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ABSTRACT OF THE THESIS
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Professor Demetri Terzopoulos, Chair

Reconstructing 3D facial shapes is of significant interest in Computer Vision and Computer

Graphics. In recent years, deep learning methods have been proposed for cost-effectively

acquiring accurate 3D facial shapes. To some extent, these methods can generate accurate

3D facial shapes from a single image. Most of them assume that the resolution of the

input images is high enough to reconstruct facial shapes, but this is not always the

case, such as in the 3D reconstruction of players in a dynamic sports scene. Due to the

large distances between players, one normally cannot acquire a photo showing all the

players in focus and some faces could appear blurry. To tackle this problem, we propose

a new learning-based architecture that combines a Super-Resolution (SR) network with

a 3D Facial Reconstruction (FR) network. First, we input a low-resolution facial photo

to the SR network, which generates corresponding SR images. These are input to the

FR network, which generates corresponding facial shapes. We generate multiple SR

images and corresponding 3D facial shapes because the SR network is a non-deterministic

algorithm whose output is not always optimal for 3D reconstruction and rendering. Hence,

we choose the best pair considering the noise level of the SR images and the distribution

of distances among those facial shapes in order to reconstruct a good-quality 3D facial

shape despite the low resolution of the input image.
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CHAPTER 1

Introduction

3D reconstruction is one of the most significant topics in the fields of Computer Vision and

Computer Graphics. Reconstructed 3D shapes are widely used in virtual and augmented

reality, 3D printing, digital archiving of cultural artifacts, electronic commerce, and many

other applications. Searching for “3D reconstruction” on Google Scholar yields nearly 3

million publication results, including more than 400 thousand in the last 5 years.

However, reconstruction accuracy and the cost of capturing 3D shapes continue to

challenge researchers. In particular, reconstructing 3D human models from multiple

images should be a lucrative business, but it currently requires much time and money. In

fact, to acquire photorealistic 3D human models, one must carefully arrange numerous

advanced cameras in a studio and have them capture images simultaneously. Nevertheless,

the quality of the reconstructed human shapes might not suffice for certain applications.

The head and facial areas of the 3D model usually need special treatment because people

are especially sensitive to reconstruction deficiencies such as partial collapse of the hair

shape, inadequate protrusion of the nose, and missing details in the facial expression.

Therefore, skilled 3D modelers usually must be hired to improve the reconstructed shapes,

often at the cost of many hours of work. Although automated 3D reconstruction normally

reduces the amount of effort required, the equipment and labor costs can still be high.

One of the most interesting uses of 3D human models is in the sports domain, to

enable the audience to watch sports scenes free of viewpoint constraints; i.e., the viewpoint

is not restricted to any of the broadcast cameras, and sports fans can freely change their

views. Ideally, the viewer can observe the scene or any player by changing the viewpoint

on their smartphones or tablet devices. For example, they can select overhead views to
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see the formation of the sports team, or they can move their viewpoint close to any player.

To enable this, dozens or hundreds of cameras are installed in a sports stadium. Next, the

entire 3D scene is reconstructed from the images captured by the cameras. Finally, the

unconstrained viewpoint video system renders the image from the desired viewpoint. We

must use multiple cameras to reconstruct accurate 3D human shapes as described above

and, therefore, to acquire accurate 3D models of entire sports scenes is nearly impossible

now. A major challenge is that sports stadiums are large spaces and video cameras cannot

capture all of the players in perfect focus. Moreover, players would occlude one another

even from the points of view of hundreds or thousands of cameras.

Machine-learning-based 3D reconstruction methods have attracted much attention

in recent years, and deep learning methods have been shown to reduce the number of

images needed to reconstruct 3D shapes from hundreds down to ten or fewer. These

neural network methods can also overcome challenges such as the collapse of reconstructed

3D object shape due to reflection anisotropies characteristic of hair and metal. Deep

learning methods infer 3D shapes from 2D images by exploiting supervised learning from

large datasets of input-output training pairs, in this context, single-view or multi-view

input images and associated ground-truth output 3D shapes. Complete 3D shapes can

be inferred even though some parts of objects are not well captured in the 2D input

images due to occlusion or irregular light reflections, advantages that have been noted by

researchers in many of the recent publications on accurate 3D reconstruction using deep

learning methods. Nevertheless, the accuracy of reconstructed shapes has not yet reached

a satisfactory level, especially when the resolution of the input image is not high, because

the deep-learning-based 3D reconstruction network normally learns the relation between

a high-resolution facial image and the associated facial shape. Even if the network is

trained using low-resolution images, it would be difficult for deep learning methods to

infer accurate 3D shapes from 2D images at different resolutions because training datasets

usually lack coverage across a spectrum of resolution levels.
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1.1 Thesis Contributions

To address some of the aforementioned challenges, in this thesis, we propose deep learning

methods for reconstructing 3D human facial shapes from a single image by combining a

Super-Resolution (SR) network with a 3D Facial Reconstruction (FR) network. Reducing

the number of input images compared to classic multi-viewpoint 3D reconstruction, such

as a multi-view-stereo method, we also concentrate on enhancing the accuracy of the

shapes particularly when the resolution of the input image is not high.

Our algorithm is divided into three major parts: Super resolution, 3D facial recon-

struction, and best pair selection. If there were no SR network before 3D reconstruction,

a single facial photo could be input to the FR network. However, because the SR network

is a non-deterministic algorithm whose output is not always optimal for 3D reconstruction

and rendering, we should generate multiple SR images and corresponding 3D facial

shapes. Examining only the SR output or FR output cannot determine the quality of

the SR/FR pair because SR noise might influence the 3D reconstruction, and a failure

to properly reconstruct 3D facial features implies an inadequate SR output. Hence, in

order to reconstruct a high-quality 3D facial shape despite the low resolution of the input

image, we choose the best pair considering both the noise level of the SR images and the

distribution of distances among the reconstructed facial shapes.

In summary, the contributions of the thesis are as follows:

• We propose a new deep learning architecture that is composed of a

Super-Resolution (SR) network and a 3D Facial Reconstruction (FR)

network.

• We also propose a process that selects the best pair among multiple pairs

of SR images and corresponding 3D facial shapes, which is important in

combining an SR network with an FR network.

• We experimentally evaluate our method by applying it to real 3D facial

data and demonstrate that despite low-resolution input images, the
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method can reconstruct accurate 3D facial shapes and generate high-

quality rendered images.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 reviews related work on SR methods, 3D reconstruction methods, and

evaluation metrics for images and shapes.

