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The transfer of facial expressions from people to 3D face models is a classic computer

graphics problem. In this paper, we present a novel, learning-based approach to transfer-

ring facial expressions and head movements from images and videos to a biomechanical

model of the face-head-neck musculoskeletal complex. Specifically, leveraging the Facial

Action Coding System (FACS) as an intermediate representation of the expression space,

we train a deep neural network to take in FACS Action Units (AUs) and output suitable

facial muscle and jaw activations for the biomechanical model. Through biomechani-

cal simulation, the activations deform the face, thereby transferring the expression to

the model. Our approach has advantages over previous approaches. First, the facial

expressions are anatomically consistent as our biomechanical model emulates the relevant

anatomy of the head, neck, and face. Second, by training the neural network using data

generated from the biomechanical model itself, we eliminate the manual effort of data

collection for expression transfer. The success of our approach is demonstrated through

experiments involving the transfer of a range of expressive facial images and videos onto

our biomechanical face-head-neck model.
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CHAPTER 1

Introduction

Biomechanical human musculoskeletal models aim to realistically capture the anatomy

and physics underlying human motion generation. Much of the research in this domain of

computer animation has focused on modeling the body (e.g., (Lee et al., 2009), (Si et al.,

2014), (Rajagopal et al., 2016), (Lee et al., 2019)). Only a few such models have focused

on simulating the human face (e.g., (Lee et al., 1995),(Sagar et al., 2014)). These have

succeeded in realistically emulating facial expression generation; however, they require

significant effort in parameter setting and tuning to produce realistic results.

In this thesis, we show how to endow a biomechanical, musculoskeletal model of

the human face with the ability to perform facial expressions by machine learning from

real-world reference images and videos (Figure 1.1). To this end, we introduce a deep-

neural-network-based method for learning the representation of human facial expressions

through Ekman’s Facial Action Coding System (FACS) (Cohn et al., 2007) in the context

of the muscle actuators that drive the musculoskeletal face model. We furthermore

augment the face animation system with a musculoskeletal cervicocephalic (neck-head)

system to animate head movement during facial expression synthesis.

Figure 1.1: Our deep learning framework transfers facial expression and head pose from a
real human image or video to a biomechanical face-head-neck model.
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Figure 1.2: Components of the expression and head pose controller (left) and the overall
structure of our expression and head pose transfer framework (right). The expression
learning neural network (yellow) is first trained offline. In a transfer task, an image or
a video sequence of a real face is fed into the online transfer module of the expression
and pose controller to output the desired facial muscle activations and head orientation
information. The obtained muscle activations are input to the biomechanical face model
(orange) to perform the corresponding expression. The head orientation is provided to the
head-neck biomechanical neuromuscular system (green) to produce the desired head pose.

1.1 Contributions

The novelty of our framework lies in the following features:

• We propose the first biomechanical face-head-neck animation system that is capable

of learning to reproduce expressions and head orientations through neuromuscular

control.

• Our novel deep neuromuscular motor controller learns to map between FACS Action

Units (AUs) extracted from human facial images and videos and the activations of

the muscle actuators that drive the biomechanical system.

• As a proof of concept, we demonstrate an automated processing pipeline (Figure 1.2)

for animating expressions and head poses using an improved version of the physics-

based face-head-neck animation system developed by Lee and Terzopoulos (2006),

but which can potentially be applied to any physics-based, muscle-driven model.
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1.2 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 reviews the relevant background literature and related work on biomechanical

musculoskeletal modeling in computer graphics, expression representation and transfer,

and muscle-based facial animation.

Chapter 3 and Appendix A present the details of our muscle-actuated biomechanical

model of the face and its associated control mechanisms.

Chapter 4 develops our novel expression transfer pipeline, including its network archi-

tecture, training data generation, network training, and expression transfer components.

Chapter 5 presents our experiments and discusses the results involving facial expression

and head orientation transfer from both still images and video sequences.

