
UNIVERSITY OF CALIFORNIA

Los Angeles

Zoomorphic Design, Interchangeable Components, and Approximate Dissections:

Three New Computational Tools for Open-Ended Geometric Design

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Noah Duncan

2017

c© Copyright by

Noah Duncan

2017

ABSTRACT OF THE DISSERTATION

Zoomorphic Design, Interchangeable Components, and Approximate Dissections:

Three New Computational Tools for Open-Ended Geometric Design

by

Noah Duncan

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Demetri Terzopoulos, Chair

This thesis introduces three new computational tools that employ geometric methods to solve

open-ended design problems, an emerging trend in Computer Graphics modeling research.

First, we present a computational tool for the design of zoomorphic objects—man-made

objects that possess the form or appearance of an animal. Given a man-made shape with

desirable functional qualities and an organic shape with desirable animalistic qualities, our

tool geometrically merges the two shapes, incorporating the salient features of the organic

shape while preserving the functionality of the man-made shape.

Second, inspired by mix-and-match toys such as Mr. Potato Head, we introduce a computa-

tional tool for designing interchangeable components that can form different objects with a

coherent appearance. Our tool works by deforming and partitioning a set of initially incom-

patible input models. A key challenge is the novel geometric problem of minimally deforming

the models and partitioning them such that the resulting components connect smoothly.

Third, we present a computational tool for creating geometric dissections, a set of pieces that

can be re-arranged to form two distinct shapes. Previous techniques for creating dissections

are limited to forming very simple or geometrically ideal shapes, whereas ours supports

complex naturalistic shapes.

We experiment with and evaluate the above three tools in a variety of applications.

ii

The dissertation of Noah Duncan is approved.

Song-Chun Zhu

Stanley Osher

Joseph Teran

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2017

iii

Dedicated to my parents for encouraging me to take my own path in life.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 The Contributions of this Thesis . 2

1.2 Zoomorphic Design . 4

1.3 Interchangeable Components . 6

1.4 Approximate Dissections . 9

1.5 Dissertation Overview . 12

2 Related Work . 13

2.1 Zoomorphic Design . 13

2.2 Interchangeable Components . 15

2.3 Approximate Dissections . 17

3 Zoomorphic Design . 19

3.1 Preprocessing . 19

3.2 Candidate Objects Suggestion . 21

3.2.1 Shape Graphs and Graph Kernels . 21

3.3 Problem Formulation . 22

3.3.1 Volumetric Design Restriction . 24

3.3.2 Deformation Models and Configuration 28

3.3.3 Configuration Energy . 29

3.4 Zoomorphic Object Creation . 35

3.4.1 Correspondence Search . 35

3.4.2 Configuration Refinement . 37

3.4.3 Removals and Merging . 38

3.5 User Control and Enhancements . 39

4 Interchangeable Components . 42

4.1 Representation, Formulation, and Approach 42

v

4.2 Finding Individual Edge Loops . 45

4.3 Deformation to Common Edge Loops . 49

4.3.1 Common Edge Loops Initialization 50

4.3.2 Shapes and Common Edge Loops Refinement 51

4.4 Generating Interchangeable Components . 53

4.5 User Interaction and Enhancements . 55

4.5.1 C1 Component Continuity Deformation 55

4.5.2 Higher Order Component Connectivity 56

4.5.3 Semantics Preservation . 59

4.5.4 Most-Compatible Subset Selection . 59

5 Approximate Dissections . 61

5.1 Representation . 62

5.2 Evaluation . 67

5.3 Solution Search . 69

5.3.1 Initializing the Mapping and Constraints 70

5.3.2 Tree Search . 72

5.4 Pruning the Search Space . 75

5.4.1 Orientation Based Pruning . 75

5.4.2 Full Geometry Pruning . 77

5.4.3 Pruning Usage . 80

5.5 User Interaction . 81

6 Experiments and Results . 83

6.1 Zoomorphic Design . 83

6.1.1 Pose Constraints. 85

6.1.2 Changing Weights. 85

6.1.3 User Guidance. 86

6.1.4 Other Results. 86

6.1.5 Performance. 87

vi

6.1.6 Evaluation . 89

6.2 Interchangeable Components . 90

6.2.1 Different Categories . 90

6.2.2 Cross-Category Components . 96

6.2.3 Sensitivity to Initial Segmentation . 97

6.2.4 Compatibility Optimization and Mesh Deformation 99

6.2.5 Performance . 99

6.2.6 Fabrication . 100

6.3 Approximate Dissections . 101

6.3.1 Performance . 101

6.3.2 Approximation Accuracy . 101

6.3.3 Pruning Efficiency Gain . 102

6.3.4 Results . 102

6.3.5 Application to Puzzles . 104

7 Conclusion . 105

7.1 Summary . 105

7.2 Limitations and Future Work . 107

A Supplemental Material on Zoomorphic Design 112

A.1 Suggesting Objects to Blend . 112

A.1.1 Shape Graph . 112

A.1.2 Graph Kernel . 113

A.1.3 Graph Kernel Evaluation . 115

A.2 Automatic Transfer of VDR Labels . 117

A.3 Informal Studies Details . 118

B Supplemental Material on Interchangeable Components 121

B.1 Performance and Combinations Data . 121

B.2 Deformation Comparison . 122

vii

C Supplemental Material on Approximate Dissections 127

C.1 Comparing the Input and Output Shapes . 127

C.2 Initializing the Full Geometry Optimization 127

References . 129

viii

LIST OF FIGURES

1.1 Thesis framework . 2

1.2 A zoomorphic playground created by our Zoomorphic Design approach 4

1.3 Historic and modern zoomorphic objects . 5

1.4 The three objects in our computational approach for zoomorphic design 5

1.5 Parts generated by our Interchangeable Components approach 6

1.6 Commercially available interchangeable components 7

1.7 Motivation for interchangeability . 8

1.8 Rearrangeable pieces generated by our Approximate Dissections approach 9

1.9 Classical dissections . 10

1.10 Differences in the perception of distortion . 11

3.1 Overview of our Zoomorphic Design approach 20

3.2 Example of a walk on a graph . 22

3.3 Examples of volumetric design restrictions . 23

3.4 Volumetric design restriction of a chair . 26

3.5 Different deformation models . 28

3.6 Different configurations. 29

3.7 Computing the visual salience . 31

3.8 Considering gashes when creating a zoomorphic object 33

3.9 Effects of omitting an energy term . 34

3.10 Correspondence search tree . 36

3.11 Motivation for configuration refinement step. 37

3.12 Effects of weights in base object control. 39

3.13 Motivation for the overlap criterion for removing base object segments. 40

3.14 Automatic refinement of user edits . 41

4.1 Overview of Interchangeable Components approach 43

4.2 Edge loops . 44

ix

4.3 Contour evolution . 46

4.4 Comparing ways to choose individual edge loops 48

4.5 Deforming meshes to match the common edge loop 48

4.6 Representing individual edge loop vertices in terms of common edge loop vertices 51

4.7 Shape-preserving refinement . 52

4.8 Surface sealing and connector placement . 55

4.9 Considering C1 Component Continuity . 56

4.10 Considering higher order connectivity . 57

4.11 Semantics preservation . 58

4.12 Some existing chimera toys . 60

5.1 The variables of the dissection problem . 61

5.2 A dissection between a dog head and a bone . 62

5.3 Visualizing the geometric parameters . 63

5.4 Two boundary intervals that connect . 64

5.5 A connection constraint . 65

5.6 Reconstruction mapping for the dog arrangement 66

5.7 Edge vectors involved in the objective function and constraint 68

5.8 Derivation of the formulas for the geometry for a single connection constraint . . 69

5.9 Correspondences for the dog-bone dissection . 70

5.10 Visualizing the tree search . 73

5.11 Comparing two different ways of ordering the tree search 74

5.12 A topologically invalid connection . 75

5.13 Visualizing the angular optimization problem 76

5.14 Visualizing the geometry optimization for a partial solution 77

5.15 A workflow in our user interface . 81

6.1 Zoomorphic designs created by our system . 84

6.2 Extensions of the Zoomorphic approach . 87

6.3 A Zoomorphic restaurant . 88

x

6.4 A 3D-printed horse chair . 88

6.5 Generating interchangeable components for different types of shapes 91

6.6 Using the most-compatible size 4 subset of the animals 92

6.7 Humanoids assembled by our components . 94

6.8 Some challenges involved in generating insect components 95

6.9 Insects assembled by our interchangeable components 96

6.10 Interchangeable components from different categories of object 97

6.11 Sensitivity to initial conditions for contour optimization 98

6.12 The improvement in shape preservation from contour optimization 98

6.13 Visualizing the distortion caused by satisfying component interchangeability . . 99

6.14 Animals assembled by our interchangeable components 100

6.15 Effect of changing the number of pieces on dissection creation 102

6.16 Generating dissections between different shapes 103

6.17 The fabricated dog bone puzzle . 104

7.1 Applying the dissection approach to a horror movie scene 107

7.2 Limitations of the Zoomorphic approach . 108

7.3 Failure cases for interchangeable components . 109

7.4 A failure case for the dissection approach . 110

A.1 Shape graph representation of a chair . 113

A.2 Common substructures found by the graph kernel 115

A.3 Query base objects and the top returned animal objects 116

A.4 Query animal shape and the top five returned base objects 116

A.5 Query base object and the suggested animal objects for merging 117

A.6 Training and testing meshes for machine learning based mesh labelling 117

A.7 Base objects used in our informal studies . 118

A.8 Animal objects used in our informal studies . 119

A.9 Zoomorphic objects, generated with the volumetric design constraint 119

A.10 Zoomorphic objects, generated without the volumetric design constraint 120

xi

B.1 The animals before and after deformation . 123

B.2 The faces before and after deformation . 124

B.3 The chairs before and after deformation . 124

B.4 The humanoids before and after deformation . 125

B.5 The insects before and after deformation . 126

C.1 The input shapes next to the arranged dissection pieces 128

xii

LIST OF TABLES

6.1 The performance of the dissection approach on several inputs 101

A.1 Training set size and the corresponding VDR labeling accuracies 117

A.2 Responses for the first test . 120

A.3 Responses for the second test . 120

B.1 Interchangeable components runtimes . 121

xiii

ACKNOWLEDGMENTS

I would like to deeply thank my advisor Demetri Terzopoulos for introducing me to the world

of Computer Graphics and giving me an optimal amount of freedom. Demetri has always

encouraged me to conduct research based on my own ideas, which was a wise policy that

forced me to develop an independence crucial to long-term success in research. At the same

time, Demetri was always willing to let me know when an idea was a dead-end or to help

me refine a flawed idea into something viable. Demetri’s considerable talent for writing is

responsible for the brevity and clearness of my published papers, and he spent many hours

improving this thesis. Finally, I thank Demetri for encouraging me to collaborate with other

researchers, which resulted in several fruitful relationships.

I would like to thank my co-advisor Lap-Fai Yu. I met Lap-Fai when I was a first year

PhD student and he was a highly accomplished fourth year UCLA student about to grad-

uate. Despite the fact that I had no research accomplishments, Lap-Fai immediately began

intensively mentoring me when I asked to collaborate with him, when he could have been

using this time for his own work. Ever since, he has been an invaluable source of productive

discussion, an inspiration for navigating the perilous world of academia, and a tireless critic

who lets me know where my work falls short and how to improve it. His keen sense of design

for figures has benefited all of my papers.

I would like to thank my co-advisor Sai-Kit Yeung. Sai-Kit graciously hosted me in his lab

at SUTD in Singapore several times. Like Lap-Fai, Sai-Kit took a risk working with me

when I was still a first year student. Our discussions have uncovered many creative ideas,

and he has greatly developed my ability to tell a compelling story about an idea in a paper.

Finally, he has always helped me squeeze out every ounce of productivity as the deadline

grew near. Our submitted papers may have been rejected if not for his ability to prioritize

what should be focused on and his insistence on clarity.

Finally, I would like to thank my fellow lab members, Tomer Weiss and Masaki Nakada, for

fun discussion about our research and other topics, and for keeping things enjoyable even as

deadlines loomed.

xiv

VITA

2012 B.S. (Computer Science), Harvey Mudd College.

2013–2017 Teaching Assistant, Computer Science Department, UCLA.

2015–2017 Research Assistant, Information Systems Technology and Design Pillar,

Singapore University of Technology and Design (SUTD).

PUBLICATIONS

Duncan, N., Yu, L.-F., Yeung, S.-K., and Terzopoulos, D. Approximate Dissections. ACM

Transactions on Graphics (TOG), 36(6), 2017, 182:1–13.

Duncan, N., Yu, L.-F., and Yeung, S.-K. Interchangeable components for hands-on assembly

based modelling. ACM Transactions on Graphics (TOG), 35(6), 2016, 234:1–14.

Duncan, N., Yu, L.-F., Yeung, S.-K., and Terzopoulos, D. Zoomorphic design. ACM Trans-

actions on Graphics (TOG), 34(4), 2015, 95:1–13.

Yu, L.-F., Duncan, N., and Yeung, S.-K. Fill and transfer: A simple physics-based ap-

proach for containability reasoning. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2015, 711–719.

xv

CHAPTER 1

Introduction

Open-ended design problems are design problems which are non-trivial to map to mathe-

matical problems. They are ultimately defined in terms of human perception. Since it is

unclear what is the “correct” formalization of these problems, some research communities

have avoided them. However, they have significant practical value. Recently, the Computer

Graphics research community has become increasingly interested in such problems, which

range from computational interior design (Yu et al., 2011; Merrell et al., 2011), to the design

of clothing (Umetani et al., 2011), accessories (Igarashi et al., 2012), puzzles (Zhou et al.,

2014), mechanical toys (Zhu et al., 2012), and even cities (Aliaga et al., 2008; Vanegas et al.,

2012). The development of computational tools for solving these and other open-ended

design problems is an emerging trend in the field. These tools often involve some sort of

optimization.

Geometric open-ended design problems are those that can be fully defined in terms of geo-

metric shapes. The variables of the optimization usually specify how one or more objects are

deformed. The unifying theme of this thesis is the use of geometrical methods to solve such

problems. Specifically, this thesis introduces three novel open-ended design problems and

proposes three geometric approaches to solve them. The common framework around these

three problems is a functional constraint and an aesthetic objective. We want to preserve

the appearance of the input object as much as possible, given the satisfaction of a functional

constraint. Figure 1.1 shows how the works fit into this framework.

1

Figure 1.1: The three open-ended design problems covered in this thesis and how they fit in
a common framework.

1.1 The Contributions of this Thesis

The main contributions of this thesis are threefold, as follows:

1. Zoomorphic Design: We introduce the first process to allow the efficient design

of zoomorphic shapes. This work was published in ACM SIGGRAPH 2015 (Duncan

et al., 2015). The key technical ingredient in the process is the volumetric design

constraint (VDC), a general technique for ensuring that introducing new geometry to

a man-made object does not interfere with its functionality.

In particular, we introduce a computational tool for the design of zoomorphic objects,

which are man-made objects that possess the form or appearance of an animal. Our

tool works by combining two shapes: a man-made shape that represents the functional

qualities our zoomorphic object should possess and an organic shape that represents

its animalistic qualities. The key technical challenge in this work is merging the two

shapes so that the salient features of the organic shape are prominent while preserving

the functionality of the man-made shape.

2

2. Interchangeable Components: we introduce the first process to allow the efficient

design of interchangeable components that connect to form coherent shapes. This

work was published in ACM SIGGRAPH Asia 2016 (Duncan et al., 2016). Previous

sets of such components were limited to forming a small range of shapes and required

laborious manual design.

In particular, for hands-on assembly-based modeling, we introduce a computational

tool for the design of components which are interchangeable, but can connect to form

objects with a smooth natural appearance. These components are inspired by Mix-and-

match toys such as Mr. Potato Head. Our tool works by deforming and partitioning a

set of input models, which are initially incompatible. The key challenge here is the novel

geometric problem of deforming and partitioning the models such that the resulting

components connect smoothly, while minimizing the extent of the deformation needed.

3. Approximate Dissections: We introduce the first process to allow the creation of

geometric dissections between complex, naturalistic shapes. This work was published

in ACM SIGGRAPH Asia 2017 (Duncan et al., 2017). Previous dissections were limited

to simple, abstract shapes.

In particular, we find a novel technique for generating geometric dissections. A geo-

metric dissection is a set of pieces which can be assembled in different ways to form

distinct shapes. A well-known example is the ancient Chinese tangram puzzle. Existing

techniques for dissection design are limited to dissections between geometrically ideal

or extremely simplified shapes. By relaxing the traditional dissection design problem

so that the dissection pieces only need to reconstruct the target shapes approximately,

we allow the creation of dissections between complex naturalistic shapes for the first

time.

The three subsequent sections motivate the Zoomorphic Design, Interchangeable Compo-

nents, and Approximate Dissections problems in greater detail.

3

(a) Input (b) Result

Figure 1.2: A zoomorphic playground created by our Zoomorphic Design approach.

1.2 Zoomorphic Design

For centuries, humanity has attempted to capture the marvels of nature in man-made objects.