Chapter 3 develops our method. First, we overview our proposed architecture. Next,

we describe the incorporated SR and FR networks. Finally, we explain how the best pair

is selected from multiple input-output pairs generated by the networks.

In Chapter 4 we present our experiments and report the results generated by our

method. We also numerically compare the results against those generated without using

the SR network.

Finally, we present our conclusions and future research directions in Chapter 5.
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CHAPTER 2

Related Work

Our architecture incorporates two networks, a Super Resolution (SR) network and a 3D

Facial Reconstruction (FR) network. In this chapter, we first review SR methods. These

methods, which have been researched since before 2000, have many applications such as

enhancement of the resolution of microscopic and telescopic images. Next, we review 3D

reconstruction methods. These methods have been proposed for more than 30 years and,

with some modification or adjustment, some have been adapted to reconstruct 3D human

faces. Finally, we review several metrics to evaluate images and shapes.

2.1 Super Resolution

Super Resolution (SR) algorithms generate high-resolution signals from low-resolution ones.

Their application includes movies or TV shows, which were recorded at low resolution,

being enhanced to higher resolution (Matsuo and Sakaida, 2017). SR originally started

from the interpolation of an image. Nearest neighbor interpolation, bilinear interpolation,

and bicubic interpolation are basic functions implemented in image processing libraries for

many programming languages, and the performance of these algorithms is well researched

(Mohamad et al., 2017). These methods can interpolate an image at low computational

cost, but the quality of the interpolation is far from modern SR.

Today’s SR methods are generally divided into two categories. One is a reconstruction-

based method, and the other is a learning-based method. We will review both in turn.

Reconstruction-based SR is installed mainly in a wide range of consumer products

such as televisions. Such algorithms estimate an SR image from multiple low-resolution
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images (Elad and Feuer, 1999; Zhang et al., 2010). The method hardly fails to produce

an SR image, and it can run in real time if the required compute power and memory

capacity are provided to achieve pixel alignment among multiple images.

For example, Farsiu et al. (2004) applied a low-pass filter to a high-resolution image,

and sub-sampled it to generate multiple low-resolution images. They then reconstructed

the original high-resolution image by combining those low-resolution images like a jigsaw

puzzle. As such, reconstruction-based SR is based on the premise of the existence of the

original high-resolution image. This limitation has been discussed for many years (Baker

and Kanade, 2002).

Next, we discuss learning-based SR methods, in which machine-learning networks

are often used. The degradation of the original images is simulated, and numerous

original and degraded image pairs images are collected into a training dataset. The

machine-learning network learns the degradation pattern. The trained network can then

infer a high-resolution image from a low-resolution image. Such algorithms can generate

a high-resolution from a single or a few low-resolution images, but if the input does not

have features similar to the images in the training dataset, they do not work well.

Generally, cutting edge learning-based SR can be divided into two parts, based on

Generative Adversarial Networks (GANs) or Diffusion Models. Applied to SR, GANs are

referred to as SRGANs (Ledig et al., 2017). In the training process, the SRGAN generator

outputs fake SR images to the discriminator, and the discriminator predicts whether or

not the image is a fake high-resolution image. In this process, the generator becomes

able to generate plausible SR images that can deceive the discriminator. Wang et al.

(2018b) proposed the Enhanced SRGAN (ESRGAN), which removed batch normalization

layers and replaced the Residual Block with a Residual-in-Residual Dense Block from

the SRGAN. The latest version of SRGAN is Real-ESRGAN (Wang et al., 2021). These

methods can generate high-quality SR images, but GANs have the potential problem that

the training process is very difficult and unstable depending on the parameter tuning.

To overcome the problems of GAN, learning-based SR using Diffusion Models have
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received substantial attention. The diffusion model was first proposed by Sohl-Dickstein

et al. (2015). Recently, the model has become more stable and can generate promising

results. At the beginning, the diffusion model gradually adds Gaussian noise to the

training data and degrades the quality until the original training data becomes pure

noise. Next, the neural network can be trained to learn the inverse of the noise-adding

process. During inference, the trained network gradually removes image noise until a

clean image is produced, which was interpreted as the process that generates potential SR

data according to the gradient of the density of the data. One of the latest diffusion model

methods is called SR3, proposed by Saharia et al. (2022), which can generate SR images

that are comparable to the results generated by ESRGAN. SR3 is based on Denoising

Diffusion Probabilistic Models (DDPM) and the U-Net architecture (Ronneberger et al.,

2015). SR3 is easy to train and stable compared to GANs, but its inherent randomness

can sometimes generate noisy and blurry results.

2.2 3D Reconstruction

3D reconstruction is one of the most important topics in Computer Vision and Computer

Graphics. A great many methods have been proposed, but prior to around 2000, it

was not often practical to use them because 3D reconstruction requires computational

resources and time. However, rapid improvements in computational performance have

made it possible to perform 3D reconstruction in laptop computers and smart phones.

One of the most popular uses of 3D reconstruction is in e-commerce (Lu et al., 2011;

Vladimirov et al., 2021). For example, after registering their body shapes, customers

buying clothes can check whether or not the clothing items will fit them well by examining

their 3D models wearing virtual clothing, and customers can choose shoes by having their

3D foot models try on virtual shoes.

A traditional 3D reconstruction algorithm is the stereo-camera method (Hartley

and Zisserman, 2003). Two cameras face the target object at a certain distance and

acquire simultaneous photographs of the object. The reconstruction algorithm finds

7



corresponding points in the pair of images and, from the image disparities associated with

the corresponding points, determines the distance from the well-calibrated cameras to

those points on the surface of the object.

The stereo-camera algorithm can reconstruct 3D shapes, but two cameras cannot

completely cover the surfaces of most target objects. They cannot observe the backs of

objects and are subject to self-occlusions due to bumps on object surfaces or occlusions

between objects when observing multiple objects of interest. To address this problem,

the multi-view stereo method was proposed (Kang et al., 2001; Strecha et al., 2006).

This algorithm uses more than two cameras, ideally dozens or hundreds of cameras, to

capture unoccluded images of the target surfaces. Generally, the reconstructed shapes are

accurate, but objects with anisotropic reflection areas make it difficult for the method to

find corresponding points in the captured images because the appearance of the points

changes depending on the viewing direction. Additionally, installing hundreds of cameras

is expensive considering the equipment and labor costs. To reconstruct target objects

accurately, one should calibrate the cameras well (Orteu et al., 1997) and control the

depth of field to focus on the objects of interest, which is delicate work.