Chapter 6 presents our conclusions and suggestions for future work.
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CHAPTER 2

Background and Related Work

2.1 Related Work

The face actuated by the muscles of facial expression, and head movements actuated

by the cervical muscles, are a powerful mode of nonverbal communication between

humans. The simulation of the face-head-neck musculoskeletal complex is of importance

in understanding how we convey thinking and feeling in fields from affective science to

3D computer animation. Extensive research has been directed at reconstructing the

geometric details of the face (Richardson et al., 2017; Moschoglou et al., 2020) and

synthesizing expressive facial shapes (Chen et al., 2019; Wang et al., 2020). Despite the

high-quality 3D meshes and plausible facial expressions reproduced by existing approaches,

the causal relationship between the musculoskeletal system and facial deformation has

often been ignored. Methods for transferring expressive movements from humans to

stylized characters (Aneja et al., 2016) or avatars (Zhang et al., 2020) are a different

avenue towards studying facial expressions that has also been successful in recent years.

2.1.1 Biomechanical Musculoskeletal Models

Musculoskeletal systems model the human body and synthesize body movements by

simulating the biomechanics of hard and soft tissues. They are gradually gaining popularity

in computer graphics since pioneering efforts in modeling the dynamics of bones (Hodgins

et al., 1995; Faloutsos et al., 2001) and muscles (Chen and Zeltzer, 1992). Sophisticated

full-body musculoskeletal models have emerged (Lee et al., 2009; Van den Bogert et al.,

2013; Si et al., 2014; Nakada et al., 2018; Lee et al., 2019), which can perform complex
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motor tasks such as swimming, walking, and sensorimotor control. Although these

systems achieve realistic movements with high anatomical accuracy, they often require

manual parameter tuning and lots of domain-specific knowledge due to their remarkable

complexity. Other efforts have focused on developing biomechanical models of specific

body parts, such as the upper extremities (Sueda et al., 2008; Sachdeva et al., 2015), the

lower extremities (Rajagopal et al., 2016; Cardona and Cena, 2019), and the head-neck

complex (Lee and Terzopoulos, 2006). The latter, which is most relevant to our work

in the present paper, is driven by Hill-type muscle actuators. Its neuromuscular motor

controller was trained, using data synthesized by the biomechanical model itself, to

synthesize natural head movements. Moreover, it incorporated the biomechanical face

model of Lee et al. (1995) for facial expression synthesis.

2.1.2 Expression Representation and Transfer

Numerous facial animation researchers have made use of the well-known FACS (Ekman,

2002), which is a quantitative phenomenological abstraction of facial muscle action

developed by Ekman and Friesen (1978). It decomposes facial expressions into the

intensity levels of Action Units (AUs), each of which corresponds to the actions of one

or more facial muscles. An advantage of using the FACS is that it encodes anatomical

and psychological semantics (Cohn et al., 2007). It has been combined with blendshape

interpolation to create facial animation for 3D avatars (Alkawaz et al., 2015) and has

inspired the development of a FACS-based blendshape database (Cao et al., 2013). Chen

et al. (2019) integrated FACS with a 3D morphable model (Blanz and Vetter, 1999) to

estimate expressions with facial semantic information in facial geometry synthesis.

Expression transfer or retargeting is a trending topic and recent approaches often

use FACS-based blendshapes as the basic parametric representation (Weise et al., 2011;

Thies et al., 2016; Zhang et al., 2020). Other works used techniques such as interactive

mesh deformation control (Xu et al., 2014) and deep neural network based perceptual

models (Aneja et al., 2016) to represent expressions in blendshapes. However, transferring
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expressions using a musculoskeletal system is more natural since facial actions are the

result of muscle contraction and tissue deformation. A musculoskeletal approach also

enables the automatic generation of motions under the influences of external forces (Sifakis

et al., 2005). Although Ishikawa et al. (2000) introduced an estimation strategy that

approximates facial muscle parameters from 2D images for muscle-based face models,

there remains a deficiency of work in transferring expressions to musculoskeletal systems.