Such objects range from ancient pottery vessels, to modern day piggy banks, designer chairs,

and even buildings (Figure 1.3). Man-made objects that have the form or appearance of an

animal are called zoomorphic. Since the beginning of recorded history, artists have created

zoomorphic objects by “applying animalistic-inspired qualities to non-animal related objects”

(Coates et al., 2009).

Zoomorphic concepts are present in architecture (Aldersey-Williams, 2003), furniture (Coates

et al., 2009), and product design (Bramston, 2008; Lidwell and Manacsa, 2011). Research

suggests that children have a natural affinity for animals, which may explain the frequent

presence of zoomorphism in children’s toys (Lidwell, 2014). Figure 1.2 illustrates how

zoomorphic design can create a more appealing children’s playground.

We propose a novel computational approach to tackle the unique challenges involved in

creating zoomorphic objects. Some zoomorphic designs mimic animals at only an abstract

level, such as the design of the Milwaukee Art Museum which is inspired by the shape of

a bird in flight (Figure 1.3(d)), while others include components that directly mimic the

shapes of animal parts. Our approach focuses on the latter category.

Designing a zoomorphic object entails high-level tradeoffs, such as compromising between

4

(a) (b) (c) (d)

Figure 1.3: Historic and modern zoomorphic objects. (a) Bull-shaped vessel circa 1000 BC
symbolizing fertility. (b) Piggy bank. (c) Anteater chair by artist Maximo Riera. (d) The
Milwaukee Art Museum, designed in the shape of a bird in flight.

(a) Base (b) Animal (c) Zoomorphic

Figure 1.4: The three objects in our approach. Note: The objects shown were not created
by our approach.

faithfulness to the animal form and retaining usefulness. For example, the chair in Fig-

ure 1.3(c) has proportions similar to an anteater, but the sitting area is narrow and the

“snout” may interfere with a sitter’s legs. High-level design goals correspond to low-level

geometric operations, such as deformations of the animal-inspired and man-made compo-

nents in the shape. The low-level operations can be tedious to execute manually. Therefore,

our goal is to enable the user to direct the high-level design, while automating the low-level

operations. We also hope to inspire the user by suggesting unusual yet viable designs that

may not have been considered, such as the pink horse chair in Figure 1.2.

Our approach takes two surface meshes as input, which we call the “base object”and the

“animal object”. The base object represents the portions of the zoomorphic object that are

5

Figure 1.5: Our Interchangeable Components approach deforms and partitions a set of 3D
models to fabricate a set of fully interchangeable components, which can be assembled into
novel objects of coherent appearance.

not animal-related. The base object is generally man-made and represents the ‘functional

category’ of the object we want to create. The animal object represents the portions of the

zoomorphic object that are animal-related. For the zoomorphic object in Figure 1.4, the

base object is an ordinary chair and the animal object is a horse. Our approach constructs

a zoomorphic object by merging the two input objects.

1.3 Interchangeable Components

In the typical process of shape creation, a shape is constructed virtually on a computer,

and then fabricated into the real world. Once fabricated, the shape’s geometry is fixed.

Computer Graphics research has made great strides in allowing non-experts to create shapes

through this process.

In this problem, we focus on an alternate shape creation process in which a set of compo-

nents is fabricated that is capable of being assembled into a range of possible shapes. The

advantage of this process is that the shape’s geometry is easy to reconfigure. This property

is useful when a different shape is desired at a different time and for a physical exploration

6

(a) (b)

(c) (d)

Figure 1.6: Mr. Potato Head constructed from (a) Legos and (b) Interchangeable Compo-
nents. The Legos induce an unnatural pixelated appearance. (c), (d) Commercially available
interchangeable components for vehicles and animals. Note the simple geometries and clear
boundaries between components.

of possible shapes. Furthermore, the set of possible shapes may be much larger than the

set of components. For example, the set of components shown in Figure 1.5 can construct

over 50,000 different humanoid figures. Directly fabricating this set of shapes would be

prohibitively expensive.

Two real world examples of this process are construction toys such as Lego Bricks and Mix-

and-Match toys such as Mr. Potato Head. These systems vary in the range of shapes they

can construct, the ease of reconfiguring to a different shape and how coherent the shapes’

appearance is. Lego Bricks are flexible enough to construct almost any shape, but are

tedious to reconfigure and produce shapes with a distinctive blocky appearance as shown

in Figure 1.6(a). Mix-and-Match toys use a set of interchangeable components to construct

a much narrower range of shapes, but are easier to reconfigure and produce shapes with a

smoother appearance. However, the geometry constructed by these toys is usually extremely

simple and possesses an abstract look, which makes the component boundaries perceptible,

7

Figure 1.7: Without considering interchangeability, the horse’s head can fit with either the
camel’s body or the wolf’s body seamlessly, but not both. Considering interchangeability,
the horse’s head can fit with both the wolf’s body and the camel’s body seamlessly.

as shown in Figure 1.6(b)–(d).

We introduce a computational approach for designing interchangeable components which

construct complex, diverse geometry and connect so that the visual impact of the junctions

between them is minimal. Designing such components by hand would be very difficult. For

example, in the humanoid components shown in the teaser, twenty-five pairwise compatibility

constraints must be considered to ensure that any head can connect to any body. Fulfilling

these constraints while preserving the appearance of the shapes is challenging with traditional

modeling tools. Figure 1.7 illustrates how several constraints must be satisfied simultaneously

to produce interchangeable parts.

Our approach takes a set of compatibly segmented models as input. Guided by the segmen-

tations, it deforms and partitions the models into physically interchangeable components.

Because of their interchangeability, the components can construct a wide range of novel

shapes not seen in the input models.

At the essence of our approach is a novel geometric problem: Given a set of models, output

8

Figure 1.8: Given two input shapes (a), our Approximate Dissections approach generates a
small number of pieces that may be arranged to form close approximations of the shapes.
Here, we generate six pieces that can form the outlines of either the continental United
States or China, demonstrating that the countries have roughly equal area (at the same
scale). Note that in (b) both shapes are composed of the same set of pieces.

a set of components, such that the connecting boundaries of compatible components are

identical (up to rigid transformation), and the deviation of the components from their original

geometry is minimized.

Our solution proceeds in two steps. First, to determine the component boundaries, we ap-

ply a novel optimization which evolves a set of closed contours on surfaces such that their

geometric similarity is maximized. Second, we deform the meshes so that the interchange-

ability constraint is met. Our deformation scheme distributes the distortion evenly over

the meshes, and allows the user to interact with the optimizer to find a deformation that

preserves semantic attributes.

1.4 Approximate Dissections

Geometric dissections are a popular type of puzzle and mathematical tool. A geometric

dissection between two shapes is a partition of one shape into pieces, such that the pieces

can be rearranged through rigid motion to form the other shape. Dissections have been

known since ancient times. For example, Plato described a dissection between two equally

sized squares and one larger one (Frederickson, 2002). Perhaps their first known appearance

9

(a) (b)

Figure 1.9: (a) A classic four piece dissection between a square and a triangle. (b) A
dissection between a square and a pair of smaller squares, which illustrates the Pythagorean
theorem.

is on a Babylonian tablet from 1800 BC, which shows the Pythagorean theorem for the

special case of a right isosceles triangle. Figure 1.9 shows a classic dissection and one that

illustrates the classic theorem.1

Dissections fascinate us because of the counter-intuitive property that a suitable set of pieces

can transform between two distinctive shapes. This striking property means that dissections

are popular as recreational puzzles. The transformation property is most impressive when

the number of pieces used in the puzzle is minimized. Therefore designers of dissection

puzzles usually try to minimize the number of pieces.

In mathematics research there has been significant work in finding minimal dissections for an-

alytical shapes such as circles, triangles and regular polygons.2 The Wallace-Bolyai-Gerwien

theorem (Gardner, 1985) describes a procedure to create a dissection between any two poly-

gons of equal area, but the number of pieces it uses may be much larger than the minimal

number needed. The computational task of determining whether a K-piece dissection exists

between two polygons has been shown to be NP-hard by Bosboom et al. (2015). Manurangsi

et al. (2016) showed that the task is similarly hard to solve approximately.

1More recent mathematical results include the proof that any two polygons of equal area have a dissection
between them (and that two polyhedra of equal volume do not, in general, have a dissection between them).

2Cohn (1975) investigated the minimum number of pieces needed for a triangle-square dissection.
Kranakis et al. (2000) gave an asymptotic result on the minimum number of pieces needed for a dissec-
tion between a regular m-gon and an n-gon.

10

(a) (b)

Figure 1.10: (a) The distorted dog head is still perceived as a dog head. (b) The distorted
triangle is no longer perceived as a triangle.

A practical tool for designing dissections between arbitrary shapes with a minimal number of

pieces is desirable. However, the complexity arguments cited above make this an intractable

task and even if such a tool did exist, the minimum number of pieces might still be extremely

large for many shapes.

We introduce a practical technique for dissection design that largely avoids these issues

(Figure 1.8). Our technique is based on the observation that, for a large class of shapes, it is

acceptable for a dissection to approximate rather than exactly construct the shapes. These

are the shapes of complex real-world objects whose geometric specification is fuzzy, such as

the dog’s head in Figure 1.10(a). Our technique is not intended for use on abstract shapes

with an exact geometric specification, because human perception is sensitive to distortions

in these shapes (see, e.g., Figure 1.10(b)). Based on this observation, we propose a modified

dissection problem in which the input shapes impose soft rather than hard constraints. This

relaxation of the problem lets us develop an algorithm that generates dissections that differ

qualitatively from traditional ones.

Our core technical contribution in this work is the introduction of the approximate dissection

problem and a practical technique for solving it. To our knowledge this is the first general

technique for dissections between naturalistic shapes. As an extension to our method, we

develop a graphical user interface for refining dissections that suggests edits to the user and

visualizes how altering one part of the dissection affects the remainder.

11

1.5 Dissertation Overview

The remainder of this dissertation is organized as follows: Chapter 2 surveys prior work

published in the literature that is relevant to the research reported in this dissertation.

Chapter 3 develops the technical details of our zoomorphic design technique, Chapter 4

develops the technical details of our interchangeable components technique, and Chapter 5

develops the technical details of our approximate dissections technique. Chapter 6 presents

our experiments with each of these three techniques and reports on the results obtained.

Chapter 7 concludes the thesis and presents promising avenues for future work. Appendices

A, B, and C present supplemental material associated with each of our three techniques.

12

CHAPTER 2

Related Work

In this chapter, we give a brief overview of research related to each of the three problems

that we address in this thesis.

2.1 Zoomorphic Design

To our knowledge, no prior work in computer graphics has proposed or developed a compu-

tational approach to designing zoomorphic objects. However, our work is related to existing

research on 3D shape modeling, optimization and analysis, mesh composition, and compu-

tational design.

3D Shape Modeling. Many methods have been developed to automatically or semi-

automatically create novel 3D objects. Igarashi et al. (1999) introduce a sketching interface

for designing 3D freeform models. Schmidt and Singh (2010b) and Takayama et al. (2011)

developed interactive tools for transferring geometry and surface details between models.

Funkhouser et al. (2004), Kraevoy et al. (2007) and Jain et al. (2012) introduce approaches

for generating novel 3D models by combining the components of existing models. Chaudhuri

and Koltun (2010); Chaudhuri et al. (2011) develop tools to automatically suggest compo-

nents that could be attached to an existing model based on the model’s shape or semantic

attributes. Our work is similar in that we suggest animal objects to be added to base objects.

However, their approach does not optimize for design factors in the final shape or take mea-

sures to ensure that the design restrictions of the original object are satisfied. Kalogerakis

13

et al. (2012) introduce a probabilistic model for synthesizing plausible man-made objects

in a category by combining components of existing objects in the same category. Since we

combine shapes from different categories, our criteria for plausibility differ.

3D Shape Optimization. Several works alter the geometry of an existing object in order

to optimize for certain criteria, such as stackability (Li et al., 2012), stability (Prévost et al.,

2013), spinnability (Bächer et al., 2014), and aerodynamic characteristics (Umetani et al.,

2014). Zheng et al. (2016) optimize man-made shapes to fit a given humanoid figure better.

We optimize two objects jointly for how well they can be combined to create a zoomorphic

object.

3D Shape Analysis. We focus on a few highly related works in the rich body of literature

on 3D shape analysis. Laga et al. (2013) find semantic correspondences between shapes

and identify functional regions on a shape by using a graph representation of the shape

and a graph kernel score to identify shape regions with similar contexts. We use similar

technical ingredients for a different purpose. Our graph kernel score quickly identifies shapes

that are likely to result in good optimization. Zhang et al. (2008) conduct a search for

a partial correspondence between two shapes, using a deformation energy associated with

each correspondence to identify the best correspondence. In our correspondence search, the

ultimate goal is not to identify a correspondence, but to perform a coarse exploration of a

highly complex energy landscape as the first stage of our optimization process. Shapira et al.

(2010) detect analogous parts between objects that may belong to different categories using a

hierarchical segmentation based on the shape-diameter function. Our correspondence search

may be regarded as a different way of finding analogous parts, with considerations particular

to our problem. Our work contributes to structure-aware shape processing (Mitra et al.,

2013) by introducing a general approach for ensuring that the addition of new geometry to

an object does not violate the object’s design restrictions.

Computational Design. Our work is a novel instance of a recent stream of research that

addresses highly open-ended design problems by computer that have traditionally been the

domain of artists and designers. Such problems range from computational interior design

14

(Yu et al., 2011; Merrell et al., 2011), to the design of clothes (Umetani et al., 2011), acces-

sories (Igarashi et al., 2012), puzzles (Zhou et al., 2014), mechanical toys (Zhu et al., 2012),

and even cities (Aliaga et al., 2008; Vanegas et al., 2012). We tackle the new problem of

computationally designing zoomorphic objects.

2.2 Interchangeable Components

Mix-and-Match Toys possess interchangeable components that allow the user to change

their appearance. These toys are often designed to form shapes with an abstract look which

emphasizes the fact that they are assembled from components. In contrast, our approach

aims to make shapes with a coherent appearance. The enduring popularity of these toys in

the digital era demonstrates the appeal of physically creating new shapes from a collection

of components. Indeed, research in developmental psychology finds that hands-on toys are

an effective way for children to learn spatial reasoning and express their creativity (Bond,

2014; Golinkoff et al., 2004). Researcher Roberta Golinkoff advises parents to “look for [toys]

that children can take apart and remake or reassemble into something different, which builds

their imagination.” To our knowledge, we are the first to introduce specialized software for

the design of such toys.

Assembly-Based Modeling. Our work can be thought of as a physical realization of

Assembly-based Modeling, a popular modeling paradigm in which new shapes are con-

structed by connecting components from existing shapes. Funkhouser et al. (2004) in-

troduced the concept of Assembly-based Modeling. In their work, the shapes to extract

components from are found by querying a database based on shape similarity to an existing

shape. The user then interactively extracts the components through intelligent scissoring.

In a work by Kraevoy et al. (2007) the extraction and composition of components was fully

automated. Chaudhuri and Koltun (2010); Chaudhuri et al. (2011) introduced techniques

for automatically suggesting components to be added to an existing shape, using the shape’s

geometric or semantic attributes. Jain et al. (2012) used assembly-based modeling and anal-

15

ysis of shape contacts to generate plausible blends between two existing shapes. Kalogerakis

et al. (2012) introduced a fully automated method which used assembly-based modeling and

a probabilistic model of component compatibility to synthesize plausible novel shapes from a

database of existing shapes. In the virtual setting of these works, there is no need to enforce

component interchangeability since a unique deformation can be computed whenever two

components are connected. However, interchangeability is highly desirable in our physical

setting, because it allows a small number of components to construct a large number of

shapes. Hence these works focus on very different problems from ours.

Partitioning Shapes for Fabrication. Luo et al. (2012) proposed an approach to auto-

matically partition a shape into components using a binary space partitioning tree, in order

to maximize 3D printing efficiency. Hu et al. (2014) partitioned into pyramidal components.

Chen et al. (2015) and Yao et al. (2015) also optimize for the component packing. Our work

partitions shapes into fabricable components as well, but we determine the partition based

on completely different criteria.

Shape Optimization for Fabrication. Several works optimize the geometry of an existing

shape so that it possesses a desirable physical property when fabricated. The various prop-

erties examined include stability (Prévost et al., 2013), spinnability (Bächer et al., 2014),

and aerodynamics (Umetani et al., 2014). These works solve physical problems, whereas our

work deals with the geometric problem of generating interchangeable components.

Fabrication-aware Design. Several works introduced methods which assist the user in

creating 3D designs suitable for fabrication. Umetani et al. (2012) introduced an inter-

active furniture design system that provided suggestions to help the user achieve a stable

and durable design. Lau et al. (2011) proposed a method to convert non-fabricable furni-

ture models to fabricable ones by parsing the models with a grammar and automatically

adding connectors and hinges. Schulz et al. (2014) introduced a data-driven system in which

parametrized components can be attached together to create designs suitable for fabrication.