To address the above problems, deep-learning-based 3D reconstruction methods have

recently been proposed. These methods can reconstruct a target 3D shape from either a

single or a few images (Choy et al., 2016; Pontes et al., 2018; Wang et al., 2018a). First,

the deep learning network can be trained to learn the relationship between images and

the corresponding object shapes in the training set. The network can interpret the shape

correlated with the outline and the shading of the object image. After the network learns

the relationship, it can reconstruct the rough shape of an object, even if it has anisotropic

reflection, because the network recognizes the object only by looking at the input image.

Objects with some occlusions can be reconstructed well because the network can infer

the occluded parts of the object. To train the network, constructing appropriate training

datasets is also important. Databases including images and the target objects have been

constructed for several years (Chang et al., 2015). Those databases are used by many

researchers and more data will be added to them as a result of cooperation between
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companies and academia.

The 3D reconstruction methods surveyed above are applicable to general objects. To

enhance reconstruction quality, focusing on specific types of objects is a good idea. In

this thesis, we focus on the reconstruction of 3D faces, which enables us to use some facial

features such as the symmetry and the outlines of parts of the face.

Using a single or a several images, Choi et al. (2010) reconstructed 3D facial shapes by

warping a generic 3D face model to match facial feature points in the images. A generic 3D

face is often used based on the assumption that human faces are alike. Furthermore, if we

use the generic face models based on gender and race, the reconstruction quality improves

(Kaoru et al., 1995). Structure from Motion (SfM) is also a well-known algorithm to

reconstruct faces. Several cameras or one moving camera are used to track feature points

in the images captured by those cameras (Lee et al., 2011).

Deep learning methods are also used for 3D facial reconstruction. GANs and Con-

volutional Neural Networks (CNNs) are often used for 3D facial reconstruction (Gecer

et al., 2019). However, most of the results cannot express facial details, such as wrinkles.

Futhermore, training GANs is time consuming, and the robustness is low especially for in-

the-wild facial images. Recently, Feng et al. (2021) proposed DECA (Detailed Expression

Capture and Animation) to reconstruct facial shape with individual features. The detailed

models are reconstructed based on FLAME (Li et al., 2017) geometry, a statistical 3D

model that is composed of linear identity shape and expression spaces. This method can

produce a displacement map that represents individual wrinkles and expressions after

training. The latest version, MICA (MetrIC fAce) by Zielonka et al. (2022), has produced

good results by inputting a sequence of face images. These methods can generate accurate

3D faces, but the quality of the output shape depends on the resolution of the input

images. If the resolution of the input image is too low, this algorithm will not generate

an accurate shape.
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2.3 Evaluation Metrics

Many methods are used to evaluate the difference or the degradation of an image. One of

the most popular is Mean Square Error (MSE), which can be calculated by averaging the

squared difference of each pixel value between an original image and a processed image.

MSE is often used to evaluate the quality of SR (Vandewalle, 2006) and it is also used as

a loss function in an SR network (Dong et al., 2015).

Another metric for evaluating images is Signal to Noise Ratio (SNR), the ratio between

an original image and the undesired noise in the processed image. This method is also

used in the image processing area (Chen et al., 2012). Peak SNR (PSNR) measures the

ratio between the maximum possible power of a signal and the noise deteriorating the

signal. When the PSNR is high, the degradation of the image is small, and vice versa.

PSNR is widely used as a metric for objective evaluation because it is generally highly

correlated with subjective evaluations of image quality (Fardo et al., 2016; Anbarjafari

and Demirel, 2010).

Sometimes, PSNR is inconsistent with subjective evaluation. Structural SIMilarity

(SSIM) has been proposed for images for which PSNR is inappropriate. PSNR focuses

on the perceptual sensitivity, whereas SSIM focuses on the degree of similarity of image

structures. SSIM’s evaluation formula is more complex than PSNR’s and has some

parameters. Therefore, PSNR and SSIM are used in a case-dependent manner (Hore and

Ziou, 2010).

Finally, as a metric to evaluate the difference between two shapes, Hausdorff Distance

(HD) is the most widely used (Unan et al., 2019). Mathematically, HD can represent the

distance between two sets by calculating the maximum distance of a point in one set to

the nearest point in the other set. In other words, any point in a set can reach one of the

points in the other set by moving at most the HD.
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CHAPTER 3

Methodology

In this chapter, we will introduce how we reconstruct accurate 3D facial shapes from a

low-resolution image.

Figure 3.1 presents an overview of our architecture. First, a low-resolution image

is input to the Super-Resolution (SR) network. Here, we show a low-resolution facial

image of a sports player as input. The images of sport scenes might be captured as a

sequence, but if one of the images is out of focus, the remaining images in the sequence

will also be out of focus. We will not acquire any high-resolution information from the

sequence. In this case, it is difficult to use a reconstruction-based SR method as described

in Chapter 2.1. Therefore, we use a leaning-based SR method in our architecture.

Considering the stability of the training and the quality of the outputs, we selected

SR3 proposed by Saharia et al. (2022). Unlike GAN-based methods, which can generate

high-quality SR outputs, but known to suffer from an unstable learning process, SR3 is

Figure 3.1: Overview of Our Architecture
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stable and features the Diffusion Model along with a U-Net architecture. However, the

randomness inherent to the Diffusion Model changes the output quality of SR3 each time

it is invoked on the same input. To tackle this problem, we select the best among multiple

SR3 outputs by assessing both the noise level of the SR outputs and the quality of the

facial shapes from a Facial Reconstruction (FR) network. That is to say, we generate

multiple SR images using SR3, and have the FR network output the corresponding facial

shape for each image, and we then select the best pair.

We reviewed FR methods in Section 2.2. Considering the fact that we input a single

still facial image per one facial shape, we selected DECA (Detailed Expression Capture

and Animation) proposed by Feng et al. (2021). However, DECA needs a clear image

to reconstruct a detailed 3D facial shape. Therefore, we input multiple SR images to

DECA and acquire multiple facial shapes. Some of the SR images could have strong noise

or some poor facial features. We therefore choose the best pair of an SR image and the

corresponding FR output based on the quality of the SR, which could have some noise,

and the FR, which could fail to adequately reconstruct parts of the face.