2.1.3 Muscle-Based Facial Animation

Muscle-based facial animation has been studied for decades (Platt and Badler, 1981;

Waters, 1987). A series of studies have endeavored to build anatomically accurate

musculoskeletal face models. Terzopoulos and Waters (1990) proposed a 3D model of

human face that contains a physical approximation of facial tissues and anatomically-

motivated muscle actuators. Lee et al. (1995) augmented and improved the biomechanical

components of this model and incorporated an expression control system. Subsequent

work further developed the model by increasing the number of embedded muscles, adding

an interactive behavior model, and distributing simulation of multiple face instances

(Terzopoulos and Lee, 2004). Terzopoulos and Waters (1993) and, with a more detailed

biomechanical model of the face, Sifakis et al. (2005) studied the automatic determination

of facial muscle activations from videos, but these methods require nonrigid motion

trackers or motion capture markers. Sagar et al. (2014) introduced another realistic

biomechanical face that deforms based on finite element elasticity as a component of their

psychobiological system simulating an infant, but its use of a piecewise linear expression

manifold of muscle actions in expression synthesis is restrictive.

To address these shortcomings, we present a markerless, real-time biomechanical face-

head-neck simulation system that can automatically learn muscle activation parameters

for a variety of expressions from reference images and videos.
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CHAPTER 3

Biomechanical Model

3.1 Musculoskeletal Model

Our real-time musculoskeletal model is based on that of Lee and Terzopoulos (2006), but

both the underlying face-head-neck control system and the facial expression system are

significantly improved. Its overall architecture is controlled in a hierarchical manner as

illustrated in Figure 1.2. Specifically, the skeletal structure is an articulated multibody

dynamics system, with bones and joints consistent with human anatomy. The skeletal

model is driven by a Hill-type muscle actuator model.

The biomechanical face component consists of epidermis, dermal-fatty, fascia and

muscle layers together with a skull beneath them. The first three of the aforementioned

layers comprise the synthetic skin model, which is constructed based on the work by Lee

et al. (1995). There are 26 pairs of primary facial muscles embedded in the biomechanical

face, including frontalis, corrugator, levator labii, orbicularis oculi, mentalis, and orbicularis

oris groups. The contractions of these muscles apply forces to the facial tissue layers, which

deform to produce meaningful facial expressions. We significantly augment the expressive

details such as wrinkles on the face model by applying multiple levels of subdivision to

increase the number of facial nodes that can be activated by muscle forces. We also adapt

a high resolution texture image to our generic face mesh to provide a natural look.

Our musculoskeletal head-neck model is based on that of Lee and Terzopoulos (2006).

Its overall architecture is controlled in a hierarchical manner as illustrated in Figure 1.2.

Specifically, the skeletal structure is an articulated multibody dynamics system, with

bones and joints consistent with human anatomy. The skeletal model is driven by a
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Hill-type muscle actuators.

Appendix A explains the biomechanical components of our model in greater detail.

3.2 Control

To control the face-head-neck system, our novel neural network-based expression and pose

controller generates facial muscle activations that produce recognizable expressions. It

simultaneously outputs head pose estimates to the head-neck complex, where voluntary

and reflex neuromuscular control layers generate muscle activation signals to achieve the

desired head orientations.

The higher-level voluntary controller receives the current head-neck posture and

velocity information, as well as the desired adjustment of the posture, then generates a

feedforward muscle activation signal and a setpoint control signal, which will be passed to

the lower-level reflex controller. The setpoint control signal contains the desired muscle

strains and strain rates. The reflex controller takes in these desired muscle status, and

generates a feedback muscle activation signal and adds them to the feedforward signal

generated by the voluntary controller. As a result, each muscle receives an activation

level signal a and generates a contractile muscle force fC accordingly. Together with the

external forces and gravity from the environment, the whole system is simulated through

the time to generate a physics-based animation. The voluntary controller runs at 25Hz

(in simulation time), while the reflex controller runs at 4KHz along with the physical

simulation steps.
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CHAPTER 4

Expression Transfer

We next explain our machine learning approach of using a deep neural network to transfer

facial expressions to our biomechanical face model. We leverage the FACS and synthesize

the muscle activations for the model using the trained deep neural network. The following

sections describe the architecture of the network, the pipeline for using the biomechanical

face model to generate training data, and the process of training the neural network.