Koo et al. (2014) described a system that automatically creates a fabricable shape with me-

chanical parts that possess functional relationships specified by the user. In these works,

16

the process of exploring the shape design space takes place in the virtual realm, whereas our

work brings it into the physical world.

2.3 Approximate Dissections

The last 50 years have seen a surge of recreational interest in finding minimal-piece dis-

sections between certain abstract figures, which are often regular polygons. These results

are only for specific instances of the dissection problem, but some heuristic techniques for

finding solutions have been identified. Frederickson (2003) did the seminal work in this area.

The shapes used in these dissections are much simpler than those featured in our work on

approximate dissections.

2D Shape-Guided Synthesis. Our work belongs to a family of graphics research in which

a 2D shape guides the synthesis of some object, such as ASCII art (Xu et al., 2010b), mazes

(Xu and Kaplan, 2007), Escher tiles (Kaplan and Salesin, 2000), calligrams (Zou et al., 2016),

and connect-the-dot puzzles (Löffler et al., 2014). In our work, we are guided by two shapes

and the object is a set of pieces that can approximate both shapes.

Computational Dissection Design. There has been a modest amount of research in

computational techniques for solving the dissection problem and some similar problems.

Zhou et al. (2012) introduced an algorithm for finding the minimum number of pieces for an

exact dissection between shapes. Their method uses a voxel grid to represent the input shapes

and a stochastic search strategy. In theory, a sufficient number of voxels could accurately

capture the complex organic shapes targeted by our approach, but the results shown in

their paper are limited to coarse voxel grids and simple shapes. Our continuous solution

representation allows for more complex shapes. Zhou et al. (2014) proposed an algorithm

that partitions a 3D shape into approximately cubic pieces and connects them with hinges

so that it can be folded into a cube. Their problem statement is related to the dissection

problem in that they try to partition an object into pieces so that it can transform to another

shape. Unlike our approach they make no effort to minimize the number of pieces, instead

17

focusing on finding a viable hinge connectivity. Huang et al. (2016) proposed a method

that, given two shapes, partitions the first into pieces that can be connected through hinges

to transform into a shape that roughly approximates the second. Unlike the former work,

they do not require physical feasibility. They determine the partition and hinge connectivity

of the first shape through a user-provided skeleton, which limits the generality of their

solutions. Their work targets significantly coarser approximations than ours. Kwan et al.

(2016) recently proposed a novel shape descriptor that can be used to solve the 2D collage

problem. In this problem, the goal is to tightly pack shapes from a given library so that

they approximate a larger shape. Their problem is similar to ours in that they approximate

a shape with a set of pieces, but different in that the pieces are fixed and only need to form

a single shape. Concurrent research by Song et al. (2017) explored the design of furniture

that can reconfigured to form a different type of furniture, which is highly related to the

dissection problem.

18

CHAPTER 3

Zoomorphic Design

Figure 3.1 shows the main components and workflow of our approach to zoomorphic design.

The first step is deciding what objects to use for the base object and animal object (Fig-

ure 3.1(a)). Our method efficiently identifies desirable pairings of a base object and animal

object from a database, using a graph-kernel based method. It then merges the two objects

by deforming, repositioning, and removing unwanted geometry from them (Figure 3.1(b)).

We formulate this process as an optimization of several important design factors that include

the prominence of the visually-salient regions of the animal object, the degree of distortion

of the base objects and animal objects, and the smoothness of the transition between the

base object and animal objects. We enable the user to adjust the weighting given to each

factor, which provides high-level control over the resulting design. The process is guided by

a novel technique, called the Volumetric Design Restriction (VDR), which ensures that the

design restrictions of the base object are satisfied in the zoomorphic design.

3.1 Preprocessing

Input Data. The input objects take the form of triangular meshes. The input objects are

divided into two categories, the animal objects and the base objects. We assume that the

input objects are oriented upright and require a segmentation of all objects into semantically

meaningful parts. For objects that have several similar objects in the database that have

already been segmented, the segmentation can be transferred automatically using the method

of (Kalogerakis et al., 2010). Nothing in our approach precludes a hierarchical segmentation,

19

Input Meshes Shape Graph Construction Graph Kernel

(a) Candidate objects Suggestion

Correspondence Search Configuration Refinement Final Merging

(b) Zoomorphic object Creation

Figure 3.1: Overview of our Zoomorphic Design approach.

but we used a simple segmentation to produce all the results shown.

Annotation. Each base object is annotated with the volumetric design restriction labels.

These labels are used to describe design restrictions of the base object which should be

preserved in the zoomorphic object (Section 3.3.1). This is done either manually or auto-

matically using the method described in (Kalogerakis et al., 2010). Each animal object is

annotated with the visual salience labels, which need not be precise, so the annotation can

be done quickly. These labels are used to identify regions of the animal object which should

be visible in the zoomorphic object (Section 3.3.3). The manual annotations need only be

obtained once per input object rather than once per synthesis operation, so they are not

overly time consuming.

20

3.2 Candidate Objects Suggestion

Given a database containing all the input objects, pairs of base objects and animal objects

with high similarity scores are suggested as input candidates to create zoomorphic objects

(Section 3.4). Our method performs this operation automatically using a graph kernel tech-

nique in which the input objects are represented as graphs.

3.2.1 Shape Graphs and Graph Kernels

For each object, which has already been segmented as described in Section 3.1, we construct

a shape graph to capture the structural relationship between its segments. The similarity

between different shapes can then be efficiently computed by comparing their respective

shape graphs with a graph kernel.

The shape graph is constructed as follows: Each segment corresponds to a node. Each

adjacency between segments corresponds to an edge. Each segment has some geometric

attributes, which characterize the segment, such as the part scale or centricity. The attributes

of a segment are stored in its corresponding node. Appendix A presents the details of all

the attributes used.

Graph kernels are a general tool for measuring the similarity between two graphs (Kashima

et al., 2004; Shawe-Taylor and Cristianini, 2004). We use graph walk kernels to compare the

similarity between every base object and animal object pair, as illustrated by the example in

Figure 3.2. A graph walk kernel evaluates the similarity of all pairs of p-walks on the shape

graphs (p = 3 in our experiments), where a p-walk traverses p + 1 nodes and p edges. To

evaluate the similarity between two walks, we employ a node kernel and an edge kernel to

compute the similarity between the corresponding nodes and edges of the walks. Specifically,

a node kernel takes two nodes as input and computes a similarity score using the attributes

stored at the nodes. Analogously, an edge kernel takes two edges as input and computes a

similarity score. A graph walk kernel can be evaluated efficiently by dynamic programming

21

Figure 3.2: Example of a p-walk (p = 2) over the shape graphs of a horse and a chair. The
node kernel and edge kernel evaluate the similarity between the corresponding nodes and
edges. A larger number indicates a higher similarity.

(Shawe-Taylor and Cristianini, 2004).

We note that the graph kernel is conservative—it identifies some, but not all of the pairings

that will result in a desirable zoomorphic object. In our approach, the animal object may

deform itself considerably, which the graph kernel does not consider. Therefore, the user is

free to ignore the graph kernel’s suggestions and select pairings with low similarity scores. In

our results showcase (Figure 6.1) each base object shown had a high similarity score (within

ten percent of the highest score) with its paired animal object, with the exception of the

go-kart.

3.3 Problem Formulation

Assuming that a base object and animal object pair has been selected, let us denote the

base object asMB and the animal object asMA. We first describe two important concepts

used throughout our method—the “volumetric design restriction” and the “configuration

22

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Examples of volumetric design restrictions. (a) A simple merge between the
face and mug destroys the liquid-containing ability of the resulting zoomorphic object. (b)
Objects under the volumetric design restriction. (c) The resulting zoomorphic object, which
is still a container. (d) What poses for the insect’s tail allow a person to sit on the chair? (e)
The tail intrudes into a restricted zone and interferes with sitting. (f) A minor adjustment
to the tail pose removes it from the zone and allows people to sit.

23

energy”.

3.3.1 Volumetric Design Restriction

The base object, for example, a chair or a mug, usually possesses certain geometric features

or structures that are crucial to its design and correspond to high level properties such as

sittability or containability. For example, consider the face mug in Figure 3.3(a). The naive

addition of the face conflicts with the restriction that the mug base object must hold liquid.

For a more complicated example, consider the insect chair in Figure 3.3(d). In what poses

does the insect’s tail conflict with the design restriction that a person must be able to sit

in the chair? The animal object can merge with the base object in a variety of ways, so it

is important that the merge preserves these crucial properties on the base object, which we

call “design restrictions”. The problem of preserving certain qualities of a man-made object

under geometric modification is uniquely challenging in our setting, because of the many

ways the animal object can interfere with these qualities.

The volumetric design restriction (VDR) is a novel concept, which uses a labeling of the

base object surface to specify the volume of space in which the presence of geometry from

the animal object will violate the design restrictions of the base object (Figure 3.3(b),(e)).

We call this volume of space the restricted zone, and the remaining volume the free zone. In

creating a zoomorphic object, geometry from the animal object can lie in the free zone, but

not in the restricted zone.

Labeling the base object to specify the restricted and free zones has two advantages over

specifying the zones directly. First, the labeling means that as the base object deforms, the

zones deform accordingly, which is necessary since our optimization procedure deforms the

base object. Note that the zones are related to the geometry of the base object. For example,

a container needs to preserve a zone for it to contain water. If the container widens, then

this zone should also become wider. Second, once a labeling has been specified for several

base objects in a category, we can train a classifier to transfer the labeling to other objects

24

in that category (Kalogerakis et al., 2012). By default, the labels are generated manually.

To assist users in the manual labeling task, we developed a basic user interface that displays

the changes in the zones interactively as the user modifies the labeling.

Free and Restricted Zones. In our formulation, the label assigned to a face f on a surface

mesh determines how the space around f is partitioned into free and restricted zones. We

motivate our formal definition of this partitioning by showing four different cases—Infinite

Free, Infinite Restricted, Finite Free, Finite Restricted, that arise in our problem of how to

preserve a design restriction when adding new geometry to an object. Each case corresponds

to a different way of partitioning the space.

Infinite Free: Consider adding geometry to the back of the chair in Figure 3.4(a). Here we

do not place any restrictions on how much animal object geometry can be added (assuming

we ignore the mass of the added geometry). Therefore, all the space around the surface is

free.

Infinite Restricted : Consider the need to preserve a sitting region on the chair. Here, we

must preserve the flatness of the surface so that sitting is comfortable and preserve the empty

space around the surface so that a human can occupy it. These requirements mean that all

the space around the surface is restricted .

Finite Free: Consider adding geometry to the legs of the chair. In contrast to the Infinite

Restricted case, we do not care about preserving the flatness of the leg surface. In fact,

adding geometry from the animal object would enhance the leg’s appearance. However, we

still want the leg to be roughly cylindrical in shape; e.g., we do not want animal object

geometry that juts far out from the leg. In this case, space within a finite distance from the

leg is free and space beyond that distance is restricted .

Finite Restricted : In Figure 3.4(b), consider the need for the wheels on the tricycle to spin

freely and to have circular symmetry. We cannot allow any contact of the wheel with the

animal object, but in contrast to the Infinite Restricted case, there is no need to preserve an

empty space for a human to occupy. Here, the partition is the opposite of the Finite Free

25

(a) (b)

Figure 3.4: (a) Volumetric design restriction of a chair. Three segments (purple, olive, &
green) have different outward zones corresponding to their label types (if all the free zones
were filled with material, the resulting object would still be a chair). (b) Volumetric design
restriction of a tricycle. The wheel segments (in blue) are painted with labels of the Finite
Restricted case, which protect them from being covered by any animal object geometry (we
illustrate only labels of the Finite Restricted case in this example).

case—a finite space around the surface is restricted , anything further out is free.

Note that for all cases, the space inside the base object is free, because if a space is already

occupied by one object it doesn’t matter if it is also occupied by another.

Let each face fi ∈ Mbase be assigned a label li = (αi, βi), where αi ∈ {1,−1} denotes a

zone type (free or restricted) and βi ∈ R+ denotes a distance threshold from face fi. Now

consider an arbitrary point p in the space. Let f̂ denote the closest face on Mbase to p. To

determine the zone r(p) assigned to p, we compute the signed distance γ from Mbase to p.

Suppose f̂ has label l̂ = (α̂, β̂). Then,

r(p) =

1 if γ ≤ 0,

α̂ if γ > 0 and γ < β̂,

−α̂ if γ > 0 and γ ≥ β̂,

(3.1)

26

where r(p) = −1 refers to the restricted zone and r(p) = 1 refers to the free zone. The

formula means that point p belongs to the free zone if it is inside the object; it belongs to

zone type α̂ if it is outside the object and within the distance threshold β̂ from f̂ ; otherwise

it belongs to the opposite zone type −α̂. Each of the four cases mentioned above corresponds

to a labeling:
β < +∞ β = +∞

α = −1 Finite Restricted Infinite Restricted

α = 1 Finite Free Infinite Free

Functionality. We briefly clarify the relationship of the VDR to functionality. We be-

lieve that the volumetric design restriction can preserve some types of functionality such as

containability, graspability, or sittability. In general, it can preserve functionalities which

are apparent from visually inspecting an object. In (Zheng et al., 2013), another work that

deals with preserving functionality in man-made objects, this type of functionality was called

“functional plausibility”. However, the VDR cannot deal with more complex functionalities

like stability, structural strength or aerodynamics which in general, cannot be determined

from visual inspection alone. Our user study (Section 6.1.6) showed that the VDR has

a major impact on whether our approach generates zoomorphic objects that are plausible

examples of the category of man-made object they were derived from. Since plausibility

is highly related to functionality for man-made objects this result supports our statement

about functionality.

Examples. The volumetric design restriction can be applied to resolve the previously men-

tioned issues raised in the creation of zoomorphic objects. Figure 3.3(c) shows the face mug

example. The restricted zone removes the geometry of the face that prevents the cup from

holding water. Figure 3.3(f) shows the insect chair example. The restricted zone signals the

animal object to alter its pose to preserve the chair’s sittability.

The VDR has the additional advantage that it can be naturally integrated into our opti-

mization framework. We discuss this in Section 3.4.

27

(a) FFD (b) LBS (c) Cuboids

Figure 3.5: Different deformation models. (a), (b) Animal object deformation models. FFD
is used to deform a face (a) and LBS is used to deform a horse (b). (c) Base object defor-
mation model. Each cuboid encloses a group of segments that are constrained to share the
same transformation.

3.3.2 Deformation Models and Configuration

Unique to our problem is that a zoomorphic object is composed of a base object and animal

object, which are generally an organic object and a man-made object. We allow both the

animal object and base object to deform during the optimization process. The animal object

and base object use different deformation models that are well-suited for organic and man-

made objects, respectively.

Animal object Deformation Model. In general, different animal objects require different

deformation models (Figure 3.5(a),(b)). Currently our approach supports two models—

Linear Blending Skinning (LBS) and Free-form Deformation (FFD), and it may be extended

to support others as well. Animal objects which use LBS are generally creatures with clearly

defined limbs, such as squids or horses. In our model, the control parameters specify only

the translations of the LBS handles. The remaining degrees of freedom are found by the

method in (Jacobson et al., 2012). Their method also allows us to specify only a subset of

the translations and find the rest automatically. LBS requires that the input mesh comes

with a skeleton and weights. These can be found manually or automatically with (Baran

and Popović, 2007) and (Tagliasacchi et al., 2012). Animal objects which use FFD are non-

28

Figure 3.6: Different configurations. Each configuration φ encodes how the animal object
MA and base object MB deform and position themselves to create a zoomorphic object.

articulated objects, such as faces, which are not well-described by a skeleton. We enclose

the model in a FFD cubic lattice whose density can be specified by the user. Generally a

1× 1 or 2× 2 lattice offers enough control.

Base object Deformation Model. We use a model in which each segment in the base

objectMB can be transformed by a scaling and translation (Figure 3.5(c)). The translations

are constrained to preserve segment adjacencies. Groups of segments can be constrained to

share the same transformation, which is useful for preserving symmetry and functionality,

such as ensuring that the legs of a chair have equal length. Scales in different directions can

be constrained to be equal, which is useful for ensuring that wheels remain circular. This

deformation model is very simple, yet it provides a sufficient amount of freedom for a wide

range of man-made objects.

Configuration. We define φ = (φa, φb), where φa and φb are the vectors of configuration

parameters of the animal object and base object, respectively, to be the “configuration”,

which encodes how the animal object MA and base object MB deform and position them-

selves to create a zoomorphic object. The meaning of the parameters depend on the chosen

deformation models. Figure 3.6 shows example configurations for a horse and chair.