Finally, in the process of Pair Selection in Figure 3.1, we choose the best pair from

the SR and FR outputs. As discussed in Section 2.3, many metrics have been proposed

to evaluate the quality of images and shapes. As an evaluation indicator for SR images

we use PSNR because generally PSNR can evaluate the degradation of images well and

it is highly correlated with subjective evaluation. As an indicator to evaluate the FR

outputs, we use Hausdorff Distance (HD), which can represent the distance between two

sets. We calculate PSNRs between an SR output and the other SR outputs one by one,

and average the PSNRs. For all of the SR outputs, we calculate averaged PSNRs. We

also calcualte HD for all of the FR outputs. Ultimately, we estimate scores for all the

PSNR and HD pairs, and select the pair with the best score. In this way, our architecture

can generate a high-quality SR image and the corresponding facial shape.
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Figure 3.2: Overview of Diffusion Process (from the paper by Saharia et al. (2022))

3.1 Super Resolution

In this section, we introduce the key components of SR3: the Diffusion Model (DM) and

the U-Net.

3.1.1 Diffusion Model

The DM assumes that the original signal should become pure Gaussian noise by gradually

adding noise to it. Modeling the inverse process of becoming pure noise is an avenue to

generating an SR image from a noisy image.

Figure 3.2 shows an overview of diffusion process. The DM starts from pure noise yT

and in T noise removing steps can generate the image y0. To remove the noise, the DM

should know how the noise was added to the original image. The noise adding process is

called forward diffusion, and the noise removing process is called reverse diffusion.

The forward diffusion process adds Gaussian noise to a state yt−1 and transitions the

state to yt. If the intensity of the noise is βt, this process can be described as

q(yt|yt−1) = N (yt;
√
1− βtyt−1, βtI), (3.1)

and

q(y1:T |y0) =
T∏
t=1

q(yt|yt−1). (3.2)

These equations mean that an arbitrary state yt at step t can be expressed using yt−1.

Thus, we iterate this transition t’s time and can express yt by the initial state y0. Letting
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αt = 1− βt, αt = Πt
i=1αi, and z ∼ N (0, I), we obtain

yt =
√
αtyt−1 +

√
1− αtzt−1

=
√
αtαt−1yt−2 +

√
1− αtαt−1zt−2

=
√
αty0 +

√
1− αtz (3.3)

q(yt|y0) = N (yt;
√
αty0, (1− αt)I). (3.4)

The reverse diffusion process can be defined as q(yt−1|yt). When βt is sufficiently

small, q(yt−1|yt) follows a Gaussian distribution. This can be approximated by a neural

network pθ parameterized by θ.

pθ(x0:T ) = p(yT )
T∏
t=1

pθ(yt−1|yt), (3.5)

pθ(yt−1|yt) = N (yt−1;µθ(yt, t)
∑
θ

(yt, t)). (3.6)

To handle q(yt−1|yt) easily, we condition it by y0. Assuming that q(yt−1|yt,y0) also

follows a Gaussian distribution, the average µ and variance σ2 are expressed as follows:

q(yt−1|y0,yt) = N (yt−1|µ, σ2I), (3.7)

µ =

√
αt−1βt

1− αt

y0 +

√
αt(1− αt−1)

1− αt

yt, (3.8)

σ2 =
(1− αt−1)βt

1− αt

. (3.9)

Considering the above equations, given the noise vector ϵ and a source image x, where

ϵ ∼ N (0, I), f ∈ {1, 2}, and α ∼ f(α), we can set the objective function of our neural

network as follows:

E(x,y)E(ϵ,α)
∥∥∥pθ(x,√αy0 +

√
1− αϵ, α)− ϵ

∥∥∥f

f
(3.10)

To generate SR images, we used a neural network trained on the Flickr-Faces-HQ
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Figure 3.3: The architecture of U-Net (from the paper by Ronneberger et al. (2015))

(FFHQ) dataset (Karras et al., 2019).

3.1.2 U-Net

The U-net (Ronneberger et al., 2015) was first proposed as a model for semantic segmen-

tation in the biomedical imaging field. We show the overview of the original U-Net in

Figure 3.3, whose encoder-decoder architecture takes the shape of the letter ”U.”

The encoder convolves and down-samples the input image several times, extracting

feature maps of the image at multiple scales. A model such as ResNet, which is often

used in the image processing area, can be used. The decoder deconvolves the feature

maps and up-samples them. Simply up-sampling makes it difficult to accurately detect

the positions of objects. Therefore, U-Net combines the feature maps in the encoder with

the feature maps in the decoder, as represented by the gray arrows in Figure 3.3. In this

way, the information of the feature map in the encoder can be conveyed to the decoder,

which makes detecting object positions easy when up-sampling. The output of the U-net
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is a segmentation probability map of the same size as the input image.

After U-Net was introduced, many variants were proposed. SR3’s U-Net is similar to

the structure used for the Denoising Diffusion Probabilistic Model (DDPM) proposed by

Ho et al. (2020). SR3 made some changes to DDPM’s U-Net. For example, Saharia et al.

(2022) replaced the DDPM residual blocks with BigGAN’s residual blocks, and changed

the skip connections. Following the work by Saharia et al. (2022), we use

f(α) =
T∑
t=1

1

T
U(αt−1, αt) (3.11)

for a distribution α. We also set T = 2000 in a time step t ∼ {0..T}, along with

α ∼ U(αt−1, αt).

3.2 Facial Reconstruction

DECA (Feng et al., 2021), which we use in our architecture to reconstruct 3D facial

shapes from SR images, is characterized as a technique that divides facial parameters into

general expression ones and individual detailed ones. By changing the general expression

parameters, DECA changes the expression of the individual face while keeping person-

specific features like wrinkles. Here, we do not use the animation component of DECA,

but we use the reconstruction from a single facial image component.

Figure 3.4 shows an overview of DECA. The left box illustrates the training part of

DECA and the right box illustrates the application part.

A facial image is input to two encoders. Encoder Ec infers general expression parame-

ters, such as camera parameters, albedo, lighting, a shape, a pose, and a facial expression.

