Σ) is also a diagonal matrix. To be able to carry out

these steps, it is required of the energy density function ψ, that it depends only on the

singular values of F. In essence, we need to be able to define ψ̂ such that, ψ̂(Σ) = ψ(F).

This allows us to write the definition of Ŵ as Ŵ(Σ) = ∂ψ̂
∂Σ(Σ).

Note that we have taken advantage of these relationships to avoid computing the sin-
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gular value decomposition more often than necessary. Indeed, Ŵ is implemented by En-

ergy_derivative, and Ẑ is implemented by Project.

Since these functions are rather simple in diagonal space, it might not be too surprising

that the derivatives are also simpler there. Let M̂ be the diagonal space version of M,

defined by

Mijkl = M̂rsuvUirVjsUkuVlv, (A.21)

where index notation is used and summation is implied. In the pseudocode, the operation

A = M̂ : T (A.22)

is requested. This is equivalent to Aij = M̂ijklTkl. What remains is to determine the structure

of M̂. The way that this is done follows from the approach taken in (Stomakhin et al., 2012),

but we summarize the result here.

Introducing the auxiliary variables Y ij, Dij, Sij, the nonzero entries of M̂ are (with no

summation implied)

M̂iijj = Y ij = ∂Ŷii
∂Σjj

(A.23)

M̂ijij = Dij + Sij
2 i 6= j (A.24)

M̂ijji = Dij − Sij
2 i 6= j (A.25)

Dij = Ŷii − Ŷjj
Σii − Σjj

(A.26)

Sij = Ŷii + Ŷjj
Σii + Σjj

(A.27)

Note that Dij = Dji and Sij = Sji, so that M̂ijij = M̂jiji and M̂ijji = M̂jiij. Thus, there are

only 9 + 3 + 3 = 15 distinct nonzero entries to compute, and 9 + 6 + 6 = 21 multiplications

(plus 12 additions) are required to apply the tensor. Of the computations required, Y ij and

Dij merit further attention. Sij can be computed directly, since division by zero is not a
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concern there.

First we describe the computation of Y. Since Ŷ is the composition of two functions, Y

is computed using the chain rule. Note that both Ŵ and W are evaluated at Ẑ = Ẑ(Σ, α).

Y ij = ∂Ŷii
∂Σjj

=
∑
k

∂Ŵii

∂Σkk

∂Ẑkk
∂Σjj

=
∑
k

W ikZkj, (A.28)

where the matrices Y, W, and Z represent the derivatives of the functions Ŷ, Ŵ, and

Ẑ when diagonal matrices are treated as functions taking a vector and returning a vector.

Differentiating Ŵ gives

W = Ẑ−1(2µI− 2µ ln(Ẑ) + λooT − λtr(ln(Ẑ))I)Ẑ−1, (A.29)

where o is the all-ones vector.

Next, we need to differentiate the projection to get Z. There are three cases to consider.

In Case I, Z = I. In Case II, Z = 0. This leaves only Case III, in which case

ε = diag(ln Σ) w = diag(Σ−1) k = tr(ln Σ) s = ε− k

d
o ŝ = s

‖s‖
p = αk(dλ+ 2µ)

2µ‖s‖
(A.30)

Z = Ẑ
((1 + 2p

d
o− p

k
ε
)
wT − p

(
I− ŝŝT

)
Σ−1

)
. (A.31)

With this, Y can be readily computed as Y = W Z by (A.28).

Finally, for Dij, we can avoid potential numerical problems in the case where Σii ≈ Σjj

by writing

Dij = Ŷii − Ŷjj
Σii − Σjj

=
(
Ŷii − Ŷjj
Ẑii − Ẑjj

)(
Ẑii − Ẑjj
Σii − Σjj

)
. (A.32)
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This works as long as both factors can be robustly computed. Consider the first term.

Ŷii = 2µ ln Ẑii
Ẑii

+ λtr(ln Ẑ)
Ẑii

(A.33)

Ŷii − Ŷjj = 2µ(ln(Ẑii)− ln(Ẑjj))
Ẑii

− λtr(ln Ẑ) + 2µ ln Ẑjj
ẐiiẐjj

(Ẑii − Ẑjj) (A.34)

Ŷii − Ŷjj
Ẑii − Ẑjj

= 2µ
Ẑii

ln(Ẑii)− ln(Ẑjj)
Ẑii − Ẑjj

− λtr(ln Ẑ) + 2µ ln Ẑjj
ẐiiẐjj

(A.35)

The only term that presents further difficulties is the divided difference on the natural log.