3.3.3 Configuration Energy

We define a configuration energy to measure the desirability of the zoomorphic object re-

sulting from a given configuration. A configuration that results in a desirable zoomorphic

29

object should have a low energy. We identify desirable configurations by minimizing the

configuration energy:

E(φ,w) = wa
dfE

a
df(φa) + wb

dfE
b
df(φb) + wrEr(φ) + wvsEvs(φ) + wgEg(φ), (3.2)

where w = [wa
df, w

b
df, wr, wvs, wg]T is a vector of weights. For fully automatic operation,

setting all the weights to 1.0 generally produces a reasonable result. However, allowing the

user to adjust these weights can lead to interesting changes in the designed zoomorphic

object (see Section 6.1). We discuss the individual energy terms next:

Animal object Deformation. We penalize deformation of the animal object MA by

defining

Ea
df(φa) =

D(φa)

Dm

+ C(φa), (3.3)

where D(φa) is the mesh deformation energy defined in (Sorkine and Alexa, 2007a) and Dm

is a normalization term found by taking the median of the energies encountered during the

correspondence search (see Section 3.4.1). The term C(φa) returns +∞ if the deformation

is so high that it is invalid, and 0 otherwise. For animal objects deformed using LBS, we

define C(φa) in terms of the handle positions. Specifically, if any skeleton bone is stretched

by more than a threshold, or if the angle between a pair of bones differs from the rest angle

by more than a threshold, the deformation is invalid. For animal objects deformed with

FFD, C(φa) = 0.

Base object Deformation. This term penalizes non-uniform scaling of the base object.

We formulate Eb
df(φb) as the sum of squared differences of all pairs of segment scales of the

base object segments. Let si,u be the segment scale of base object segment i with respect to

axis u ∈ {x, y, z}. Then,

Eb
df(φb) =

1

Kb
df

∑
i<j

∑
u,v

(si,u − sj,v)2, (3.4)

30

(a) (b)

Figure 3.7: Computing the visual salience. (a) Input mug and face with visual salience
annotations (green). (b) Images captured by 8 cameras looking at the objects from different
viewpoints.

where Kb
df is a normalization constant equal to the number of terms in the sum.

Registration. This term encourages the animal object and base object to align with each

other. We compute the term over a set of uniformly sampled vertices Vr from the animal

objectMA. Given a vertex v ∈ Vr, define nv as the vertex normal and d(v) as the distance

function from v to the base object MB, and denoting the gradient of the distance from v

to the base object MB as (∇d)v,

Er(φ) = 2− 1

|Vr|
∑
v

exp(−d(v)2

σv2
)− 1

|Vr|
∑
v

exp(−arccos(nv · (∇d)v)2

σn2
), (3.5)

where we set σv equal to 1/4 the diagonal of the bounding box enclosing both objects and

σn = π
4
.

Visual Salience. This term encourages the appearance of visually salient regions from the

animal object in the zoomorphic object. We assume the animal object MA has had its

visually salient regions labeled. The labeling can be provided automatically with existing

methods (Lee et al., 2005) or manually by the user. Manual labeling offers greater control

and need not be very precise. We penalize configurations that occlude or remove the visually

31

salient regions of MA. We evaluate the degree of occlusion and removal by rendering the

base object and animal objects deformed by configuration φ across a set of camera views Ω

and measuring the area-weighted proportion of salient faces visible in each view. We do not

render the parts ofMA that exist in restricted zones, as those parts ofMA will be absent in

the synthesized zoomorphic object. Let Vvs be the set of visually salient faces in the animal

object and let Vωvs ⊆ Vvs be the set of visually salient faces visible from camera view ω ∈ Ω.

Our visual salience term measures the proportion of the visually salient regions which are

visible:

Evs(φ) = − 1

A(Vvs) |Ω|
∑
ω∈Ω

A(Vωvs), (3.6)

where A() computes the total area of all the faces. Figure 3.7 depicts how we place the

cameras. We uniformly arrange eight cameras in a circular-disc manner on a horizontal

plane level to the objects, with the objects situated at the center. The cameras are at the

minimum distance from the objects that allow them to see the entirety of the objects. Each

visually salient face is rendered in a different color to detect if it is visible. Thus, the cameras

capture eight images which are used to evaluate Evs(φ).

Gash. In creating the zoomorphic object, any geometry from the animal object that intrudes

into the restricted zones needs to be removed. This removal will create “gashes” on the animal

object at the boundary between the restricted and free zones. On one side of the boundary,

the animal object is preserved, while on the other side it is removed. Figure 3.8(a)–(b) shows

a 2D example of a gash created on a horse when merging with a chair, and the resulting

zoomorphic objects in 3D. In general, these gashes are aesthetically undesirable. The issue

is resolved if the gashes occur inside the base object, because this conceals them from view.

Therefore, our gash term penalizes only the visible gashes (Figure 3.8(b)). We explicitly

define when a gash is visible in our gash energy formulation. In 3D, a gash is a surface. This

surface extends into the interior of the animal object. To calculate the area of this surface,

we would need a volumetric representation of the animal object, which would be costly to

work with. Instead, we identify the intersection of the gash surface with the animal object’s

32

(a) (b)

(c) (d) (e) (f)

Figure 3.8: Considering gashes when creating a zoomorphic object. (a) After removing
the portion of the animal object in the restricted zone, a gash (red) will appear. (b) Our
optimizer bends the horse’s head slightly down and raises the chair’s back to avoid the
formation of a gash. (c) Zoomorphic object with a gash. (d), (e) Our optimizer removes
the gash surface (red) by minimizing the length of the intersection (green) between the gash
surface and the animal object’s surface. (f) Zoomorphic object without a gash.

33

(a) MA Deformation (b) MB Deformation (c) Registration (d) V. Salience (e) Gash

Figure 3.9: Effects of omitting an energy term. Each subfigure shows the result without (left)
and with (right) an energy term. (a) Without the animal object deformation term (left),
the horse’s body is stretched out excessively to match the tricycle’s frame. (b) Without the
base object deformation term (left), the chair’s base is squeezed to match the horse’s body.
(c) Without the registration term (left), the horse is not well-aligned with the chair. (d)
Without the visual salience term (left), the face’s details are not revealed in the merge. (e)
Without the gash term (left), the resulting zoomorphic object shows a gash.

surface, which will be a curve whose length is efficiently computable. We can identify these

curves by examining the vertices of the animal object MA. We search for pairs of adjacent

vertices (m,n), where m is in a free zone and n is in a restricted zone, and both vertices are

outside the base object. These pairs of vertices are at the locations where the gashes onMA

occur in the final merge, and are not concealed by the base object from view, ie: the gash

is visible (if m were inside the base object then the gash would not be visible). For each

such pair, we mark m as a gash vertex. Let Vg be the set of all gash vertices. Summing the

lengths of all edges connecting gash vertices gives us the length of all intersections, which

we use as the gash term:

Eg(φ) =
1

Kg

∑
v′∈N (v)
v,v′∈Vg

||v − v′||, (3.7)

where N (v) is the set of vertices adjacent to v, and Kg is a normalization constant equal to

the largest geodesic distance between two vertices in MA.

Figure 3.9 illustrates the negative effects of dropping any of the terms of the configuration

energy function.

34

3.4 Zoomorphic Object Creation

Given a base object and animal object pair, we need to search for a desirable way to arrange

them before merging them to create a zoomorphic object. We do this by minimizing the

energy in Section 3.3.3 in a coarse-to-fine manner. In the coarse stage, we find a good

correspondence between the two objects. This coarsely aligns the animal object with the

base object and gives us an initial configuration. In the fine stage, we refine the initial

configuration with continuous optimization. This stage expands the degrees of freedom of

the optimization to resolve situations that require subtle adjustments. Finally, unwanted

geometry is removed from the two objects and the resulting objects are merged by a union

operation in the volumetric space to create the zoomorphic object.

3.4.1 Correspondence Search

A correspondence is a set of pairs of corresponding segments from the animal objectMA and

base object MB. We define a correspondence as c = {(ai, bi), i = 1, . . . , N}, where segment

ai in the animal object MA has a corresponding segment bi in the base object MB, and N

is the total number of pairs of corresponding segments.

The goal of the correspondence search is to coarsely explore the configuration energy land-

scape, by explicitly associating each correspondence with a configuration. Good correspon-

dences are associated with low-energy configurations, which can be used as initialization

points for the fine-scale energy minimization. We justify our search by the observation

that many zoomorphic objects have an “implicit correspondence”, where parts of the ani-

mal object coincide spatially with corresponding parts of the base object. Hence, explicitly

searching for a good correspondence provides us with a reasonable strategy for globally ex-

ploring the configuration energy landscape. Note that the configurations at this stage need

not be optimal. We merely need to identify a rough pose of MA that can be refined later

(Section 3.4.2).

35

(a) Search Tree (b) Correspondence (c) Configuration

Figure 3.10: (a) Each node of the search tree refers to a correspondence. (b) A correspon-
dence between a horse and a chair; corresponding segments have the same color. (c) The
configuration induced by this correspondence has a high energy due to the large deformation.

We use a combinatorial tree search similar to (Zhang et al., 2008). As Figure 3.10 illustrates,

each node of the tree stores a correspondence between MA and MB. A node is expanded

into its child nodes, where each child node has a correspondence cchild equal to its parent

node’s correspondence cparent plus a new pair of corresponding segments (ak, bk). That is,

cchild = cparent ∪ {(ak, bk)}.

For notational convenience, let us define φ(c) as the configuration associated with corre-

spondence c. Then φ(c) should deform MA such that each segment ai of MA is aligned

with its corresponding segment bi ofMB. To find φ(c), we first apply local transformations

that align each animal object segment ai in c to its corresponding base object segment bi.

Since in general, c is a partial correspondence, we still need to find a deformation for the

animal object segments that were not in c. We find this deformation by minimizing the

ARAP energy (Sorkine and Alexa, 2007a) over the entire animal object with the locally

transformed segments constrained to be fixed. Note that the local transformations are com-

pletely determined by their segment pair ai, bi, so they can be computed in advance for each

possible segment pair. In our implementation we use non-rigid ICP to compute the local

transformations, but other methods may be used.

Our search starts from the root of the tree. It computes the configuration energy of each

36

(a) After Correspondence Search (b) After Configuration Refinement

Figure 3.11: Configurations and zoomorphic objects generated after correspondence search
and after configuration refinement.

visited node. If a node stores a correspondence that is associated with an infinite energy

(this situation occurs when the animal object deformation is infeasible), we prune its subtree.

Our search also only considers correspondences that satisfy bilateral symmetry.

The output of this stage is a set of correspondences and their associated configurations. We

select the configuration φ̂ with the lowest energy and the associated correspondence ĉ for

the next stage.

3.4.2 Configuration Refinement

In this step, we refine the rough configuration given from the correspondence search. We

optimize the full set of control parameters φa and φb of bothMA andMB using φ̂ = (φ̂a, φ̂b)

as the initialization point. The registration term Er(φ), gash term Eg(φ) and visual salience

term Evs(φ) are non-differentiable, and the full energy landscape usually has many local min-

ima. Therefore, we minimize the configuration energy using Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) (Lozano, 2006). We terminate once the configuration energy

has not decreased by more than 10% in the last 25 iterations.

The modifications made to the configuration in this stage are small in absolute terms, but

they usually improve the final zoomorphic object’s appearance significantly. In particular,

this stage has enough degrees of freedom to make the delicate adjustments necessary to lower

37

the gash term Eg(φ), which has a large impact on the zoomorphic object’s appearance.

Figure 3.11 shows the configuration and object of the Horse Chair after correspondence

search and after configuration refinement.

3.4.3 Removals and Merging

Once the input objects are in their final configuration, we remove certain regions from both

objects and then merge them to form a zoomorphic object. To do the removals, we first

convert the objects to their volumetric representations.

For the animal object MA, we remove any of its geometry that lies in the restricted zones

given by the VDR. The base object removals are motivated by the observation, that in many

cases, the appearance of the zoomorphic object is improved if a segment of the base object

does not appear in the zoomorphic object, because it has been “replaced” by a corresponding

segment in the animal object. For example, when designing the Horse Chair, we want the

original chair legs to be removed, so that they can be completely replaced by the horse’s

legs. Our formal procedure is to remove a segment bi on MB if all the following conditions

are met:

1. Removing bi will not reveal a gash on MA.

2. There should be a segment ai from MA that replaces the bi to be removed (e.g.,

a horse’s leg replacing a chair’s leg). This is done by checking if bi was assigned a

corresponding segment ai from MA in the correspondence search.

3. The corresponding segment ai should also overlap with each of bi’s adjacent segments

(e.g., a horse’s leg replacing a chair’s leg should also overlap with the chair’s base). We

detect this overlap using the volumetric representation of the segments. Figure 3.13

shows an example which motivates this requirement.

After performing removals, we take the union of the volumetric representations as the final

output. To make the transition between the objects appear more natural, we apply several

38

(a) Input objects (b) Small Weight (c) Large Weight

Figure 3.12: Effects of weight wbdf in base object control. (a) Input objects. (b) A small
weight causes the chair (base object) to deform strongly to match with the horse. (c) A
large weight causes the horse to deform strongly to match with the chair.

iterations of implicit smoothing to the volumetric representation of the zoomorphic object

at the locations where the base object and animal object intersect. Finally, the volumetric

representation is converted to a manifold mesh using a standard method such as Marching

Cubes.

3.5 User Control and Enhancements

One of the goals of our approach is to allow the user to direct the high-level design of

zoomorphic objects. We provide several ways for the user to do so.

Correspondence Search. The user can explore the design space by adjusting the weight

vector w used to select φ̂. Figures 6.1(i)–(k) shows different Horse Chairs created using

different visual salience weights. Figure 6.1(l) shows two Rocking Cows created with different

animal object deformation weights.

Base object Control. After the correspondence search returns an initial configuration φ̂

and a correspondence ĉ, we allow the user to refine the configuration by adjusting the trade-

39

(a) (b) (c) (d)

Figure 3.13: Explanation of the overlap criterion for removing base object segments. The
chair leg is adjacent to the chair base. (a) The horse leg does not overlap with the chair
base. (b) If we remove the chair leg and generate the zoomorphic shape, the horse leg is
disconnected. (c, d) When the horse leg does overlap with the chair base, the zoomorphic
shape is contiguous.

off between base object and animal object deformation. The user visualizes this trade-off

interactively. Our user interface includes a slider that adjusts the base object deformation

weight wb
df. After the weight changes, we alter the configuration φ̂ to minimize the configura-

tion energy using gradient descent. We optimize only with respect to the base object control

parameters φ̂b; i.e., the scales of the cuboids. We deform MA accordingly whenever MB is

deformed, such that its segments still align with the corresponding segments inMB given by

ĉ. This deformation is obtained by applying the affine transformations from the base object

deformation model (Section 3.3.2) to their corresponding segments in the animal object. We

show the effects of changing wb
df in Figure 3.12. Since we only alter the base object part

scales and scale the animal object accordingly in this stage, the registration, visual salience,

and gash terms will not change significantly from their values in the original configuration

φ̂. Therefore we make our optimization more efficient by recomputing only the animal and

base object deformation energy terms.

User-Guided Refinement. Inspired by the user interface in (Prévost et al., 2013), we

allow the user to stop the optimization process, change the pose of the animal object, and

then resume the optimization. Figure 3.14 shows an example of altering a horse’s pose.

40

(a) Initial Configuration (b) User Edit (c) Further Optimization

Figure 3.14: Our optimizer refines the configuration upon user edit. (a) Initial configuration.
(b) During user edit, the frontal legs are pulled up by the user, causing intrusion (red) into
the restricted zone according to the volumetric design restriction. (c) The optimizer further
optimizes the configuration to avoid the intrusion.

Segment Removal. For more flexibility, we allow the user to manually specify any segment

to be removed in the creation of the zoomorphic object. For example, in creating the horse

chair shown in Figure 3.11, the user specified that the segment of the chair’s back should be

removed. The effect of removing a segment can be easily previewed in our user interface.

41

CHAPTER 4

Interchangeable Components

Figure 4.1 shows an overview of our Interchangeable Components approach for hands-on

assembly-based modeling. Our goal is to partition a set of input shapes into components

which can be physically connected to form novel objects, while minimizing the visual impact

of the junctions between components.

4.1 Representation, Formulation, and Approach

Representation. Our input shapes are represented as triangle meshes. We assume the

meshes are aligned with consistent front-back and top-down directions and scaled to a con-

sistent size. Each mesh is assumed to have been segmented into semantically meaningful

regions. We clarify that the task of our approach is to adjust the borders between seman-

tic regions in order to maximize geometric compatibility. The task of determining what

the semantic regions are is a separate, open problem in Computer Graphics. The seman-

tic segmentation can be obtained automatically using a data-driven approach (Kalogerakis

et al., 2012), a fully automatic geometric approach (Sidi et al., 2011) or with an interactive

tool. The semantic segmentation guides how the input meshes should be partitioned into

interchangeable components and specifies the component connectivity. Components corre-

sponding to the same semantic border (e.g., between the body and leg in Figure 4.2) from

different meshes should be interchangeable. For example, the camel’s leg can be discon-

nected from the camel’s body to replace the horse’s leg. For the results shown, the input

segmentations for the animals (Section 6.2.1) were obtained with the data-driven approach

42

(a) Input Compatibly Segmented Shapes (b) Find Individual Edge Loops

(c) Deform to Common Edge Loops (d) Generate Interchangeable Components

Figure 4.1: Overview of our Interchangeable Components approach.

of (Kalogerakis et al., 2012), while the others were obtained interactively. Experiments pre-

sented in Sections 6.2.2 and 6.2.3 suggest that if the input segmentation is reasonable, the

results of our approach will also be reasonable, i.e., the approach is not heavily sensitive to

the input segmentation.