4.1 Network Architecture

The function of the neural network is to generate activation signals for the facial muscles

in the biomechanical face model and thus produce contractile forces that deform the

synthetic facial tissues to produce facial expressions. We use a fully connected deep neural

network architecture for our purpose (Figure 4.1). The input layer consists of a total of

17 neurons representing the important AUs that are involved in the majority of facial

movements, with each neuron corresponding to a single normalized AU. We employ 4

hidden layers, with 100 neurons in each layer. The output layer consists of 56 neurons.

The first 52 neurons encode the activations ai, with 1 ≤ i ≤ 52, for each of the 26 pairs

of facial muscles. The last 4 neurons encode the jaw rotation, jaw slide, jaw twist, and

an auxiliary value. Given its architecture, the network has a total of 37,300 weights. It

is implemented in Keras with a TensorFlow backend. Each hidden layer employs ReLU

activation.
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Figure 4.1: Neural Network Architecture

4.2 Training Data Generation

The training data generation process is divided into two steps:

1. generation of muscle activations, and

2. generation of AUs for the corresponding muscle activations.

Each basic expression requires a combination of muscles to be activated. Given n

muscles, we define We as a set of weights wi, with 1 ≤ i ≤ n, which determine the

effect each muscle will have on an expression e. The activation for each muscle ai for an

expression is then defined as ai = wis, where wi ∈ We and s denotes a scale term. For a

single expression, we determine the weights in a set We manually by visually analyzing

the facial expressions formed by the face model. For each set, we also add variations by

changing the non-zero weights by a small amount. We repeat the process for all the basic

expressions, namely (1) Joy, (2) Sadness, (3) Anger, (4) Fear, (5) Disgust, and (6) Surprise

to generate the sets WJoy, WSadness, WAnger, WFear, WDisgust and WSurprise, respectively.
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We can then sample the value of s randomly in the range [0.0, 1.0] to generate all

the muscle activations ai. We also assign a random value between 0 and 1 for the jaw

rotation. For the purpose of our experiments, we maintain the jaw twist and jaw slide at

a value of 0.5. We further form a set A consisting of all the muscle activations ai, where

1 ≤ i ≤ n, and the jaw activations including jaw rotation, jaw twist and jaw slide. We

iterate the aforementioned process, generating the set A by repeatedly sampling the value

of s for a single expression. We finally extend this to all basic expressions and obtain

multiple sets AJoy, ASadness, AAnger, AFear, ADisgust and ASurprise for each expression.

We leverage the functionality of OpenFace 2.0 (Baltrusaitis et al., 2018) for facial

expression recognition and head pose estimation. OpenFace is a computer vision tool

capable of facial landmark detection, head pose estimation, facial AU recognition, and

eye-gaze estimation. OpenFace employs Convolutional Experts Constrained Local Models

(CE-CLMs) for facial landmark detection and tracking. CE-CLMs use a 3D representation

of the detected facial landmarks by which OpenFace estimates the head pose. Eye gaze

estimation in OpenFace is done using a Constrained Local Neural Fields (CLNF) landmark

detector. The final task, facial expression recognition is performed using Support Vector

Machines and Support Vector Regression.

We use a single set A formed by the above described procedure to activate the muscles

and jaw of the biomechanical face model. We then render the model to form an image.

The image is input to OpenFace, which performs facial expression recognition and head

pose estimation, outputting the AUs and head orientation associated with the input

image. We repeat this process for each set A formed (as described previously) to get the

corresponding AUs and head orientations.