This can be computed by noting

ln(x)− ln(y)
x− y

= 1
y

ln(w + 1)
w

x = (w + 1)y (A.36)

= 1
y


1 |w| < ε

log1p(w)/w |w| ≥ ε

(A.37)

Here we have made use of the log1p library routine, which is designed to be robust in this

case.

The next term that must be considered is the divided difference on Ẑ. Following the

same general procedure yields

Ẑii − Ẑjj
Σii − Σjj

=
(

1− δγ

‖ε̂‖F

)(
exp(Hii)− exp(Hjj)

Hii −Hjj

)(
ln(Σii)− ln(Σjj)

Σii − Σjj

)
. (A.38)

The first term is not a problem, and we have already seen how to handle the last term. For

the middle term,

ex − ey

x− y
= ey

ew − 1
w

x = y + w (A.39)

= ey


1 |w| < ε

expm1(w)/w |w| ≥ ε

(A.40)

where in this case we have made use of the expm1 library function.
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APPENDIX B

Pseudocode

Algorithm 1 Main algorithm
1: procedure Time_Step
2: Transfer_to_grid
3: if explicit then
4: Explicit_grid_step
5: else
6: Implicit_grid_step
7: Transfer_to_particles
8: Update_particle_state
9: Plasticity_hardening
1: procedure Transfer_to_grid
2: for all grid nodes i do
3: mn

i ←
∑
pw

n
ipmp

4: vni ← 1
mn

i

∑
pw

n
ipmp

(
vnp + 3

h2 Bn
p (xi − xnp )

)
. assuming cubic spline

1: procedure Transfer_to_particles
2: for all particles p do
3: vn+1

p ←
∑
i

wnipṽn+1
i

4: Bn+1
p ←

∑
i

wnipṽn+1
i (xi − xnp )T

1: procedure Update_particle_state
2: for all particles p do
3: xn+1

p ←
∑
i

wnip(xni + ∆twnipvn+1
i )

4: T←
∑
i

vn+1
i (∇wnip)T

5: F̂E,n+1
p ← (I + ∆tT)FE,n

p

6: F̂P,n+1
p ← FP,n

p
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Algorithm 2 Plasticity routines
1: procedure Plasticity_hardening
2: for all particles p do
3: (U,Σ,V)← SVD(F̂E,n+1

p )
4: (T, δq)← Project(Σ, αnp )
5: FE,n+1

p ← UTVT

6: FP,n+1
p ← VT−1ΣVT F̂P,n+1

p

7: qn+1
p ← qnp + δq

8: φF ← h0 + (h1q
n+1
p − h3)e−h2q

n+1
p

9: αn+1
p ←

√
2
3

2 sinφF

3−sinφF

1: function Project(Σ, α)
2: ε← ln Σ
3: ε̂← ε− tr(ε)

d
I

4: if ε̂ = 0 or tr(ε) > 0 then . Case II
5: return (I, ‖ε‖F )
6: δγ ← ‖ε̂‖F + dλ+2µ

2µ tr(ε)α
7: if δγ ≤ 0 then . Case I
8: return (Σ, 0)
9: H← ε− δγ ε̂

‖ε̂‖F
. Case III

10: return (exp(H), δγ)

Algorithm 3 Explicit integration
1: procedure Explicit_grid_step
2: 〈v?i 〉 ← 〈vni 〉+ Force_Increment(〈FE,n

p 〉, 0)
3: 〈vn+1

i 〉 ← Grid_collisions(〈v?i 〉)
4: 〈ṽn+1

i 〉 ← Friction(〈vn+1
i 〉, 〈vn+1

i − v?i 〉)

Algorithm 4 Force grid computation
1: function Force_Increment(〈Fp〉, b)
2: for all particles p do
3: (U,Σ,V)← SVD(Fp)
4: if b 6= 0 then
5: (Σ, ·)← Project(Σ, αnp ) . ignore hardening
6: T← Energy_derivative(Σ)
7: Ap ← V 0

p UTVT (Fn
p )T

8: for all grid nodes i do
9: fi ← − ∆t

mn
i

∑
p Ap∇wnip

10: return 〈fi〉
1: function Energy_derivative(F)
2: return 2µΣ−1 ln Σ + λtr(ln Σ)Σ−1
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Algorithm 5 Implicit integration
1: procedure Implicit_grid_step
2: Coupled_solve
3: 〈v?i 〉 ← 〈vni 〉+ Force_Increment_vel(〈vn+1

i 〉)
4: 〈∆vi〉 ← Grid_collisions(〈v?i 〉)− 〈v?i 〉
5: 〈ṽn+1

i 〉 ← Friction(〈vn+1
i 〉, 〈∆vi〉)