By extracting these parameters, DECA generates a rough shape, and minimizes the loss

between the rendered rough shape Ir and the input image. As for loss functions, landmark

re-projection loss, eye closure loss, photometric loss, identity loss, and shape consistency

loss are used. Encoder Ed extracts individual detail parameters. Both of the parameters

extracted by Ec and Ed are integrated and the detailed shape is generated. Subsequently,
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Figure 3.4: Overview of DECA (from the paper by Feng et al. (2021))

DECA minimizes the loss between the rendered detail shape I ′r and the input image.

The training of DECA was completed using three publicly available datasets: VGGFace2

(Cao et al., 2018), BUPT-Balancedface (Wang et al., 2019), and VoxCeleb2 (Chung et al.,

2018).

As shown in Figure 3.4, DECA can generate a detailed facial shape from a single input

image. The network can generate a facial animation by changing the general expression

parameters extracted by Ec, but we do not use this facility.

3.3 Pair Selection

After we generate multiple SR images from our SR network and FR shapes from our FR

network, we choose the best pair from them. First, we evaluate the SR images based on

PSNR, as follows:

PSNR = 10 log
MAX2

I

e2
, (3.12)

with e2 =
1

wh

w−1∑
i=0

h−1∑
j=0

|X(i, j)− Y (i, j)|2 , (3.13)

where the original image is X, the processed image is Y , the height of the image is h, the

width of the image is w, and the max pixel value is MAXI .
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We calculate PSNRs between an SR output and the other n SR outputs one by one

and average the PSNRs as follows:

PSNRt =
1

n− 1

n∑
k=1,k ̸=t

10 log
MAX2

I

e2k
, (3.14)

with e2k =
1

wh

w−1∑
i=0

h−1∑
j=0

|Xt(i, j)− Yk(i, j)|2 , (3.15)

where t indexes the target SR output.

Next, we calculate the averaged Hausdorff Distance (HD) for each FR shape. The HD

for two different two shapes X and Y is formulated as follows:

d(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (3.16)

where x and y denote points of shapes X and Y , respectively. As stated in Section 2.3,

the HD represents the distance between two shapes by calculating the maximum distance

of a set to the nearest point in the other set. Here, we use a part of the HD calculation

to compute the Root Mean Squared (RMS) of the distance from points on one mesh to

the ones on the target mesh. We refer to this RMS as RMSHD, and write it as follows:

HDt(X, Y ) =
1

n− 1

n∑
k=1,k ̸=t

RMSHD(Xt, Yk), (3.17)

with RMSHD(X, Yk) =

√
1

n(X)

∑
x∈X

( inf
y∈Yk

d(x, y))2, (3.18)

where n is the total number of the FR outputs and the index of the target FR output is t.

Finally, we calculate the score for each pair as follows:

St = α
PSNRt

max
k∈n

{PSNRk}
+ β

min
k∈n

{HDk}

HDt

, (3.19)

where the weight for the SR outputs is α and that for the FR outputs is β. We used
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α = 0.5, β = 0.5. We then select the best pair as Pb where

b = argmax
k∈n

{Sk}. (3.20)
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CHAPTER 4

Results

In this chapter, we apply our method to low-resolution images and confirm that it can

super-resolve those images and generate 3D facial shapes. First, we conduct an experiment

that demonstrates the validity of our method. In this experiment, we use 3D facial data

that were captured by a 3D face scanner. These scanned data were edited by a modeling

artist to enhance the quality of the shapes. We set these data as target shapes for our

method and calculate the difference between them and the shape generated by our method.

Second, we conduct an experiment to show that our method can be applied to various

sports scenes, specifically low resolution photos of baseball, basketball, rugby, and soccer

action.

4.1 Objective Evaluation

4.1.1 Reconstructing the Front of a Male Face

To evaluate our method objectively, initially we must prepare target data to be recon-

structed. Our method super-resolves a low-resolution and generates a 3D facial shape

from it. Therefore, for the target data, we need a pair of a low-resolution image and

the corresponding facial shape. We also require knowledge of the viewpoint and view

direction of the camera that acquired the low resolution image in order to calculate the

difference between the original facial shape and a generated one. Generally, this kind of

dataset is difficult to obtain.

There are some databases that include hundreds of pairs of facial images and corre-

sponding 3D facial shapes, but those images are at a high resolution. Even if we made
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(a) Camera, Face, and Background (b) Close-Up View of Face and Background

Figure 4.1: Virtual 3D Scene for Facial Image Rendering

the resolution lower by some filter, it would be somewhat artificial.

To overcome the problem, we use facial data that was captured by a 3D scanner. We

downloaded 3D facial shapes from Turbosquid,1 in which a great number of 3D shapes

can be purchased.

The first target shape is that of a smiling man called “Mike.” We first set the Mike

shape in a 3D space and set up a virtual camera that renders an image. Figure 4.1

shows the virtual scene. Using Maya,2 a popular modeling/animation/rendering software

package widely used in the gaming and movie industries, we determined the position

and the view direction of the virtual camera to render frontal images of the Mike face in

64× 64 pixel resolution as is appropriate for our application (Figure 4.1a). Figure 4.1b

shows a close-up view of the target 3D facial shape in front of a background.

A trimmed 64× 64 facial image is shown in Figure 4.2a. Next, we simulate the blur

that is not uncommon in sports images by applying to this image a 3-pixel sized Gaussian

Filter,

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
, (4.1)

1See https://www.turbosquid.com/

2See https://www.autodesk.com/products/maya/
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(a) Trimmed 64× 64 Image (b) Gaussian-Filtered Image

Figure 4.2: Processing the Mike Image

Table 4.1: PSNRs of SR outputs

ImageNum 1 2 3 4 5 6 7 8 9 10

PSNR [dB] 24.1 23.1 21.6 17.1 18.8 22.8 24.3 22.1 24.0 24.2

with σ = 0.6. The blurred image is shown in Figure 4.2b.

The blurred image is input to our SR network. As discussed in Chapter 3, we generate

multiple images from our SR network. In this experiment we set the number of image

outputs to nSR = 10. We show the results from our Super-Resolution (SR) network in

Figure 4.3. Some outputs have heavy noise that will deteriorate the quality of the rendered

image and make it difficult for our 3D Facial Reconstruction (FR) network to detect the

feature points in the face. Some outputs have indistinct facial parts that will lead to

failure in the corresponding 3D shape generation. To detect heavy noise in SR outputs,

we use PSNR as a metric, as discussed in Chapter 3. We calculate the PSNR between

pairs of output images, and we continue this process for all of the outputs. Subsequently,

we average the PSNRs for each output.