Thus, we synthesize a large quantity of training data pairs each consisting of (i) muscle

and jaw activations A and (ii) the associated AUs and head orientations.
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dataset MSEAU1 MSEAU4 MSEAU6 MSEAU9 MSEAU12 MSEAU15 MSEAU20 MSEAU25 Average

KDEF (unnormalized) 0.191 0.088 0.186 0.133 0.011 0.155 0.129 0.092 0.157
KDEF (normalized) 0.118 0.064 0.186 0.068 0.028 0.109 0.146 0.052 0.129
RAVDESS (video) 0.012 0.222 0.107 0.044 0.083 0.016 0.077 0.036 0.086

CK (video) 0.038 0.054 0.059 0.015 0.008 0.023 0.057 0.034 0.048

Table 4.1: Average MSE of selected AUs in original data and transfer results using
different experimental settings. Note that we randomly select 8 out of 17 AUs output by
OpenFace. Last column is the average MSE over all AUs in each setting.

4.3 Network Training

We use the aforementioned data to train our deep neural network to input AUs and

output corresponding muscle and jaw activations.

The AUs from each training pair generated as described in the previous section, are

passed to the network as input. We then compare the corresponding muscle and jaw

activations; i.e., the ground truth to the predictions of muscle and jaw activations given

by the neural network. We use a Mean Square Error training loss between the predictions

and the ground truth. The loss is then backpropagated to update the weights, thus

training the neural network.

We normalize the intensity values of each AU class across all pairs to remove the

disparity of intensity values between synthetic faces and real faces. We use a total of

6,000 pairs, with about 1,000 pairs for each basic expression.

To train the neural network, we use the ADAM stochastic gradient descent optimizer

with a Mean Squared Error loss, a batch size of 32, and a learning rate of 0.01. We

train the network in a total of 100 epochs, running on an NVIDIA GeForce GTX 1650

GPU installed on a Windows 10 Machine with a 2.6GHz Intel Core i7-9750H CPU. The

convergence of the training error is presented in Figure 4.2.

4.4 Expression Transfer Pipeline

We use a pipeline similar to the offline training module for the transfer of real facial

expressions on the fly. We once again leverage OpenFace for facial expression recognition

12



Figure 4.2: Convergence of the neural network

and head pose estimation. We input an image of an expressive face into OpenFace to

obtain all of the corresponding AUs and head orientations. The AUs are then passed into

the trained neural network which outputs predictions of the muscle and jaw activations,

driving the biomechanical face to deform the muscles and transfer the expressions onto it.

We transfer both image and video inputs. Each frame in a video is processed inde-

pendently and a resulting video is created using the transferred frames. The intensity

values for each AU class are normalized across all the images or frames as in the case of

the training pipeline.
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Figure 4.3: Transfer of Faces from the KDEF dataset. The first and third row consist of
original images of two subjects. The second and fourth row are transferred versions of
the first and third rows, respectively. The transferred expressions in order are (1) Fear,
(2) Anger, (3) Disgust, (4) Joy, (5) Sadness, and (6) Surprise

14



CHAPTER 5

Experiments and Results

We next present the results of transferring facial expressions from the wild using our trained

neural network. We evaluate our expression transfer pipeline on different expressions

while using a variation of AUs and muscles in the biomechanical face model.

5.1 Facial Expression Datasets

Several facial expression datasets are available online. The datasets that we used in

experiments are as follows:

Karolinska Directed Emotional Faces (KDEF) (Calvo and Lundqvist, 2008).

The KDEF dataset consists of 4,900 pictures of human facial expressions. It covers 70

subjects (35 female and 35 male) enacting all the basic facial expressions, namely Neutral,

Joy, Sadness, Anger, Fear, Disgust, and Surprise. Each expression enacted by the subject

is captured from multiple directions. We use the dataset to transfer facial expressions

onto the biomechanical face model and visually analyze the performance of our trained

neural network in this paper.