Each semantic border (between two segments) on each mesh forms an individual edge loop, as

depicted in Figure 4.2(a). Note that the individual edge loops for the same semantic border

on different meshes are different in shape. We describe the segmentation of each mesh m

by a set of individual edge loops, Lm = {lm,b}, where individual edge loop lm,b is extracted

from semantic border b of mesh m.

To ensure that corresponding components from different meshes are interchangeable, we need

corresponding individual edge loops to form a common shape (up to rigid transformation and

small differences due to different mesh tessellation). Figure 4.2(b)–(c) shows an illustration.

To achieve this common shape, we will create a common edge loop to link up all the individual

edge loops for each semantic border. We denote the common edge loop for the semantic

border b as lc,b.

43

Figure 4.2: (a) The individual edge loop lhorse,(head,body) lies along the semantic border origi-
nally. (b) Edge loops with a common shape are used to partition the front leg and body for
both the horse and camel. (c) The camel leg can replace the horse leg if their individual edge
loops have the same shape. The camel leg cannot replace the horse leg if their individual
edge loops have different shapes.

Problem Formulation. Given a set of input meshes M and a set of individual edge

loops Lm for each mesh m ∈ M, our approach outputs a set of deformed meshes M′ and

a set of modified individual edge loops L̂m. The modified individual edge loops partition

each deformed mesh m′ ∈ M′ into fabricable components. Our outputs should possess the

following properties:

1. M′ ∼M. Each deformed mesh m′ ∈M′ should be similar to its corresponding input

mesh m ∈M.

2. For any semantic border b and any deformed mesh m′ ∈ M′, we should have lm,b =

R(lc,b), where R is a rigid transformation. That is, all the individual edge loops for

a given semantic border should possess a common shape up to rigid transformation.

This condition ensures that our components are interchangeable.

Technical Approach. Our approach proceeds as follows: First, we adjust the individual

edge loops at the semantic borders of the input meshes in order to optimize their geometric

44

similarity while not deviating too much from the original segmentation. Next, we deform

the input meshes so that the individual edge loops take on the shape of a common edge loop.

Finally, the deformed meshes are partitioned by the individual edge loops into interchange-

able components, which are sealed and augmented with connectors that allow them to be

assembled in the real world.

4.2 Finding Individual Edge Loops

Consider a semantic border b (e.g., between the head and body in Figure 4.3(a)). Given

the initial edge loops lm,b for each mesh, this step searches for new edge loops l̂m,b that are

geometrically similar to one another. We have this goal because the next step will deform

the meshes so that the corresponding individual edge loops form a common shape, and we

want to minimize this deformation. Note that this step updates the edge loops by modifying

the list of vertices specifying the loop, but not by altering the vertex positions.

Contour-based Formulation. The problem of adjusting the individual edge loops is dis-

crete in nature. In order to avoid a combinatorial optimization over possible edge loops,

we re-formulate the problem in a continuous setting. In this setting, we have the follow-

ing problem: given a set of surfaces and a set of closed contours that lie on each surface,

adjust the contours to maximize their geometric similarity. The contours are a continuous

representation of the edge loops.

To prevent the contours from deviating too severely from the original semantic borders, we

create a zone on each surface called the intermediate zone in which the contour is constrained

to lie. The intermediate zone between two semantic regions represents the area that does

not clearly belong to one region or the other. Figure 4.3(a) shows the intermediate zone

between a horse’s head and body. By default we set the intermediate zone with a simple

procedure. We set each semantic region’s portion of the intermediate zone equal to the faces

in that region that lie within a geodesic distance d of the original semantic border. We

determine d by increasing it until the area of the included faces exceeds 50% of the semantic

45

(a) Contour on mesh (b) Contour in mo-
tion

(c) Crossing a mesh
vertex

(d) After crossing

Figure 4.3: (a) The contour for the lhorse,(head,body) semantic border. The contour is shown
in grey, the initial semantic regions in cyan and pink, and the intermediate zone boundaries
in orange. (b) The contour vertices (red) lie on mesh edges. (c)–(d) After crossing a mesh
vertex, new contour vertices (blue) are created on outgoing edges.

region. However, the intermediate zone can be adjusted by the user if the default setting is

unsatisfactory.

We use an explicit, piecewise linear representation of the contours in which contour vertices

are constrained to lie on mesh edges, following the formulation by Bischoff et al. (2005).

In this formulation, vertices are added and removed from the contour as it evolves on the

surface to adapt its resolution to the underlying tessellation. Figure 4.3 shows an example

of new contour vertices being created when an existing contour vertex crosses a mesh vertex.

See the cited paper for further details.

Compatibility-Based Contour Optimization. In previous settings, active contours or

“snakes” (Kass et al., 1988) have been optimized with respect to a property of the surface

upon which they lie. We deviate from previous work by jointly optimizing a set of contours for

geometric similarity with each other. Our measure of geometric similarity considers distances

between contour points (C0 continuity), as well as angles between contour normals (C1

continuity). Both factors are necessary to achieve a smooth transition between components,

as shown in Figure 4.4(d).

46

Formally, we seek to minimize

Edis(C) =
∑

cp,cq∈C

D(cp, cq) +D(cq, cp), (4.1)

the sum of pairwise dissimilarities between contours, with

D(cp, cq) =

∫ 1

0

(
‖vtp − ṽq(v

t
p))‖2 − λ · ntp • ñq(vtp)

)
dt, (4.2)

where vtp maps the normalized arclength parameter t ∈ [0, 1] to a position along the contour

cp and ntp does the same for a normal vector along cp, ṽq(x) is the location of the closest

point on the contour cq to the point x, while ñq(x) is the normal of the closest point, and

λ is a weight controlling the trade-off between optimizing similarity between normals and

between positions. Essentially, D(cp, cq) sums the average squared distance to the contour

cq along cp and the average difference in normal vectors between the points on cp and their

closest points on cq.

The contour normals are computed by linearly interpolating the vertex normals on the

underlying mesh. The weight λ is set equal to αl, where l is the median bounding box

diagonal of the initial edge loops. In order to prioritize C0 continuity over C1 continuity, we

set α = 0.1. We approximate the integral in (4.2) by taking the average distance over a set

of uniformly spaced points on the contour. The distances and nearest points are efficiently

computed with an axis-aligned bounding box tree.

When evaluating the objective, each contour is aligned to a common local frame by finding

the minimal transformation that maps its centroid to the origin and maps the plane generated

by a least squares fit on its vertices to the x y-plane.

We initialize the contour to the original semantic border and use Euler’s method to minimize

the objective. Small time-steps are necessary because the number of vertices in the contour

can change when an existing contour vertex runs into a mesh vertex. Nevertheless, the

minimization rapidly converges to a solution. We terminate the optimization when the

47

(a) Semantic Segmentation Only (b) Compatibility-based Optimization With-
out C1 Term

(c) Compatibility-based Optimization With
C1 Term

(d) Camel head on Wolf body

Figure 4.4: We compare three ways of choosing the individual edge loops. In (a)–(c) we
show the resulting components (top) and loops (bottom). Using the original semantic seg-
mentation (a) results in geometrically dissimilar loops compared to our compatibility-based
optimization (b)–(c). In (d) connecting the camel head to the wolf body reveals the effect
of the C1 term. Without the C1 term, a seam is visible despite C0 continuity.

(a) Initial Common Edge Loop (b) Refined Common Edge Loop

Figure 4.5: (a) Snapping the common edge loop to the individual edge loops. (b) Deforming
the meshes to match with the common edge loop. After the deformation, the individual edge
loops of the components are identical and the components are interchangeable.

48

relative improvement in the objective is less than 5% for 100 iterations.

The contour representation is flexible enough to generate new edge loops with complex, non-

elliptical shapes that deviate significantly from the initial ones when necessary, as shown in

Figure 6.8(c). In Sections 6.2.2, 6.2.3, and 6.2.4, we evaluate the behavior of our contour

optimization and its effect on the subsequent steps of the approach.

Our approach applies the above procedure separately for each semantic border. After this

step, for each semantic border b of each mesh m, the individual edge loop is updated from lm,b

to l̂m,b by snapping the contour vertices to their nearest mesh vertex. Figure 4.4(a)–(b) shows

a comparison between the individual edge loops extracted directly from the input semantic

borders and those found by our optimization. The loops found by the latter are much more

similar in shape. Figure 4.4(c)–(d) shows the necessity of considering C1 continuity when

optimizing the contours.

4.3 Deformation to Common Edge Loops

In Section 4.2, for each semantic border, we obtained a combination of individual edge loops

C = {l̂m} that are similar in shape, one loop for each input mesh m. In this section, we

describe how to create a common edge loop lc using this combination of individual edge loops

C for each semantic border. The individual edge loops for each semantic border will assume

the shape of lc in order to produce interchangeable components.

Our approach proceeds in two steps. First, for each semantic border b, we find an initial

shape for the common edge loop for b with minimal total shape difference between it and

each of the individual edge loops. Then, in the second step we refine the shapes of all the

common edge loops simultaneously by solving a global optimization that minimizes the total

deformation of all the input meshes, under the constraint that the individual edge loops

on each mesh take the shape of their common edge loop. This step considers the total

deformation of the meshes rather than just the edge loops.

49

4.3.1 Common Edge Loops Initialization

Again we focus our discussion on a single semantic border, as we will apply this step in-

dependently per semantic border. We describe how to create an initial common edge loop.

Figure 4.5(a) shows an illustration. Denote the common edge loop as lc, which is formed

by linking a series of vertices Vc = {vk}. We want to correspond the vertices {vk} to the

points on the individual edge loop l̂m (found in Section 4.2) of each mesh m.

We parameterize each individual edge loop l̂m by its arc length, where l̂m(t) is a point on l̂m

for t ∈ [0, 1]. We suppose that each vertex vk on the common edge loop lc corresponds to a

point xm,k = l̂m(tm,k) on the individual edge loop l̂m by tm,k.

Our goal in this step is to find the vertices Vc = {vk}, which define the shape of the common

edge loop lc; and the set of parameters T = {tm,k}, which defines the correspondences

between the common edge loop lc and each individual edge loop l̂m. We find Vc and T

simultaneously by solving a constrained optimization:

min
Vc,T

λEloop
def (Vc,T) + (1.0− λ)Eloop

reg (T)

subject to tm,k < tm,k+1, ∀m, k.
(4.3)

Deformation. Eloop
def penalizes deformation of the common edge loop lc when its vertices

{vk} are corresponded to points {xm,k} on the individual edge loop l̂m for mesh m:

Eloop
def (Vc,T) =

1

P

∑
m

∑
k

||(xm,k+1 − xm,k)− (vk+1 − vk)||2, (4.4)

where P is the squared length of the longest individual edge loop.

Regularization. Eloop
reg encourages the corresponded locations of the common edge loop

50

(a) (b)

Figure 4.6: (a) Representing individual edge loop vertices in terms of common edge loop
vertices. Using the correspondence computed from Section 4.3.1, each individual edge loop
vertex u is projected to u′ on the common edge loop, and is represented as a linear combi-
nation of common edge loop vertices vk and vk+1. (b) Uhorse contains all the individual edge
loop vertices (green). Uhorse contains all the other (interior) vertices (blue). We show only
some of the vertices for clarity.

vertices to spread evenly over the individual edge loops:

Eloop
reg (T) =

∑
m

∑
k

((tm,k+1 − tm,k)−
1

|Vc|
)2 (4.5)

The inequality constraint (tm,k < tm,k+1) preserves the ordering of the common edge loop

vertices in their correspondences with the individual edge loops. We set the weight λ to 0.9.

The optimization can be solved quickly using standard solvers such as IPOPT (Wächter and

Biegler, 2006). The optimization computes optimized vertex positions v∗k that describe the

initial shape of the common edge loop. For each mesh m and each common edge loop vertex

k, it computes x∗m,k, the point on individual edge loop l̂m to which vertex k corresponds.

4.3.2 Shapes and Common Edge Loops Refinement

In the previous step, for each semantic border b, we obtained the initial shape for the common

edge loop lc,b and the correspondence between its vertices and points on the individual edge

loop lm,b.

In this step, we refine the shapes of all the common edge loops jointly, by considering the

51

(a) Input (b) No Refinement (c) Refinement

Figure 4.7: Shape-preserving refinement. (a) Input shape. (b) Result produced without
refinement by using the common edge loop shapes from Section 4.3.1 as boundary constraints
for mesh deformation. (c) Result produced with shape-preserving refinement. Note that
while both results can be used to form a set of interchangeable components, the result in
(c) more closely resembles the input shape. For example, the nose looks more similar to the
nose of the input shape.

deformation induced on the input meshes when the individual edge loops are constrained to

assume the shape of their common edge loop.

We use the correspondence obtained in Section 4.3.1 to link the shape of the common edge

loops to those of their individual edge loops, by writing each individual edge loop vertex as

a linear combination of two common edge loop vertices. Figure 4.6(a) shows this process.

Shape-Preserving Refinement. We minimize the sum of deformation of the input meshes,

under the constraint that the individual edge loop vertices are expressed as a linear combina-

tion of the common edge loop vertices. This constraint means that corresponding individual

edge loops will form the same shape, which is necessary for part compatibility.

Consider a mesh m and its vertices Um ∪Um, where Um contains the vertices across all the

individual edge loops of m, and Um contains all the other vertices (i.e., interior vertices). See

Figure 4.6(b). We can express the individual edge loop vertices Um in terms of the common

edge loop vertices as shown in Figure 4.6(a). So the deformation of mesh m is specified by

Vall
c ∪Um instead of Um ∪Um, where Vall

c contains the common edge loop vertices across

52

all the semantic borders; e.g., Vall
c = {Vc,(head,body),Vc,(head,tail),Vc,(head,left leg), ...}. We

sum the deformation energy over all meshes:

Emesh
def (M) =

∑
m

wmE
m
def(V

all
c ,Um), (4.6)

where Em
def(V

all
c ,Um) is a normalized measure of the deformation of mesh m and wm ∈ [0, 1]

is a user-specified weight associated with the deformation of mesh m, which is set to 1 by

default. The method for minimizing this energy depends on the mesh deformation measure

chosen for mesh m. A nice property of our construction is that if Em
def(V

all
c ,Um) can be

minimized by solving a linear system such as in Laplacian or As-Rigid-As-Possible mesh

deformation (Sorkine and Alexa, 2007b), then so can Emesh
def (M), since the individual edge

loop vertices are written as a linear combination of the common edge loop vertices. One can

also minimize the energy by alternating between fixing Vall
c while solving for each Em

def, and

fixing Um while solving for Vall
c . In our implementation we used the latter approach and

used As-Rigid-As-Possible mesh deformation for Em
def.

Figure 4.5(b) visualizes the results of this refinement. We obtain a set of refined common

edge loops as well as a set of deformed meshes M′. Figure 4.7 shows the advantage of our

joint optimization over a more naive approach where the initial common edge loop shapes

from Section 4.3.1 are held fixed when deforming the meshes.

4.4 Generating Interchangeable Components

Using the refined individual edge loops obtained in Section 4.3.2, we partition the set of

deformed meshesM′ into interchangeable components. We seal the holes on the components

resulting from the partition, and then add connectors on the sealed surfaces to make the

components connectable.

Surface Sealing. As we use the same common edge loop for partitioning the same semantic

border of different meshes, we create a 3D surface for sealing for each common edge loop.

53

Figure 4.8 shows an illustration. We create this surface by using radial basis functions

(RBFs) (Carr et al., 2001) fitted over the domain of the common edge loop, with the RBF

centers placed uniformly within the loop. We use polyharmonic RBF basis functions. At

any location within the loop, the weighted sum of the RBFs gives a height value; hence the

RBFs specify a 3D surface over the loop.

In fitting the RBFs to form the 3D surface, the weights of the RBFs are determined by an

optimization (Wang and Oliveira, 2003). Our objective minimizes the distance between the

RBF surface and the edge loop vertices. It also encourages a smooth and roughly planar RBF

surface by minimizing the magnitude of the RBF coefficients. Finally, we add constraints on

the height of the RBF surface at a set of uniformly spaced sample points to ensure that it

does not penetrate any of the meshes. We determine the value of these height constraints by

shooting rays at the mesh, as illustrated in Figure 4.8(a). See Carr et al. (2001) and Wang

and Oliveira (2003) for further details of surface completion based on RBFs.

Connector Placement. To allow the components to be conveniently connected and dis-

connected, our approach automatically adds male and female connectors to each component.

The male connectors are simple beveled triangular prism shapes and the females are their

complement, sized slightly smaller to create a desirable amount of friction.

Figure 4.8(b)–(c) illustrates the process. Across the sealed surface of each component, we

regularly sample candidate locations for adding a connector. We determine the validity of

each candidate location by checking whether a connector to be placed there will intersect

with the component boundary. We choose the most central valid location to be the location

for putting a connector. A male connector and a female connector are added respectively

to a pair of compatible components by CSG operations. We experimented with using three

connectors per component surface, but found that simply placing a single connector as close

as possible to the center of the component surface results in a stable enough connection.