We show the results of averaged PSNRs in Table 4.1. The averaged PSNR is worse in

Image 4 and Image 5. They appear very noisy, which indicates that PSNR can measure

the noise level of the SR outputs.
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Figure 4.3: Outputs From the SR network

Table 4.2: Hausdorff Distances of FR outputs

ShapeNum 1 2 3 4 5 6 7 8 9 10

RMSHD [mm] 1.09 1.20 1.35 1.87 1.32 1.00 1.42 1.10 1.26 1.26

After calculating the PSNRs, we input the SR outputs to our FR network. Figure 4.4

shows reconstructed facial shapes. Even though those shapes look similar, the distance

between two shapes shows that the outputs from our FR network differ depending on

the quality of the SR outputs. To calculate the differences between FR outputs, we

used Hausdorff Distance as a metric, per equations (3.17) and (3.18). We calculated the

Root Mean Squared of Hausdorff Distance (RMSHD) between one output shape and the

other output shapes, one by one, and we continued this process for all of the outputs.

Subsequently, we averaged the RMSHDs for each output. We show the averaged RMSHD

results in Table 4.2.

Finally, we selected the best pair from SR and FR outputs by using the averaged
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Figure 4.4: Outputs From the FR network

Table 4.3: Final Scores

ShapeNum 1 2 3 4 5 6 7 8 9 10

Score 0.96 0.90 0.82 0.62 0.77 0.97 0.95 0.92 0.89 0.90

PSNRs and Hausdorff Distances. According to (3.19), the final scores were calculated as

shown in Table 4.3. Considering the results in the table, Image 6 and Shape 6 are the

best pair, and Image 4 and Shape 4 are the worst pair.

Using heat maps, we show in Figure 4.5 the RMSHD between our best output and

the original target shape, between our worst output and the original target shape, and

between our output without SR and the original target shape. This clearly shows that

our method can reconstruct the front of the face accurately from a low resolution image

compared to reconstructing the face without SR. This heat map also shows that even

if we used SR before FR, the output from FR might be worse than a result generated
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Figure 4.5: Comparison of Shape Differences

Figure 4.6: Rendered Frontal Images of a Male Face

without SR. Therefore, it appears beneficial that we generate multiple pairs of SR images

and corresponding 3D facial shapes and select the best pair among them. Notably, our

method can reduce the error values around the cheek and eyes dramatically.

Finally, in Figure 4.6 we show renderings from the above three FR shapes and SR

images. The image rendered from the best image-shape pair is more vivid than the one

generated without SR and not noisy compared to the worst one. The best one can express

the details of the face, and the direction of the face matches that of the original face in

our 3D space.
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Table 4.4: Averaged PSNRs of Male Face Profile

ImageNum 1 2 3 4 5 6 7 8 9 10

PSNR [dB] 29.1 29.2 27.2 21.6 24.0 28.0 27.6 28.7 27.4 28.6

Table 4.5: Averaged RMSHDs of Male Face Profile

ShapeNum 1 2 3 4 5 6 7 8 9 10

RMSHD [mm] 0.529 0.614 1.08 0.644 0.646 0.537 0.756 0.508 0.651 0.907

Table 4.6: Final Scores of Male Face Profile

ShapeNum 1 2 3 4 5 6 7 8 9 10

Score 0.988 0.830 0.795 0.756 0.813 0.957 0.865 0.990 0.892 0.854

4.1.2 Other Cases

We also applied our method to other cases. First, using the 3D Mike model we rendered

an image from a different camera viewpoint. Setting the target face as the center of

rotation, we rotated the camera by 30 degrees horizontally. We then applied our method

to the rendered profile image and obtained the SR and FR outputs. We selected the best

pair from them and compared the RMSHD.

We show an original blurred image and SR outputs in Figure 4.7. We also calculated

averaged PSNRs (Table 4.4). The corresponding FR outputs are shown in Figure 4.8

and averaged RMSHDs are shown in Table 4.5. Then, we calculated the final scores

(Table 4.6). Based on the final scores, we selected Image 8 and Shape 8 as the best

pair. Using heat maps in Figure 4.9, we show the RMSHD between our best output and

the original target shape, between our worst output and the original target shape, and

between our output without SR and the original target shape. Finally, Figure 4.10 shows

the rendered images.

As we discussed in Chapter 4.1.1, worse averaged PSNRs indicate heavy noise in an

SR image. For example, the averaged PSNR is the worst for Image 4 in Table 4.4. As

expected, Image 4 is very noisy, which indicates that PSNR can measure the noise level
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Figure 4.7: Original Image and SR Outputs of Male Face Profile

Figure 4.8: FR Outputs of Male Face Profile
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Figure 4.9: Comparison of Shape Differences of Male Face Profile

Figure 4.10: Rendered Profile Images of a Male Face

of the SR outputs in this experiment.

The FR output shapes also look similar in this experiment, but the RMSHD between

two shapes shows the difference of the outputs from our FR network. For instance, in

Table 4.5, the RMSHDs of Shape 3 and Shape 10 are larger than the others, which means

that these two shapes differ most as facial shapes.

Regarding the heat maps in Figure 4.9, the best pair, Image 8 and Shape 8, which

were selected based on the final score, has a smaller RMSHD compared to the worst one

and the one generated without SR. Figure 4.10 also shows that the image and the shape

that were selected by our method can be rendered with a noiseless texture and facial

details. As described above, even though we change the viewpoint and direction of the
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Table 4.7: Averaged PSNRs of Female Face Front

ImageNum 1 2 3 4 5 6 7 8 9 10

PSNR [dB] 26.6 26.4 16.6 25.4 25.5 26.9 25.0 24.7 14.3 27.0

Table 4.8: Averaged RMSHDs of Female Face Front

ShapeNum 1 2 3 4 5 6 7 8 9 10

RMSHD [mm] 2.1 2.2 1.7 1.5 1.6 1.6 1.5 1.7 1.0 1.5

Table 4.9: Final Scores of Female Face Front

ShapeNum 1 2 3 4 5 6 7 8 9 10

Score 0.86 0.84 0.75 0.97 0.95 0.96 0.96 0.91 0.34 0.99

Table 4.10: Averaged PSNRs of Female Face Profile

ImageNum 1 2 3 4 5 6 7 8 9 10

PSNR [dB] 25.7 22.7 27.6 26.0 24.6 19.2 27.0 26.7 25.7 27.5

Table 4.11: Averaged RMSHDs of Female Face Profile

ShapeNum 1 2 3 4 5 6 7 8 9 10

RMSHD [mm] 1.0 0.9 1.2 0.9 1.0 2.0 1.0 0.9 1.0 1.0

Table 4.12: Final Scores of Female Face Profile

ShapeNum 1 2 3 4 5 6 7 8 9 10

Score 0.92 0.90 0.87 0.97 0.86 0.53 0.89 0.95 0.81 0.82

virtual camera, our method can generate a more accurate facial shape and a high-quality

rendered image than can be generated without SR outputs.