Cohn Kanade Dataset (CK) and Extended Cohn Kanade Dataset (CK+)

(Kanade et al., 2000; Lucey et al., 2010). The CK and the CK+ dataset combined consist

of 593 video sequences of 123 subjects. Each sequence consists of images from a neutral

expression (first frame) to a peak expression (last frame). The peak expressions are FACS

coded for AUs. We use the sequences in the CK+ dataset to transfer videos of expression

transitions onto the biomechanical face.

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
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(Livingstone and Russo, 2018). The original RAVDESS dataset consists of 24 actors vocal-

izing two lexically-matched statements. An extension of the dataset named RAVDESS

Facial Landmark Tracking contains tracked facial landmark movements from the

original RAVDESS datasets (Swanson et al., 2019). Each actor performs 60 speech trials

and about 44 song trials. This yields a total of 2,452 video files for the complete dataset.

We leverage this dataset to test the transfer of actor faces in speech videos onto the

biomechanical face.

5.2 Results

5.2.1 Actions Units and Muscle Activations

There exist a total of 30 Action Units corresponding to facial expressions. OpenFace

provides occurrence predictions for 18 out the 30 Action Units and measures intensity

values for 17 out of the 30 Action Units. We consider the 17 Action Units for which the

intensity values are present as the super-set of the Action Units for our use case.

Due to the correlation between the Action Units and muscles in the face, there also

exists a correlation between a basic facial expression and the Actions Units activated by

it. Our initial experiments focused on training the neural network for each expression

in an isolated manner. The neural network was trained to output muscle activation for

muscles corresponding to a single expression using Actions Units which pertained to the

same expression. In further trials, we observed that the usage of all the 17 Action Units

and all facial muscles improved the performance and the scalability of the expression

transfer pipeline.

5.2.2 Normalization

Figure 5.1 presents a comparison of transfer results with and without normalization of

intensity values of each AU class across the complete dataset. Due to limitations in the

biomechanical model, the range of each AU class differs from that of the real faces. Hence,
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we use normalization to overcome the bias and better transfer real facial expressions

onto the biomechanical model. The expression intensities in transferred expressions with

normalization better represent the real faces than those without normalization.

5.2.3 Jaw Activation

In Figure 5.2, we compare the transfer results with and without jaw activation. We choose

to activate only jaw rotation so as to maintain the symmetry of the expression for our

use case. We observe, that without jaw activations, expressions such as surprise are not

well synthesized by the biomechanical face model.

5.2.4 Head Orientation

We leverage OpenFace for head pose estimation. We pass the estimated orientation of the

head into the trained neck controller to activate the neck muscles. This in turn actuates

the neck to adjust the head orientation in accordance with the input image. We present

transferred results with the head orientations from the KDEF dataset in Figure 5.3.

5.2.5 Facial Expression Transfer

The results for the facial expression transfer for each of the expressions is shown in

Figure 4.3. We present transfer results of a small sample of the KDEF dataset. We pick

2 subjects (1 male and 1 female), enacting all the basic expressions.

We also evaluate the transfer results by comparing the mean square error (MSE) of

selected AUs in Table 4.1. We calculate the average MSE by AUs over all transferred

expressions and their corresponding reference data, then compute the mean value of the

average MSEs over all AUs in each experimental setting. We report such mean values

together with 8 randomly chosen AUs. The normalization step decreases the MSEs of

most selected AUs and yields results with higher AU similarity, which is consistent with

the better transfer of expressions illustrated in Figure 5.1. The transfer results with

the RAVDESS and CK datasets are best seen in the supplemental video. The more
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Figure 5.1: A comparison of transfer results with and without AU normalization. The
three columns correspond to (i) The original image from the KDEF dataset, (ii) Result
without normalization of AUs, and (iii) Result with normalization of AUs.

18



Figure 5.2: A comparison of transfer results with and without jaw activations. The
three images are (i) The original image from the KDEF dataset, (ii) The transferred face
without any jaw activations and (iii) The transferred face with jaw activations.