1: procedure Coupled_solve
2: 〈v̂i〉 ← 〈vni 〉+ Force_Increment_vel(〈vni 〉)
3: return Constrained_Newton(〈v̂i〉)
1: function Force_Increment_vel(〈vi〉)
2: for all particles p do
3: T← ∑

i vi(∇wnip)T
4: Ap ← (I + ∆tT)FE,n

p

5: return Force_Increment(〈Ap〉, 1)
1: function Constrained_Newton(〈zi〉)
2: 〈zi〉 ← Grid_collisions(〈zi〉)
3: while not too many iterations do
4: 〈yi〉 ← Nonlinear_function(〈zi〉)
5: a←

√∑
i

miyi · yi

6: if a < τ∆t and not first iteration then
7: return 〈zi〉
8: Find 〈∆zi〉 so Times_Diff(〈∆zi〉) = −〈yi〉 . Solve using GMRES
9: 〈zi〉 ← 〈zi〉+ 〈∆zi〉
10: 〈zi〉 ← Grid_collisions(〈zi〉)
11: return 〈zi〉
1: function Nonlinear_function(〈vi〉)
2: 〈v̂i〉 ← Grid_collisions(〈vi〉)
3: 〈vi〉 ← 〈v̂i〉 − 〈vni 〉 − Force_Increment_vel(〈v̂i〉)
4: return Prune_collisions(〈vi〉)
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Algorithm 6 Implicit integration - continued
1: function Times_Diff(〈vi〉)
2: 〈v̂i〉 ← 〈vi〉
3: for all recorded sticky (·, i) do
4: v̂i ← 0
5: for all recorded collisions (·, i,n) do
6: v̂i ← v̂i − (v̂i · n)n
7: 〈vi〉 ← Hessian_Times(〈v̂i〉)
8: for all grid nodes i do
9: vi ← v̂i + ∆t2

mn
i
vi

10: for all recorded sticky (·, i) do
11: vi ← 0
12: for all recorded collisions (·, i,n) do
13: vi ← vi − (vi · n)n
14: return 〈zi〉
1: function Hessian_Times(〈zi〉)
2: for all particles p do
3: Load(Up,Qp, M̂)
4: T1 ←

∑
i zi(∇wnip)T

5: T2 ← UT
p T1Qp

6: T3 ← M̂ : T2 . See Section A.5
7: Ap = V 0

p UpT3QT
p

8: for all grid nodes i do
9: yi ←

∑
p Ap∇wnip

10: return 〈yi〉
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Algorithm 7 Collision and friction
1: function Grid_collisions(〈vi〉)
2: Forget_recorded_items
3: 〈v̂i〉 ← 〈vi〉;
4: for all collision bodies b do
5: x̂i ← xni + ∆tv̂i
6: if Is_sticky(b) and φb(xni ) < 0 then
7: Record_sticky(b, i)
8: v̂i ← vb(x̂i)
9: else
10: φ̂← φb(x̂i)−min(φb(xni ), 0)
11: if (Is_separating(b) and φ̂ < 0) or
12: (Is_slipping(b) and φb(xni ) < 0) then
13: Record_collision(b, i,∇φb(x̂i))
14: v̂i ← v̂i − φ̂∇φb(x̂i)/∆t
15: return 〈v̂i〉
1: function Prune_collisions(〈vi〉)
2: 〈v̂i〉 ← 〈vi〉
3: for all recorded sticky (·, i) do
4: v̂i ← 0
5: for all recorded collisions (b, i,n) do
6: if Is_separating(b) and v̂i · n < 0 then
7: Forget_collision(·, i)
8: else
9: v̂i ← v̂i − (v̂i · n)n
1: function Friction(〈vi〉, 〈∆vi〉)
2: for all recorded collisions (b, i, ·,n, ·) do
3: vt ← vn+1

i − n(n · vi)
4: t← vt

‖vt‖
5: vi ← vi −min(‖vt‖, µb‖∆vi‖)t
6: return 〈vi〉

Algorithm 8 Force and force derivative precompute
1: procedure Precompute(〈vi〉)
2: for all particles p do
3: T← ∑

i zi(∇wnip)T
4: Fp ← (I + ∆tT)FE,n

p

5: (Up,Σ,V)← SVD(Fp)
6: Qp ← FE,n

p V
7: Construct M̂ . See Section A.5
8: Store(Up,Qp, M̂)
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