We also applied our method to frontal and left side views of a woman’s face. For the

frontal view, we tabulate the averaged PSNRs in Table 4.7, the averaged RMSHDs in

Table 4.8, and the final scores in Table 4.9. For the side view, we tabulate the averaged

PSNRs in Table 4.10, the averaged RMSHDs in Table 4.11, and the final scores in

Table 4.12. Figure 4.11 shows the heat maps for the frontal view and Figure 4.12 shows

them for the left side view. The heat maps indicate that our method can generate accurate
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Figure 4.11: Comparison of Shape Differences of Female Face Front

Figure 4.12: Comparison of Shape Differences of Female Face Profile
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Figure 4.13: Baseball Scene

facial shapes from the best pair of SR and FR outputs for both views of the woman’s face.

Considering the numerical analyses above, we conclude that our method can generate

more accurate facial shapes from low resolution images than can be generated without

the benefit of SR.

4.2 Application to Sports Scenes

In this section, we apply our method to various kinds of sports scenes.

In Figure 4.13, we show the result when applying our method to a baseball scene. In

this context, we can see that our method is effective and can select a good pair from SR

outputs and FR outputs. The original low-resolution image includes a baseball helmet,

but the SR network works. Looking at the rendered image, even though the direction of

the face is a bit different from the original one, the sharpness and the detail of the face

are well expressed.
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Figure 4.14: Basketball Scene

In Figure 4.14, we show the result when applying our architecture to a basketball

scene. Looking at the rendered image, the direction of the face is nearly the same as the

original one. The low resolution picture includes a lot of noise, but the SR network works

to some extent.

In Figure 4.15, we show the result when applying our architecture to a rugby scene.

A low-resolution face image is well super-resolved by our SR network. Looking at the

rendered image, the direction of the face is nearly the same as the original and the facial

parts are well reconstructed by our FR network.

Finally, in Figure 4.16, we show the result when applying our architecture to a soccer

scene. An original low-resolution facial image is super-resolved well by our SR network.

As for the rendered image, generally, the facial parts are well reconstructed, but there is

a lack of expression around the eyes.

We conclude that our method can be applied to various kinds of sports scenes. We
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Figure 4.15: Rugby Scene

Figure 4.16: Soccer Scene
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can generate detailed facial shapes and a good-quality rendered images based on the

combination of our SR and FR networks and the selection of the best pairs from the

outputs of these networks.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we addressed the problem of reconstructing textured 3D models of human

faces from within sports action images. Anticipated future application of this technology

is in unconstrained-viewpoint observation of sports action. To this end, we proposed

a deep-learning-based architecture and method that combines a Super-Resolution (SR)

network and a 3D Facial Reconstruction (FR) network. We have shown that our method

can generate accurate 3D facial shapes and good-quality rendering images even though

the input image resolution is not high enough to be usable by previous 3D reconstruction

networks.

Our method also tackles the problem that the output SR images are not stable because

of the non-determinism of SR networks. The output SR image is often noisy and suffers

some indistinct facial features, which undermines 3D facial shape reconstruction. If the

output SR image is noisy, when it is used as a facial texture by the rendering algorithm, the

rendered image will also be noisy. Therefore, we generate multiple pairs of SR images and

corresponding facial shapes, and select the best pair based on analysis of the noise-level

difference among SR images and the distance among the generated shapes.

We also showed the validity of our method by numerically comparing the results that

it generates against those generated without SR. If we do not use an SR method before

3D facial reconstruction, the quality of the facial shapes declines.
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5.2 Future Work

We weighted the noise level and shape distance equally, and that sufficed to select good

pairs, but image resolution and noise can influence weight selection, and modification of

the weights could improve our results. For instance, if the noise in an input image is too

high, it might be difficult to use a noise level as a dependable indicator. In this case, we

should lower the weight for the noise level and raise the weight for the distance.

Another direction of future research would be to improve our SR network or to remove

improper inputs for our SR network. For example, as shown in Chapter 4, some input

images are not well super-resolved when the facial parts in them are undetectable. To

tackle this problem, we should change our SR network or construct different databases that

include facial images at different resolutions with corresponding facial shapes. Considering

a real-world application, we might have to decide what are proper inputs and remove

improper ones before our network processes them.

Finally, we would like to enable our network to learn end-to-end. We now use different

datasets when training our SR network and our FR network. In the future, we should use

a single training database of images at low resolution with corresponding facial shapes.

We currently select a good pair by using the information of generated facial shapes.

Accordingly, we believe that training SR parameters based on shape information could

improve the quality of SR images as well as the shapes based on those SR images.

36



REFERENCES

Anbarjafari, G. and Demirel, H. (2010). Image super resolution based on interpolation
of wavelet domain high frequency subbands and the spatial domain input image. ETRI
Journal, 32(3):390–394. 10

Baker, S. and Kanade, T. (2002). Limits on super-resolution and how to break them.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1167–1183. 6

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. (2018). Vggface2: A
dataset for recognising faces across pose and age. In 2018 13th IEEE International
Conference on Automatic face & Gesture Recognition (FG 2018), pages 67–74. IEEE.
17

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al. (2015). Shapenet: An information-rich 3D model
repository. arXiv preprint arXiv:1512.03012. 8

Chen, Y., Ji, Y., Zhou, J., Chen, X., and Shen, W. (2012). Computation of signal-
to-noise ratio of airborne hyperspectral imaging spectrometer. In 2012 International
Conference on Systems and Informatics (ICSAI2012), pages 1046–1049. IEEE. 10

Choi, J., Medioni, G., Lin, Y., Silva, L., Regina, O., Pamplona, M., and Faltemier,
T. C. (2010). 3d face reconstruction using a single or multiple views. In 2010 20th
International Conference on Pattern Recognition, pages 3959–3962. 9