Figure 5.3: Head orientation applied to transfer task. The odd columns correspond to
the original images and the even columns present the respective transferred faces along
with orientation.
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subtle expressions performed by subjects in the videos result in the lower average MSEs

compared with those of image dataset.

5.2.6 Expression Transfer Involving Image Sequences

Our pipeline for expression transfer was further applied to sequences of images in which a

subject is either forming an expression, speaking a sentence, or singing a song. We present

expression transfer results for both the Cohn-Kanade (CK) dataset and the Ryerson

Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset.

5.2.6.1 Expression Transfer for the CK Dataset

As described in Section 5.1 the CK and CK+ datasets consist of sequences with subjects

starting with a neutral expression and finally reaching a peak expression. Sample results

of applying our expression transfer pipeline to two of these sequences are presented in

Figure 5.4 and Figure 5.5. We observe that the pipeline is able to capture even subtle

expression changes in the subjects.

5.2.6.2 Expression Transfer for the RAVDESS Dataset

As described in Section 5.1, the RAVDESS dataset has subjects either reading out a

sentence or singing lyrics in a song. The results of applying our expression transfer

pipeline to two sequences are presented in Figure 5.6 and Figure 5.7. We observe that

our pipeline is able to transfer the subtle motion of the lips while talking and singing.
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Figure 5.4: Transfer of Image sequences of a subject enacting Joy from the Cohn-Kanade
dataset. The first and third row consist of original images of a subject in sequence. The
second and fourth row are transferred versions of the first and third rows, respectively.

Figure 5.5: Transfer of Image sequences of a subject enacting Sadness from the Cohn-
Kanade dataset. The first and third row consist of original images of a subject in sequence.
The second and fourth row are transferred versions of the first and third rows, respectively.
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Figure 5.6: Transfer of Image sequences from the RAVDESS dataset of a subject speaking
with Joy. The first and third row consist of original images of the subject. The second
and fourth row are transferred versions of the first and third rows, respectively.
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Figure 5.7: Transfer of Image sequences from the RAVDESS dataset of a subject speaking
with Disgust. The first and third row consist of original images of the subject. The second
and fourth row are transferred versions of the first and third rows, respectively.
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CHAPTER 6

Conclusions and Future Work

6.1 Summary

Our expression transfer approach is uniquely advantageous. First, it is anatomically

accurate as the biomechanical model emulates the musculoskeletal system of the head and

neck of an actual human. Further, our approach is based on the Facial Action Coding

System, which is a widely adopted representation of facial expressions in the computer

animation field. Finally, our approach is based on deep learning, which can establish a

non-linear relation between the Action Units of the FACS and facial muscle activations.

Additionally, our neural-network-based approach does not require any manual data

collection as the training data is generated directly using the biomechanical model. This

only needs to take place once, in advance. Once trained offline using the generated

training data, the neural network can quickly transfer a large number of facial expressions.

6.2 Future Work

We demonstrated transfer results for all the basic expressions. As the human face is

capable of creating a mixture of expressions, subtle expressions, and microexpressions, we

would like to extend our work to transfer all of the above to our biomechanical model. We

would also like to improve the biomechanical model by adding more muscles and wrinkle

removal on specific areas of the face. We hope that this will help activate facial Action

Units in a more anatomically accurate manner, which will further enable our approach to

produce better transfer results.
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APPENDIX A

Details of the Biomechanical Face Model

A.1 Skeleton

The skeletal structure of our model contains 9 links and is modeled as an articulated

rigid-body system. The bone links are built on the base link, which is set to be immobile.

Among the 8 movable bones, there are seven cervical bones, named C1 to C7, and the

skull. The human neck skeleton system contains soft tissue between vertebrae and the

cervical spine, which enables motion with 6 degrees of freedom (3 for translation and 3

for rotation) for the bones. We simplify each bone joint to have just 3 rotational degrees

of freedom.