54

(a) (b) (c)

Figure 4.8: (a) Surface sealing. A surface is created using RBFs fitted over the domain of
the common edge loop shown. Rays are shot along positions sampled within the loop to
determine the mesh boundary within which the created surface should lie. (b) Connector
Placement. Candidate locations (red) are evaluated from a set of regular samples. Valid
locations (green) lie within the mesh boundary. (c) The most central valid location (green)
is chosen as the connector location, where in this case a female connector of a triangular
prism shape is placed.

4.5 User Interaction and Enhancements

We present some useful ways the user can direct our approach at the high level and some

extensions to our approach which improve the quality and breadth of our results.

4.5.1 C1 Component Continuity Deformation

Our contour optimization in Section 4.2 tries to find edge loops with high C1 continuity

between them, but this goal may be unachievable when large discrepancies in the initial

geometry are present. In these cases, the deformed components found in Section 4.3 may

have poor C1 continuity. To resolve this issue, we apply an additional deformation step

that locally enforces C1 continuity. Figure 4.9 illustrates the technique and shows its effects.

The main idea is to build a representation of the average normal orientation around the set

of individual edge loops for each semantic border b, then deform the meshes so that they

conform to this orientation.

For each semantic border b, we align the common edge loop lc,b (found in Section 4.3) with

l̂m,b, the individual edge loop of mesh m for b. We record the normal orientation on the mesh

55

(a) (b)

Figure 4.9: Considering C1 Component Continuity. (a) Computing an average normal.
Average normals are recorded at a set of uniformly sampled locations on the common edge
loop. (b) The neck transition becomes smoother after incorporating C1 continuity.

m at a set of uniformly sampled locations on lc,b. For each sample location, we record the

average orientation across all the meshes.

We use the average orientations to give each individual edge loop vertex a target normal

vector and a transformed coordinate frame. We propagate the transformed coordinate frames

to the non-boundary part of each mesh using an existing technique (Schmidt and Singh,

2010a), which smoothly deforms the mesh to align its normals with the target normals. This

step does not alter the positions of the individual edge loop vertices, so the components will

still be interchangeable.

4.5.2 Higher Order Component Connectivity

Our basic approach assumes that the adjacency graph between components is a tree. How-

ever, this assumption is not true for some interesting shapes. Consider the problem of

making interchangeable arm components in a set of armchairs as shown in Figure 4.10. Our

basic approach fails in this situation, because it only guarantees that individual edge loops

56

Figure 4.10: Considering higher order connectivity in creating an interchangeable arm com-
ponent. (a) Input chairs. The relative transformations of the (back,arm) loop and the
(base,arm) loop with respect to the (base,back) loop are different for each chair, stored
in R1 and R2 respectively. (b) The arm component created from Chair 2 using our ba-
sic approach fails to connect completely to Chair 1. (c) After the extra optimization step
considering higher order connectivity, the arm component can connect properly with both
chairs. The chairs and arm are slightly deformed, and the relative transformations among
each chair’s components are equal to the common relative transformations R.

belonging to a single semantic border are equal. For the arm component this guarantee is

not sufficient. As shown in Figure 4.10(b), the arm component can connect along the back

border or the base border, but not both.

To resolve this issue we need to generalize the condition for interchangeability described in

Section 4.1. We constrain the union of individual edge loops across a set of semantic borders

to be equal (up to rigid transformation) rather than just a single semantic border, as before.

For the example in Figure 4.10, this set would be {(back, arm), (base, arm), (base, back)}. We

enforce this constraint by applying an extra optimization step after the procedure described

in Section 4.3. We minimize the same mesh deformation energy as in (4.6), but we fix the

shapes of the edge loops, and only optimize their orientations and positions.

We enforce this constraint by applying an extra optimization step after the procedure de-

scribed in Section 4.3. Figure 4.10(c) shows an example. In the extra optimization step, the

57

(a) Input (b) No Preservation (c) With Preservation

Figure 4.11: Semantics preservation. (a) Input face. The user paints the mouth region with
higher weights to preserve the expression. (b) Without considering semantics preservation
(uniform weights), the devil’s expression changes from a grin to more of a grimace after de-
forming to achieve component compatibility. (b) Considering semantics preservation (higher
weights on the painted region), the devil still shows a grin after deforming. The deformation
of the other shapes did not change significantly as a result of the weight adjustment.

relative transformations (position and orientation) of the loops in each mesh are constrained

to be equal to common relative transformations. SupposeR1 = (R
(base,back)→(base,arm)
1 ,R

(base,back)→(back,arm)
1)

is a tuple storing the relative transformations from the (base,back) loop to the (base,arm)

loop and to the (back,arm) loop respectively for chair 1. Likewise for R2 for chair 2. We

constrain them to be the same, i.e., we set R = R1 = R2.

The optimization minimizes the same objective function as in (4.6), but this time with respect

to the common relative transformations R (instead of directly on the loop vertices) and the

non-loop (interior) vertices. Note that when R changes, the loop vertices will undergo a

rigid transformation. Figure 4.10(c) shows the result. The arm deforms to become longer

to accommodate with chair 1; the back of chair 2 deforms to become slightly shorter; the

relative transformations between the back, corner, and base loops of Chair 1 are the same

as those of Chair 2.

58

We minimize (4.6) by alternating between solving for the non-loop (interior) vertex positions

and the relative transformations of the loop vertices, while keeping the other set of variables

fixed.

4.5.3 Semantics Preservation

Our core approach is geometric in nature and does not consider semantics. Therefore, when

it deforms the input meshes to achieve component compatibility, a mesh may lose some

desirable semantic quality. Figure 4.11 shows an example. Because our approach does not

explicitly consider the facial expression of the devil, it changes the devil’s expression from

a grin to more of a grimace. To resolve this problem, we allow the user to interactively

adjust the weighting of the shape preservation energies Em
def in (4.6) by painting the surface

of the mesh with modified weights. We assume that Em
def is a weighted sum of per-vertex or

per-face energies, which is usually the case. By changing these weights we can emphasize

the preservation of certain regions in the final deformed meshes.

Figure 4.11(c) shows the result of preserving the grin after the user labels the mouth region

to have higher weight in the deformation energy.

4.5.4 Most-Compatible Subset Selection

When constructing a set of interchangeable components using our approach, it may be

necessary to restrict the number of input models. For example, when designing a children’s

toy for assembling animals similar to those in Figure 4.12, the user may only want to include

a fixed number of animals in the toy, to satisfy manufacturing and packaging constraints.

However, the user may have a much larger database of animal shapes that could be included

in the toy. Our approach can conveniently find the subset of shapes that are most compatible

with each other. By most compatible, we mean that our approach will have to deform the

input shapes the least to create interchangeable components.

59

(a) (b) (c)

Figure 4.12: Some existing chimera toys. Compared to our results, the products have limited
shape variability in (a), (b), low geometric detail in (b), and prominent divisions between
components in (c).

To perform this task, we define a dissimilarity metric between input meshes which leverages

the compatibility optimization used in Section 4.2. We compute the dissimilarity between

mesh m and mesh n as follows:

Dshape(m,n) =
1

|B|
∑
b∈B

min
cp∈Im,b,
cq∈In,b

D(cp, cq) +D(cq, cp), (4.7)

where B contains the semantic borders that exist in both meshes; Im,b is the intermediate

zone for semantic border b of mesh m, as described in Section 4.2, likewise for In,b, and

D(cp, cq) measures the distance of contour cp from contour cq, as defined in (4.2). Essentially

our metric sums the distance between the two closest contours found at each semantic border.

The closest contours are found with the minimization procedure in Section 4.2.

Given a user specified value k, we can use our dissimilarity metric Dshape and a branch-

and-bound search to find the most-compatible size k subset of the shapes in our database.

The smaller the maximum dissimilarity between any two members of a subset, the more

compatible the subset. We evaluate this technique in Section 4.5.4. For a database which

has several models belonging to the same category, we recommend incorporating into the

search a geometric diversity metric, as described by Chaudhuri and Koltun (2010), so that

the objective of component compatibility in the subset can be balanced against the desire

for geometric diversity.

60

CHAPTER 5

Approximate Dissections

In the Approximate Dissections problem, given a pair of input shapes, we seek to find a

single set of pieces that can be assembled into approximations of both input shapes. This

is a departure from the classic dissection problem, in which the pieces must form the input

shapes exactly. Below, we formally describe the problems.

Let S1 and S2 denote the input shapes, represented as polygons. Let P denote the set of

dissection pieces. Let A1(P) and A2(P) denote two non-overlapping arrangements of the

pieces P. Figure 5.1 illustrates these variables.

In the classic K-piece dissection problem, given the input shapes and an integer K, we find

pieces and arrangements such that |P| = K and the constraints A1(P) = S1 and A2(P) = S2

are satisfied. In the approximate K-piece dissection problem, we instead minimize a shape

difference measure between the input shapes and the arranged pieces: ||A1(P) − S1|| +

||A2(P)− S2||.

(a) Input Shapes (b) Pieces (c) Arrangements

Figure 5.1: The variables of the dissection problem.

61

Figure 5.2: A dissection between a dog head and a bone. The boundary intervals are colored
according to which connection constraint they belong and are separated by black dots. In the
first arrangement, the bolded pink boundary interval is external because it is not adjacent
to another boundary interval. In the second arrangement, the same boundary interval is
no longer external. We show the connectivity representations next to the corresponding
geometry.

5.1 Representation

Our solution to the approximate dissection problem stems from a novel way of representing

dissection solutions that supports the notion of a lower bound on the objective value of a

partial dissection solution. The lower bound allows us to prune the search space by telling

us when a partial solution cannot lead to high quality solutions.

A solution in our representation consists of three components: (1) the connectivity represen-

tation (Figure 5.2) describes how the dissection pieces connect, (2) the geometric parameters

(Figure 5.3) specify the actual dissection geometry under the constraint of the given connec-

tivity, and (3) the reconstruction mapping (Figure 5.6) describes which regions of the input

shapes are reconstructed by which regions of the dissection pieces.

Connectivity Representation. The connectivity representation of a dissection solution

specifies how the dissection pieces fit together in each arrangement.

62

(a) Edge vector sequence (b) Rotation angle

Figure 5.3: Visualizing the geometric parameters. (a) A dissection piece is represented by
a sequence of edge vectors, colored according to their boundary interval. (b) The change in
the orientation of each piece from the first arrangement to the second is represented by an
angle for that piece.

The boundary of each dissection piece is partitioned into boundary intervals. Figure 5.2

shows the pieces for a complete dissection with the boundary intervals delimited. For each

arrangement of the pieces, we note the adjacencies between boundary intervals; i.e., when

two boundary intervals are touching each other. If a boundary interval is not adjacent to any

others in a given arrangement, then it is termed external in that arrangement. The external

boundary intervals reconstruct the input shape in each arrangement. The boundary intervals

are not allowed to partially overlap; i.e., in a given arrangement, all boundary intervals are

adjacent to at most one other boundary interval.

The connectivity representation formally consists of a sequence of boundary intervals for

each dissection piece specifying their clockwise order and a record of the boundary interval

adjacency for each arrangement.

Geometric Parameters. The connectivity representation does not specify the geometry

of the dissection. We specify the geometry of each dissection piece as a sequence of edge

displacement vectors in clockwise order around the piece. Each edge displacement vector

forms a portion of one of the piece’s boundary intervals.

To specify how the orientation of each dissection piece changes as it moves from one ar-

rangement to the other, we use a rotation angle for each piece. Specifically, dissection piece

63

Figure 5.4: Two boundary intervals that connect. The geometry of both boundary intervals
is parameterized by 5 edge displacement vectors. The rest of the dissection pieces are in
grey.

k is rotated θk degrees in Arrangement 2 relative to its orientation in Arrangement 1. The

geometric parameters are visualized in Figure 5.3.

We determine the value of these geometric parameters for a given solution by optimizing

how well they reconstruct the target shapes. This process is described in Section 5.2.

Connection Constraints. The connection constraints are geometric constraints placed on

boundary intervals that ensure the dissection pieces can physically connect. They reduce

the number of independent geometric parameters.

As mentioned previously, each boundary interval is specified as a sequence of edge displace-

ment vectors in clockwise order along the dissection piece. If a pair of boundary intervals

β and β′ are adjacent, then for β′ to connect flush with β, it must have an edge vector

sequence equal to the reversal and negation of β’s. Formally if β = {~e1, . . . , ~eN} then

β′ = {−~eN , . . . ,−~e1}. Intuitively, if β is “male” then β′ must be “female”. Figure 5.4

visualizes this constraint.

Connection constraints lock the geometry of adjacent boundary intervals into a common

64

(a)

(b)

Figure 5.5: (a) A connection constraint that controls the geometry of 4 different boundary
intervals on the dissection pieces. Blue boundary intervals are “male” connectors, red ones
are “female”, and grey ones are not part of the connection constraint. (b) Changes to one
boundary interval in the connection constraint affect the others. In this example, if the dog’s
mouth becomes deeper, the ear becomes longer.

65

(a) Dissection Pieces (b) Input Shape

Figure 5.6: Reconstruction mapping for the dog arrangement. The external boundary in-
tervals on the dissection pieces (a) are colored according to which boundary interval on the
input shape (b) they reconstruct. Internal boundary intervals (grey) are not involved in the
reconstruction mapping. Notation is shown for a dissection piece boundary interval (β) and
its corresponding input shape boundary interval (I). Since the dog is the first input shape,
this figure visualizes Γ1.

parameterization. In general, connection constraints parameterize the geometry of sets of

boundary intervals, rather than pairs. This is because a boundary interval β may be adjacent

to β′ in Arrangement 1 and β′′ in Arrangement 2.

Figure 5.5 shows how a connection constraint controls the geometry of part of the dissection.

Here, a single set of edge vectors parameterizes the geometry of four different boundary

intervals. Figure 5.5(b) shows how this parameterization propagates edits to the dissection.

We can form a partition of the boundary intervals by grouping them according to which

connection constraint controls them. Figure 5.2 visualizes this property. Boundary intervals

of the same color belong to the same connection constraint.

Reconstruction Mapping. The reconstruction mapping (Figure 5.6) describes which re-

gions of the input shapes are reconstructed by which regions of the dissection pieces. The

mapping consists of two bijections Γ1(I) and Γ2(I), where Γα(I) is a bijection which maps a

boundary interval I on input shape α to an external boundary interval β on the dissection

pieces in arrangement α.

66

5.2 Evaluation

Given a candidate dissection solution, we evaluate how well it approximates the input shapes

by optimizing over the dissection geometry parameters for the best approximation; i.e., we

solve the following constrained optimization problem:

minimize
E,θ

max
α,i

arccos(b̂α,i · t̂α,i) + λ
∑
α

∑
i

||bα,i − tα,i||2

subject to
∑
l

pk,l = 0, ∀k.
(5.1)

The objective function measures how tightly the dissection pieces approximate the input

shapes, according to the maximum angular error between dissection pieces and input shape

edge vectors. Integer i indexes the edges of the reconstructed shape in arrangement α. Vector

bα,i is edge vector i in the reconstruction of input shape α, and tα,i is the corresponding

original input shape edge vector (i.e., the target of bα,i). The value of tα,i comes from the

reconstruction mapping. We set the regularization parameter to λ = 0.01.

The constraints in (5.1) ensure that the edge vector sequence for each dissection piece forms

a closed curve. Integer k indexes dissection pieces while l indexes edges within a dissection

piece. Vector pk,l is edge vector l of dissection piece k. Figure 5.7 illustrates the vectors

involved in the objective and constraints.

The optimization variables in (5.1) are θ = {θ1, . . . , θK}, the set of rotation angles for the K

dissection pieces, and E = {E1, . . . ,EM}, the set of edge vector sequences that parameterize

the geometry for the M connection constraints. Connection constraint edge vector sequence

Ei = {ei,1, . . . , ei,Ni
} comprises Ni edge vectors. The vector ei,j denotes edge vector j within

connection constraint i.

We solve the optimization problem (5.1) using IPOPT (Wächter and Biegler, 2006). The

optimal objective value determines the quality of the solution. Appendix C describes how

we initialize the optimization problem.

67

(a) Vectors for objective (b) Vectors in a constraint

Figure 5.7: (a) Edge vectors involved in the objective function in (5.1). (b) Edge vectors
involved in the constraint for a piece in (5.1).

Geometry Functions. The edge vectors bα,i and pk,l may be written as functions of the

optimization variables E and θ. Each of these edge vectors belongs to a specific bound-

ary interval β in an arrangement α. Therefore, we denote these functions as gα,β,i, where

gα,β,i(E,θ) is edge vector i within boundary interval β in arrangement α. For brevity, let

Gα,β denote the sequence of all the edge vectors in boundary interval β in arrangement α;

i.e., Gα,β = {gα,β,1, . . . ,gα,β,N}. Figure 5.8 visualizes this notation. The functions can be

derived using two geometric properties:

1. For a boundary interval β lying on dissection piece k, we have G2,β = R(θk,G1,β) and

G1,β = R(−θk,G2,β), where R(θ,v) is an element-wise θ-degree rotation of the vector

sequence v.