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S. (2016). 3D-R2N2: A unified
approach for single and multi-view 3d object reconstruction. In European Conference
on Computer Vision, pages 628–644. Springer. 8

Chung, J. S., Nagrani, A., and Zisserman, A. (2018). Voxceleb2: Deep speaker
recognition. arXiv preprint arXiv:1806.05622. 17

Dong, C., Loy, C. C., He, K., and Tang, X. (2015). Image super-resolution using
deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(2):295–307. 10

Elad, M. and Feuer, A. (1999). Super-resolution reconstruction of image sequences.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9):817–834. 6

Fardo, F. A., Conforto, V. H., de Oliveira, F. C., and Rodrigues, P. S. (2016). A
formal evaluation of psnr as quality measurement parameter for image segmentation
algorithms. arXiv preprint arXiv:1605.07116. 10

Farsiu, S., Robinson, M. D., Elad, M., and Milanfar, P. (2004). Fast and robust
multiframe super resolution. IEEE Transactions on Image Processing, 13(10):1327–
1344. 6

37



Feng, Y., Feng, H., Black, M. J., and Bolkart, T. (2021). Learning an animatable
detailed 3d face model from in-the-wild images. ACM Transactions on Graphics (ToG),
40(4):1–13. 9, 12, 16, 17

Gecer, B., Ploumpis, S., Kotsia, I., and Zafeiriou, S. (2019). GANFIT: Generative
adversarial network fitting for high fidelity 3D face reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1155–1164.
9

Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.
Cambridge University Press. 7

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840–6851. 16

Hore, A. and Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. In 20th
International Conference on Pattern Recognition, pages 2366–2369. IEEE. 10

Kang, S. B., Szeliski, R., and Chai, J. (2001). Handling occlusions in dense multi-view
stereo. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2001), volume 1, pages I–I. IEEE. 8

Kaoru, I., lchikawa Ryoichi, Masabumi, N., and Jeorge, K. (1995). Sex differences
in the shapes of several parts of the young japanese face. Applied Human Science :
Journal of Physiological Anthropology, 14(4):191–194. 9

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4401–4410. 15

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.,
Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4681–4690. 6

Lee, S. J., Park, K. R., and Kim, J. (2011). A SfM-based 3D face reconstruction method
robust to self-occlusion by using a shape conversion matrix. Pattern Recognition,
44(7):1470–1486. 9

Li, T., Bolkart, T., Black, M. J., Li, H., and Romero, J. (2017). Learning a model of
facial shape and expression from 4D scans. ACM Transactions on Graphics, (Proc.
SIGGRAPH Asia), 36(6):194:1–194:17. 9

Lu, K., Wang, Z., and Li, X. (2011). Online 3D presentation system for goods. In
IET International Communication Conference on Wireless Mobile and Computing
(CCWMC 2011), pages 500–502. 7

Matsuo, Y. and Sakaida, S. (2017). Super-resolution for 2K/8K television using wavelet-
based image registration. In 2017 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pages 378–382. IEEE. 5

38



Mohamad, B., Yaakob, S., A. Raof, R. A., Nazren, A., and Nasrudin, M. W. (2017).
An analysis of performance for commonly used interpolation method. Advanced Science
Letters, 23(6):5147–5150. 5

Orteu, J.-J., Garric, V., and Devy, M. (1997). Camera calibration for 3D reconstruction:
Application to the measure of 3D deformations on sheet metal parts. In Conference
on Vision Systems – Algorithms, Methods, Components, and Applications of Lasers,
Optics and Vision in Manufacturing, page 12 p., Munich, Germany. 8

Pontes, J. K., Kong, C., Sridharan, S., Lucey, S., Eriksson, A., and Fookes, C. (2018).
Image2mesh: A learning framework for single image 3D reconstruction. In Asian
Conference on Computer Vision, pages 365–381. Springer. 8

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 234–241. Springer. 7, 15

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., and Norouzi, M. (2022).
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 7, 11, 13, 16

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep un-
supervised learning using nonequilibrium thermodynamics. In International Conference
on Machine Learning, pages 2256–2265. PMLR. 7

Strecha, C., Fransens, R., and Van Gool, L. (2006). Combined depth and outlier
estimation in multi-view stereo. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pages 2394–2401. IEEE. 8

Unan, M., An, J., Seimenis, I., Shah, D. J., and Tsekos, N. V. (2019). 3D reconstruction
of tubular structure using radially deployed projections. In 2019 IEEE Conference on
Multimedia Information Processing and Retrieval (MIPR), pages 322–327. 10

Vandewalle, P. (2006). Super-resolution from unregistered aliased images. PhD thesis,
EPFL, Lausanne, Switzerland. 10

Vladimirov, I., Nikolova, D., and Terneva, Z. (2021). Overview of methods for 3D
reconstruction of human models with applications in fashion e-commerce. In 2021
56th International Scientific Conference on Information, Communication and Energy
Systems and Technologies (ICEST), pages 19–22. 7

Wang, M., Deng, W., Hu, J., Tao, X., and Huang, Y. (2019). Racial faces in the wild:
Reducing racial bias by information maximization adaptation network. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 692–702. 17

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G. (2018a). Pixel2Mesh:
Generating 3D mesh models from single RGB images. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 52–67. 8

39



Wang, X., Xie, L., Dong, C., and Shan, Y. (2021). Real-ESRGAN: Training real-world
blind super-resolution with pure synthetic data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1905–1914. 6

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., and Change Loy, C.
(2018b). ESRGAN: Enhanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vision (ECCV) workshops, pages
0–0. 6

Zhang, L., Zhang, H., Shen, H., and Li, P. (2010). A super-resolution reconstruction
algorithm for surveillance images. Signal Processing, 90(3):848–859. 6

Zielonka, W., Bolkart, T., and Thies, J. (2022). Towards metrical reconstruction of
human faces. European Conference on Computer Vision. 9

40


	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Overview

	2 Related Work
	2.1 Super Resolution
	2.2 3D Reconstruction
	2.3 Evaluation Metrics

	3 Methodology
	3.1 Super Resolution
	3.1.1 Diffusion Model
	3.1.2 U-Net

	3.2 Facial Reconstruction
	3.3 Pair Selection

	4 Results
	4.1 Objective Evaluation
	4.1.1 Reconstructing the Front of a Male Face
	4.1.2 Other Cases

	4.2 Application to Sports Scenes

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	References