The equation of motion of the rigid-body system can be written as

M (q)q̈ + C(q, q̇) + Ksq + Kdq̇ = P (q)fm + J(q)Tfext, (A.1)

where q, q̇, and q̈ are 24-dimensional vectors representing the joint angles, the angular

velocities, and the angular accelerations, respectively. M is the mass matrix, and C

represents the internal forces among the system, including Coriolis forces, gravity, and

forces from connecting tissues. The moment arm matrix P maps the muscle force fm

(contractile muscle force fC and passive muscle force fP ) to the related joint torques,

while the Jacobian matrix J transforms the applied external force fext to torques. The

Ksq + Kdq̇ term represents the rotational damping springs that we attach to the joints

in order to simulate the stiffness of the inter-vertebral discs. We can alternatively write
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the torque from the spring as:

τs = −ks(q − q0)− kdq̇, (A.2)

where q is the current joint angle in the generalized coordinates, and q0 is the joint angle in

the natural pose (resting angle). The ks and kd are the stiffness and damping coefficients

of the spring, respectively.

A.2 Muscles

We use a modified version of the Hill-type muscle model (Ng-Thow-Hing, 2001), which is

a good balance of biomechanical accuracy and computational efficiency. The muscle force

fm = fP + fC has two sources. The passive element fP generates a restoring force due

to the muscle elasticity, which constrains the muscle deformation passively. The passive

muscle force is represented as

fP = max(0, ks(exp(kce)− 1) + kdė), (A.3)

where ks and kd are the stiffness and damping coefficients of the above uni-axial exponential

spring model. e is the strain of the muscle and ė is the strain rate. We can calculate them

using e = (l − l0)/l0 and ė = l̇/l0, respectively, where l and l0 are the muscle length and

muscle resting length.

The contractile element fC generates the proactive contractile force of the muscle,

which is proportionate to the activation level of the muscle:

fC = aFl(l)Fv(l̇),

Fl(l) = max(0, kmax(l − lm)),

Fv(l̇) = max(0, 1 + min(l̇, 0)/vm),

(A.4)

where a ∈ [0, 1] is the muscle activation level, Fl is the force-length relation, and Fv is the
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(a) Force-length relationship (b) Force-velocity relationship

Figure A.1: The force relationships of Hill type muscle model.

force-velocity relation. During their calculation, we need the maximum muscle stiffness

kmax, maximum muscle length lm, and the maximum contractile velocity vm. We present

the plots of the two relations in Figure A.1. Additional details about the setting and the

biomechanical background of the parameters can be found in (Lee and Terzopoulos, 2006;

Ng-Thow-Hing, 2001).

A.3 Skin

Our facial skin model is automatically generated using the technique described in (Lee

et al., 1995). After laser-scanning the individual’s facial data, a range image and a

reflectance image in cylindrical coordinates are adapted to a well-structured face mesh.

Then the algorithm creates a dynamic skin and muscle model for the face mesh, which

contains automatically generated facial soft tissues, estimated skull surface. Also, major

muscles responsible for facial expression are inserted to the model.

The physical simulation of the muscle-actuated facial skin model is implemented as a

discrete deformable model (DDM), where a network of fascia nodes are connected using

uni-axial springs. The force exerts from spring j on node i can be written as

gj
i = cj(lj − lrj )sj, (A.5)
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where lj and lrj are the current and resting length of spring j, and sj = (xj − xi)/lj is

the spring direction vector.

The facial skin model is also actuated by the underlying muscles. We calculate the

force exerts from muscle j on node i according to the length scaling function Θ1 and the

muscle-width scaling function Θ2 as follows:

f j
i = Θ1(εj,i)Θ2(ωj,i). (A.6)

In (Lee et al., 1995), the plots of the two scaling functions, as well as the definition of

the length ratio ε and muscle width ω are explained in detail. Moreover, there are other

aspects of the generated discrete deformable model; e.g., the volume preservation forces

and skull penetration constraint forces.
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