2. Let β′ denote a boundary interval adjacent to β in arrangement α. Then Gα,β′ =

−Rev(Gα,β) where −Rev(v) reverses the vector sequence v and applies element-wise

negation.

From these properties we can write a formula for any boundary interval in terms of any

other in the same connection constraint. To obtain formulas in terms of the optimization

68

Figure 5.8: Derivation of the formulas for the boundary interval geometry for a single con-
nection constraint.

variables E, we choose one boundary interval, denoted βr, for each connection constraint i,

and one arrangement denoted αr, to be the “roots” and set Gαr,βr = Ei. Formulas for the

other boundary intervals in the connection constraint can easily be derived by applying the

two rules. Figure 5.8 shows an example of this process.

In general, the formula Gα,β for a boundary interval in connection constraint i will have

the form R(±θk1 · · · ± θkW ,Ei) or −Rev(R(±θk1 · · · ± θkW ,Ei)); i.e., it consists of a series of

rotations of the “root” edge vector sequence possibly followed by a reversal and negation.

5.3 Solution Search

The solution search efficiently explores our solution space for high-quality dissections. The

main idea is to enumerate partial dissection solutions in a tree structure (Figure 5.10) and

prune nodes of the tree when the partial solution they represent has a quality lower bound

69

(a) (b)

Figure 5.9: (a) Correspondences for the dog-bone dissection. Edge vectors are colored ac-
cording to the correspondence to which they belong. Note that correspondences can be
between boundary intervals on the same or on different input shapes. (b) Examples of the
relationship between edge vector sequences for corresponding boundary intervals. Asterisks
mark the beginning of sequences. The indices α and α̃ denote the shape on which each
boundary interval lies.

greater than a pruning threshold.

5.3.1 Initializing the Mapping and Constraints

The initialization step divides the boundary of each input shape into intervals. These in-

tervals are the domain of the reconstruction mapping—the mapping between input shape

boundary intervals and the dissection piece boundary intervals that reconstruct them. The

initialization also separates the input shape intervals into corresponding pairs (Figure 5.9).

These correspondences restrict the search space to a promising region. Selecting them also

initializes the connection constraints that will be used in the dissection. Each correspondence

implies the existence of a single connection constraint, as we show next.

Existence of Correspondences. Recall that the reconstruction mapping is a pair of

bijections Γ1(I) and Γ2(I), where Γα(I) maps a boundary interval I on input shape α to a

boundary interval on a dissection piece in arrangement α.

70

We say that an input shape boundary interval I belongs to a connection constraint C if

Γα(I) ∈ C. It turns out that the connection constraints partition the input shape boundary

intervals into corresponding pairs. Formally, each input shape boundary interval I belongs

to some connection constraint C, and there exists exactly one other input shape boundary

interval Ĩ that also belongs to C.1

Any dissection solution will partition the input boundary intervals into corresponding pairs.

We choose to specify these corresponding pairs in advance in order to restrict the search

space.

Evaluating a Correspondence. Consider a pair of corresponding input shape bound-

ary intervals (I, Ĩ) that lie on input shapes (α, α̃) and belong to connection constraint C.

The eventual dissection solution will map I and Ĩ to dissection piece boundary intervals

(Γα(I),Γα̃(Ĩ)) = (β, β̃). Since β and β̃ both belong to C their geometry (in any eventual

solution) must obey the constraint β − Q(β̃) = 0, where Q(x) = R(θ, x) when α 6= α̃ (in-

tervals lie on different input shapes) and Q(x) = −Rev(R(θ, x)) when α = α̃ (intervals lie

on the same input shape). The value of θ depends on the eventual solution. Figure 5.9(b)

visualizes these relations.

To reconstruct the input shapes accurately, the geometry of (β, β̃) should resemble that of

(I, Ĩ). Thus, in order to allow for the best reconstruction under the connection constraint,

the correspondence should minimize Q̄(I, Ĩ) = minθ ||I −Q(Ĩ)||; i.e., minimize shape incom-

patibility given freedom of rotation.

Joint Selection of Intervals and Correspondences. Using this criterion, we jointly

select the input shape boundary intervals and correspondences. The input shape boundaries

1To see this property, consider an input shape boundary interval I. Without loss of generality, assume I
lies on the first input shape. In any eventual dissection solution, I will map to a dissection piece boundary
interval β; i.e., Γ1(I) = β, which belongs to some connection constraint C. So I belongs to C.

In Arrangement 2, β is either external or it connects to a different boundary interval β′. In the first case,
there exists a boundary interval on the input shape for Arrangement 2, denoted Ĩ, for which Γ2(Ĩ) = β.
Since β′ belongs to C, Ĩ belongs to C. So both I and Ĩ belong to C. In the second case, the statement
just made about β applies to β′, except with Arrangement 1 instead of Arrangement 2. Since the number
of boundary intervals is finite, we must eventually reach the first case.

71

are discretized into a large number of uniformly sized segments so that input shape bound-

ary intervals can be defined discretely. Given user-specified minimum and maximum interval

lengths, we generate a set of M candidate boundary intervals and
(
M
2

)
candidate correspon-

dences. We seek a set of correspondences {(I1, Ĩ1), . . . , (IN , ĨN)} which form a partition of

the input shape boundaries and minimize the following objective:

N∑
i=1

Q̄(Ii, Ĩi), (5.2)

which sums the shape incompatibility across the chosen correspondences. The shape incom-

patibility measure Q̄ is defined in the previous subsection. We search for solutions using a

simple enumerative approach, ignoring correspondences with poor similarity.

5.3.2 Tree Search

Once the input shape correspondences have been chosen, we enumerate the dissection solu-

tions derived from them using a search tree. This step operates in the discrete connectivity

space rather the continuous geometric parameter space.

Each node of the tree corresponds to a partial dissection solution with the root node being

the empty solution. A child of a node is generated by extending the node’s partial solution

by inserting one or more boundary intervals into one or more dissection pieces. The newly

created boundary intervals can be connected to other dissection piece boundary intervals or to

a boundary interval on an input shape. For the second case, connecting a boundary interval

β on a dissection piece to a boundary interval I on input shape α means we set Γα(I) = β.

In the leaf nodes (complete solutions), every boundary interval will have a connection in

both arrangements. Figure 5.10 shows how the tree search incrementally extends partial

dissection solutions into complete solutions.

Search Ordering. The choice of the order in which to insert the boundary intervals affects

the ease of pruning partial solutions. An obvious choice is to order by dissection piece; i.e., a

72

Figure 5.10: Visualizing the tree search. Tree nodes (partial solutions) are labeled with
the number of connection constraints added (equal to the search depth). Pink boxes show
the connectivity representation at each state along with the associated error for complete
solutions and the error bound for partial solutions. Input shapes (at low resolution) are drawn
around the connectivity representations in dashed lines. Input shape boundary intervals that
have their connection constraint assigned are red, others are grey. Green boxes show the
dissection geometry at low (left) and high (right) resolutions. In the partial solution shown
at Depth 4, pieces that have only one or two boundary intervals are drawn as line segments.

73

(a) Connection constraint or-
dering (Constraints 0 - 5)

(b) Dissection piece ordering
(Pieces 0 - 3)

(c) Complete solution

Figure 5.11: Two different partial solutions (a), (b) which lead to the same complete solution
(c). Ordering by connection constraint means that all the boundary intervals in the partial
solution have connections. Ordering by dissection piece means that the connectivity of
several boundary intervals (dashed lines) is unknown. Boundary interval connections in (a)
are colored according to the connection constraint.

node at depth i specifies the boundary intervals for dissection pieces 1, . . . , i (Figure 5.11(b)).

However, this ordering has the problem that after we insert the boundary intervals for a given

piece, we do not necessarily know which boundary intervals they will connect to, since they

may connect to boundary intervals on pieces that we have not yet reached. This uncertainty

makes it difficult to formulate a bound on the quality of partial solutions.

Therefore, we order the boundary intervals by connection constraint rather than by dissection

piece (Figure 5.11(a)). That is, a node at depth i specifies the boundary intervals that belong

to connection constraints 1, . . . , i. To generate the children of a node at depth i, we consider

all possible ways of generating the boundary intervals for the connection constraint i + 1.

Each way creates an additional child.

This ordering avoids the problem with the dissection-piece-based ordering, because a bound-

ary interval connects only to other boundary intervals in its connection constraint. In other

words, for every boundary interval β in a partial solution, we know that the connectivity of

β will not change in any subsequent solution. Figure 5.11 compares the two ways of ordering

the search.

74

Figure 5.12: An example of a topologically invalid connection (shown in red) between bound-
ary intervals.

5.4 Pruning the Search Space

We now discuss the several ways in which we restrict the search space to make the problem

tractable.

Boundary Interval Limit. To ensure that the search terminates, we limit the total number

of boundary intervals that can be present in a solution. For the results shown herein, we set

this limit to four times the number of connection constraints.

Connectivity. We restrict the search to topologically valid connectivities. We maintain

a half-edge data structure throughout the search that detects when connecting a pair of

boundary intervals is an invalid operation. Figure 5.12 shows an example.

5.4.1 Orientation Based Pruning

In orientation based pruning, we solve a relaxed version of the optimization problem de-

scribed in Section 5.2 that gives a lower bound on the solution quality. The main idea

is to solve for the dissection geometry in terms of edge vector orientations while ignoring

magnitudes. Figure 5.13 visualizes this concept.

As in the full optimization problem, we want to minimize the maximum angular difference

75

Figure 5.13: Visualizing the angular optimization problem. Vector magnitudes are ignored
and we optimize only over vector angles. The notation is shown for some of the angles (φ
and ψ) used in the optimization problem.

between the input shape edge vectors and their matching dissection piece edge vectors:

minimize
θE ,θ,n

max
α,i
|φα,i − ψα,i(θE,θ) + 2πnα,i|, (5.3)

where α indexes over arrangements, i indexes over the input shape edge vectors, φα,i and

ψα,i are matching input shape and dissection piece edge vector orientations, θE is the set

of edge vector orientation sequences for the connection constraints, and θ is the dissection

piece rotation angles. The integer variables n make the angular differences modulo 2π. This

objective is similar to that in (5.1), but expressed only in terms of vector angles. Thus, θE

in the angular problem corresponds to E in the full problem, while θ has the same meaning

in both problems.

The dissection piece edge vector orientations ψ can be written as linear functions of θE and

θ, by converting the functions for the edge vector geometry in Section 5.2 to angular terms.

In general the formulas have the form ±θk1 · · · ± θkW +θEi
or ±θk1 · · · ± θkW +π+ Rev(θEi

).

The second form corresponds to the form in the full problem where we reverse and negate

the edge vector sequence, because negating a vector adds π to its orientation.

76

(a) Partial Solution Connectivity (b) Partial Solution Geometry
(Low Resolution)

(c) Piece 3 Edge Vectors (High Res-
olution)

Figure 5.14: Visualizing the geometry optimization for a partial solution. (a) The connectiv-
ity representation of a partial solution where the boundary intervals for the last connection
constraint have not been inserted. Locations where new boundary intervals can be inserted
are marked with gold dots. (b) The corresponding (low resolution) geometry after opti-
mization. Potential boundary intervals are drawn as dotted lines. (c) The edge vectors
for Piece 3 at higher resolution. The edge vectors for boundary intervals in two different
complete solutions are shown in blue and green.

The optimization may be written as a mixed integer optimization, where the variables n are

constrained to be integers, and θE and θ are continuous. We solve it using a commodity

solver (Gurobi Optimization, Inc., 2016).

This optimization immediately generalizes to partial solutions. In (5.3), we maximize only

over the edge vectors belonging to connection constraints that are specified in the partial

solution. Due to the connection constraint-based ordering, the orientation formulas for

these edge vectors will be defined and will not change in any subsequent solution. When a

new connection constraint is added to the partial solution, the maximization is taken over

additional terms.

5.4.2 Full Geometry Pruning

The full geometry pruning generalizes the dissection geometry optimization in Section 5.2 to

partial dissection solutions. The objective value given by this optimization is a lower bound,

meaning that no complete solution derived from the partial solution will attain a better

objective value. Figure 5.14 visualizes this optimization. The main idea is to relax the

discreteness of the problem by allowing for the insertion of “fractional” boundary intervals.

77

The structure of the objective function and constraints in this optimization are identical to

that in (5.1). However, they are expressed differently, due to the incomplete information in

a partial solution.

Objective for Partial Solutions. Recall that the objective function compares each input

shape edge vector tα,i with its corresponding dissection piece edge vector bα,i (Figure 5.7(a)).

Each tα,i lies on an input shape boundary interval I that belongs to a connection constraint

C. If the partial solution has not yet added the boundary intervals for C, then the vector

bα,i is unknown. Next, we show how to express it in terms of other variables.

Suppose I lies on input shape α. We know that in any complete solution derived from the

partial solution, I will be reconstructed by some boundary interval β. Formally, we know

there will exist a β for which Γα(I) = β. As discussed in Section 5.3.1, I has a corresponding

boundary interval Ĩ on input shape α̃. Thus β will have a corresponding dissection piece

boundary interval β̃ = Γα̃(Ĩ). The boundary intervals β and β̃ will belong to the same

connection constraint, so they both can be expressed as functions of an edge vector sequence

Ei. Denoting these functions as Ḡβ(Ei) and Ḡβ̃(Ei), we define them as Ḡb(Ei) = Ei and

Ḡβ̃(Ei) = −Rev(R(θ̂,Ei)) if α = α̃, and Ḡβ̃(Ei) = R(θ̂,Ei) otherwise. θ̂ is added to the

optimization as a free variable; i.e., it is independent of the rotation angles for the dissection

pieces. Note that these functions are like Gα,β from Section 5.2, except that the sum of

dissection piece rotation angles is replaced by the free variable θ̂. These functions provide

the values for any unknown bα,i.

Constraint for Partial Solutions. The constraint for dissection piece l ensures that the

edge vectors around the piece pk,l form a closed curve (Figure 5.7(b)). This formulation does

not work for a partial solution, because some of the pieces will have new boundary intervals

inserted in any complete solution descended from the partial solution. Thus, it is incorrect

to take the sum only around the existing pk,l .

We deal with this issue by inserting potential boundary intervals into each dissection piece

at points on the piece’s boundary where it would be legal to insert a new boundary interval

78

(Figure 5.14). Each potential boundary interval represents geometry that could potentially

be present in an eventual complete solution. We represent the potential geometry for dissec-

tion piece k at insertion point v with a single edge vector, denoted p̂k,v. These edge vectors

are free variables in the optimization.

More specifically, p̂k,v represents the net translation of zero or more potentially inserted

boundary intervals. By net translation, we mean the vector obtained by summing the edge

vectors in the boundary interval. It suffices to consider only the net translations of the poten-

tial boundary intervals, because they are connected to nothing in this setting. Figure 5.14(c)

illustrates this principle. The single edge vector p̂3,0 has the same net translation as the two

edge vector sequences shown in blue and green.

The constraints from (5.1) are modified to take the potential geometry into account, as

follows: ∑
l

pk,l +
∑
v

p̂k,v = 0, ∀k. (5.4)

We can tighten the bound by constraining the total length of the potential geometry. Suppose

our search has an upper limit of S boundary intervals in the solution, and our partial solution

has already inserted S ′ boundary intervals. Then, we can have at most S − S ′ additional

boundary intervals in any eventual complete solution. Denoting the net length of the edge

vector sequence for connection constraint i as Li = ||
∑

j ei,j|| (i.e., Li is the magnitude

of the net translation of the edge vector sequence for connection constraint i), and letting

Lmax = maxi Li, we can add the constraint

∑
k

∑
v

||p̂k,v|| ≤ (S − S ′)Lmax. (5.5)

This constraint reflects the fact that we can add at most S−S ′ boundary intervals and each

boundary interval consumes at most Lmax length.

The use of potential boundary intervals is conceptually similar to a continuous relaxation of

an integer programming problem. The number of boundary intervals inserted into a piece is

79

a discrete property, like the value of an integer variable. The potential boundary intervals

relax the discreteness by allowing for the insertion of a “fraction” of a boundary interval,

just like continuous relaxation allows for assigning fractional values to an integer variable.

5.4.3 Pruning Usage

We now describe how the pruning tests are incorporated into the tree search.

The two pruning tests described in the previous subsection require the solution of an opti-

mization problem, which incurs a significant computational expense, especially for the full

geometry pruning (Section 5.4.2). Additionally, at a sufficient depth in the search tree, a

significant proportion of tree nodes (partial solutions) do not expand into any complete so-

lutions, because it is impossible to form a solution with valid connectivity. Expanding a tree

node (by inserting boundary intervals for a given connection constraint and validating their

connectivity) is extremely cheap relative to the pruning tests. Therefore, for these nodes it

is more efficient (on average) to check if the node expands to any complete solutions, and

run the pruning tests only if it does. For even deeper depths of the search tree, it is most

efficient to refrain from running the pruning tests at all.

Procedure Details. For all the results shown, we used the following search procedure. Let

M equal the number of connection constraints we obtain from the correspondence search

described in Section 5.3.1. First, all partial solutions at depth M/2 are generated and the

pruning tests are applied to them. Next, the remaining partial solutions are assigned between

P processes that run in parallel. Each process expands its partial solutions serially. At depth

3M/4, we apply the pruning tests again, but only after verifying that the node contains

complete solutions as described above. This simple procedure could likely be improved, but

we found it performed acceptably in practice. We set the angular error threshold for pruning

to min(15◦, 1.5 · τmin), where τmin is the lowest error among the solutions found so far.

80

(a) Initial Design (b) Suggested Edits (c) Edited Input Shapes (d) Final Design

Figure 5.15: A workflow in our user interface. (a) The initial design from the automatic
approach. Problematic areas are circled. The details of the face have been smoothed out
and the region around the state of Florida is distorted. (b) The original input shape with
edit suggestions in red. (c) The input shapes after the editing and painting of salient regions
(red). The original input shape is shown in gray. (d) The final design after user edits. The
details of the face have been restored and Florida is no longer distorted.

5.5 User Interaction

Our solution search uses a geometric criterion to evaluate the quality of a dissection. This

criterion works well for weeding out poor solutions, but it has difficulty discriminating be-

tween high-quality solutions because it does not explicitly consider human perception. We

resolve this shortcoming by allowing user guidance towards a final dissection solution, af-

ter the automatic approach described in Section 5.3 has identified a small set of promising

candidate solutions.

The user selects one of the candidate solutions, which they can refine by adjusting the terms

of the optimization in (5.1) through a graphical user interface. Figure 5.15 shows an example

of this process.

In this phase of our approach, the optimization objective uses a least squares term instead

of the maximum angular error in order to control the tradeoff in deformation between dif-

ferent parts of the mesh. The new objective is
∑

α

∑
iwα,i||bα,i − tα,i||2, where wα,i is the

81

preservation weight of edge i on input shape α.

Input Shape Editing Suggestions. Our approach targets input shapes that have a fuzzy

geometric specification. Thus, we allow the user to alter the input shapes to simplify the

optimizer’s job. Such edits are suggested to the user by overlaying dissection piece boundary

intervals on top of their corresponding input shape boundary intervals as red curves. The

user can follow the suggestions by moving the input shape edges towards these curves. The

user often makes additional edits to preserve the shape’s identity or coherency. Figure 5.15

shows an example of this process where the user reshapes the bottom and side of the head.

Salient Region Painting. Some areas on the input shapes are salient in that human

perception is especially sensitive to distortions in them. The user can paint salient parts of

the input shape and the optimizer will prioritize them by increasing the preservation weights

for their edges. In Figure 5.15(c) the user prioritizes the preservation of the protrusions

forming the states of Texas and Florida as well as the nose and lips of the head.

Direct Editing. The user can also directly edit the dissection pieces. To satisfy the

connection constraints, these edits will propagate to the geometry of other pieces. This

propagation is visualized interactively.

82

CHAPTER 6

Experiments and Results

In this chapter, we evaluate our solutions to the three problems covered in this thesis and

analyze of the results. First, in the Zoomorphic Design problem, we generate a wide variety

of zoomorphic shapes, run our approach under different constraints and parameter settings,

and compare our results with zoomorphic shapes designed by artists. We also test the per-

ception of the zoomorphic shapes with a simple user study. Second, in the Interchangeable

Components problem, we apply our method to a wide variety of shapes, and test it under

challenging scenarios, such as making interchangeable components from input shapes from

very different categories, and perturb the initial semantic segmentation. Finally, for the

Approximate Dissection problem, we use our approach to create dissections between a wide

variety of complex shapes. We measure the extent to which our search tree pruning improves

the method’s performance and how much the approximation accuracy improves as the num-

ber of pieces in the dissection grows. We also perform a simple user study demonstrating

that the dissections can be used to make a challenging puzzle.

6.1 Zoomorphic Design

We have applied our zoomorphic design technique to a variety of models taken from free 3D

model repositories on the internet1, the Princeton Shape Benchmark (Shilane et al., 2004)

13DVIA, Archive 3D and Autodesk 123D

83

(a) Phoenix Plane (b) Octopus Carousel (c) Bear Mug (d) Dolphin Tricycle

(e) No User Constraint (f) User Constraint 1 (g) User Constraint 2

(h) (i) Low Visual Salience (j) Medium Visual Salience (k) High Visual
Salience

Small Animal object Deformation

Large Animal object Deformation

(l) Rocking Cow

(m) Jaguar Motorcycle

Figure 6.1: Zoomorphic designs created by our system.

84

and the Shape COSEG Dataset.2 Figures 6.1, 3.14, and 6.2 show the results.

Figures 6.1(a)–(d) shows a variety of zoomorphic designs created using our system. The

volumetric design restriction ensures that the airplane’s cockpit and wheels are preserved,

that the octopus leaves room to occupy the carousel, that the Bear Mug can contain fluid,

and that the dolphin’s fin doesn’t prevent sitting on the tricycle.

6.1.1 Pose Constraints.

We allow the user to rigidly constrain parts of the animal object and optimize the non-

constrained parts of the animal object and base object. We show examples of this process in

Figures 6.1(e)–(g). Different constraints lead to different proportions in the base object. In

each case, the VDR ensures that there is room for riders to place their feet on the front of

the go-kart. For the non-constrained example, the presence of the armadillo’s hands causes

the front of the go-kart to widen considerably.

6.1.2 Changing Weights.

Figures 6.1(i)–(k) shows the effects of using different visual salience weights to produce

interesting yet reasonable changes in the design. As the visual salience weight increases,

the horse’s head grows increasingly prominent in the zoomorphic object. In the least salient

configuration, the horse’s head is completely removed. In the next most salient configuration,

it is visible, but blocked from some viewpoints by the back of the chair. In the most salient

configuration, it remains visible from all view angles. Here, the VDR ensured that the horse’s

head is high enough that someone can sit underneath it. Figure 6.1(l) shows the effects of

changing the animal object deformation weight. Using a large deformation weight for the

cow results in a small deformation. This creates a Rocking Cow in which the cow remains

close to its initial pose, and the handles from the base object are used. In contrast, using a

2http://web.siat.ac.cn/~yunhai/ssl/ssd.htm

85

http://web.siat.ac.cn/~yunhai/ssl/ssd.htm

small deformation weight for the cow causes the cow to sharply bend its head such that its

horns replace the base object handles.

6.1.3 User Guidance.

Zoomorphic objects are often enhanced when the animal object is placed in a pose of semantic

significance, which our approach cannot recognize automatically. Fortunately, the fine scale

optimization step can naturally incorporate user guidance which can provide such semantics.

In Figure 3.14, the initial solution found by our optimizer is altered by the user, who wants

the horse’s legs stretched out in a leaping pose. The manual adjustment puts the horse’s

head in a pose that creates gashes, increasing the energy. This prompts our optimizer to find

a configuration close to the user’s adjustment, but with lower energy because the gashes are

removed. The gashes arose because the horse’s head blocked the rider’s view and therefore

intruded into the restricted zone of the VDR.

Note that most of our results required a non-trivial set of changes in order to create aestheti-

cally pleasing zoomorphic objects that satisfied the design restrictions of the base object. For

example, to create the Horse Tricycle in Figure 3.14(a), we need to ensure that the horse’s

body merges naturally with the seat and main support, while not blocking the view of the

rider or their ability to reach the pedals. In satisfying these objectives, the optimization

could not deform the horse unnaturally. To get a good visual salience energy, it also needed

to place the horse’s head in a prominent location. The optimization process slightly raises

the seat to match with the horse body while bending the neck and legs to avoid blocking

the rider.

6.1.4 Other Results.

Our approach can be easily applied to create zoomorphic designs similar to real-world de-

signs. Figure 6.1(l) shows our design of Rocking Cows and Figure 6.1(m) shows our Jaguar

86

(a) Dragon Vase (b) Shoe Chair

Figure 6.2: (a) A simple extension of our approach allows creating a zoomorphic object using
multiple animal objects. A Dragon Vase is created by merging a vase with several dragons.
(b) Our approach is not limited to animal objects. In this example, a shoe and a chair are
used to create a Shoe Chair.

Motorcycle, along with their real-world counterparts. In designing a zoomorphic object, it

is also possible to merge multiple animal objects with a base object. Figure 6.2(a) shows

the design of a Dragon Vase by merging three dragons with a vase. Figure 6.2(b) shows an

example of merging a non-animal object (a shoe) with a base object (a chair), which results

in a Shoe Chair. Figure 6.3 shows an application of our approach to virtual scene modeling.

We create a “zoomorphic restaurant” furnished with a Manatee Chair, an Octopus Lamp, a

Dolphin Bottle, and Fish Plates.

Our approach produces physically realizable results in some cases. Figure 6.4 shows a fab-

ricated version of the Horse Chair from Figure 3.11.

6.1.5 Performance.

We tested an unoptimized implementation of our approach on a 2.4 GHz laptop. By far,

the most time-consuming tasks are the correspondence search and configuration refinement,

which on average take about 1.5 minutes and 1.0 minute, respectively. Our approach can

provide immediate feedback in some situations where it would be highly desirable, such as

seeing how the results of the correspondence search change after changing the weights used

87

Figure 6.3: A corner of a “zoomorphic restaurant” furnished with a Manatee Chair, an
Octopus Lamp, a Dolphin Bottle, and Fish Plates.

Figure 6.4: A 3D-printed horse chair

88

to select the best correspondence, and seeing how the input objects deform after adjusting

the slider in the base object control.

6.1.6 Evaluation

We conducted informal studies to evaluate our results. The settings of our studies are similar

to those in other recent creative 3D modeling efforts (Kalogerakis et al., 2012; Alhashim et al.,

2014; Zheng et al., 2013). Volunteers, who were university students from different majors,

were recruited to participate in our studies. Each participant was shown a sequence of images

via a web browser. Each participant was required to answer a question about each image.

There were two tests in our studies.

The first test aimed at determining whether the results are zoomorphic—the main theme

of our work. At the beginning, the participant was given the definition of zoomorphism3

and was shown several images of zoomorphic objects. Next, the participant was randomly

presented a sequence of 20 images. Ten images showed a base object and the other 10

images showed a zoomorphic object (a result). For each image, the participant had to decide

whether or not the object shown was zoomorphic, or indicate they could not decide.

The second test aimed at determining whether the zoomorphic objects are plausible examples

of the type of base object from which they were derived. The participant was presented a

random sequence of 20 images, each of which showed a zoomorphic object (a result) created

with or without the volumetric design restriction. For each image, the participant had

to answer the question “Is this a plausible category?”, where category refers to the object

category of the base object from which the zoomorphic object in question was created. For

example, for the Horse Chair, the participant was asked “Is this a plausible chair?”. The

answer could be either “yes”, “no”, or “undecided”.

We collected 880 responses from 44 participants for our first test. 89.55% of the results were

3From Wikipedia: “the shaping of something in animal form or terms”.

89

regarded as zoomorphic, while 86.14% of the base objects were regarded as non-zoomorphic.

From informal interviews after the studies, we found that some of the results were not chosen

as zoomorphic because the animal quality was subtle. The dolphin tricycle in Figure 6.1(d)

is an example; some participants were unaware that a dolphin has been merged with the

tricycle’s frame.

We collected 820 responses from 41 participants for the second test. 85.85% of the results

created with the volumetric design restriction were regarded as visually plausible. Partici-

pants pointed out a few problems in the results that make them seem implausible despite the

VDR—the Horse Chair with high visual salience may not be structurally stable; the sitting

area for the Jaguar Motorcycle may be too small. On the other hand, only 36.59% of the

results created without the volumetric design restriction were regarded as visually plausible.

These results support our belief that the VDR can preserve in the zoomorphic object certain

essential features from the base object that would otherwise be lost.

We emphasize that our studies are meant only as an informal preliminary evaluation rather

than a scientific validation. However, they do provide us with useful insights about the design

of zoomorphic objects. Appendix A provides further details and a list of all the objects used.

6.2 Interchangeable Components

6.2.1 Different Categories

We applied our approach to generate components for five types of shapes: animals, faces,

chairs, humanoids, and insects. The input shapes were taken from free 3D model repositories

on the internet. Appendix B provides an alternate visualization of these results.

Animals. In this experiment we used our approach to generate a set of components for

constructing chimeric four-legged creatures. Twelve animal shapes were used as the input

to our approach.

90

(a) Animals (b) Faces

(c) Chairs (d) Humanoids

Figure 6.5: Generating interchangeable components for different types of shapes.

91

(a) (b) (c)

Figure 6.6: (a) Initial edge loops selected for the most-compatible size 4 subset of animals.
(b) Deformation of the horse using the most-compatible subset. (c) Same when using the
full set of animals.

We show the edge loops chosen by our compatibility-based optimization in Figure 6.5(a).

The loops for the tail component often chop off a small portion of the animal’s rear, because

the loops on the actual tail did not possess enough geometry diversity. Despite the wide

geometric variation in the input set, our approach chooses edge loops and deformations

that make the assembled shapes look coherent. Figure 6.14 shows a diverse set of animals

assembled by our interchangeable components.

This result was inspired by several similar commercial products. However, all these products

either possess a much more limited set of constructible shapes than our result or make it

very obvious that the shapes are composed of components (Figure 4.12).

Most Compatible Subset of Animals: We applied our most-compatible subset technique (Sec-

tion 4.5.4) to find the most compatible size 4 subset of the full set of animals. We show the

subset and some results in Figure 6.6. The algorithm selected the lion, horse, wolf, and dog.

Note that the selected edge loops for the (tail, body) border actually partition the tail, unlike

the selected edge loops in the full set of animals. We note that these shapes have to undergo

less deformation for component compatibility than when they are used in the full set.

Faces. We used our approach to generate components for assembling various stylized faces

(Figure 6.5(b)). This result was inspired by the Mr. Potato Head toy. The Mr. Potato Head

toy consisted of abstract faces, but ours possess full detail.

92

Faces are a challenging example in our problem setting because humans are sensitive to minor

distortions in facial appearance. Indeed, the initial deformation from our approach caused

the devil face to loose its characteristic grin. Fortunately, our incorporation of interactivity

into the approach allows us to resolve the problem with a simple user edit (Section 4.5.3).

By segmenting meshes appropriately, our approach allows the user to connect components

to an object that did not originally have them. For example, we connect horns to the ogre

and human face, which originally had no horns. Even in narrow, concave regions, like the

eyes, our approach generates components that connect physically.

Chairs. We used our approach to generate components for assembling several types of chairs

(Figure 6.5(c)). These could be used to furnish a doll house or even as real furniture if they

were fabricated at a large enough scale.

The extension to our approach to higher order connectivity (Section 4.5.2) made the arm

and rocking chair legs interchangeable. These more stringent constraints created noticeable

deformations in some of the chairs, but none of that affected their functionality.

The ability of our components to turn any chair into a rocking chair is a simple example of

how interchangeable components can alter the functional properties of shapes.

Humanoids. We generate components for several figurines which allow the user to replace

the legs with a mermaid’s tail and incorporate pose variation (Figure 6.5(d)). Despite a

challenging amount of diversity in the input models, such as the armadillo’s lack of a neck,

our approach arrives at a solution that makes the assembled humanoids appear plausible.

Figure 6.7 shows a diverse set of humanoids assembled by our interchangeable components.

Insects. We generate components from the set of five insects and a scorpion shown in

Figure 6.8. All insects have a head, thorax, abdomen and six legs, but these body parts

possess an extraordinary amount of diversity, making insects an especially challenging test for

our approach. In Figure 6.8 we highlight the challenges involved in creating interchangeable

components for the Stag Beetle. The initial semantic regions of the Stag Beetle and the edge

93

Figure 6.7: Humanoids assembled by our components.

94

Figure 6.8: Some of the challenges involved in generating insect components. Refer to the
text for explanation.

loops found by our compatibility optimization are shown in the center.

In Figure 6.8(a) we focus on the wings. The approach must find an area on the beetle’s

thorax for the grasshopper, fly, and butterfly wings to attach, without straying into adjacent

semantic regions. Despite this issue and the different shapes for the initial wing boundaries

(a.1), our approach finds a common edge loop shape that does not distort the wings and

allows all of them to connect to the beetle. Since the attachment point needs to accommodate

the large butterfly wings, it barely fits onto the thorax.

Figure 6.8(b) shows how by extending the leg-thorax edge loop to the beetle’s thorax our

approach allows it to accommodate the much larger scorpion pincer.

Figure 6.8(c) highlights an unexpected, yet beneficial deviation from the original semantic

regions in determining the individual edge loops for the abdomen-thorax connection. The

grasshopper possesses a very different layout of the wings, thorax and legs than the beetle

(c.1). The initial edge loops are very different in shape (c.2). Our algorithm recognizes

that the grasshopper does not have the flexibility to adjust its edge loop very much, and

instead modifies the beetle’s to get closer, which cuts a large section of its abdomen. Despite

this deviation from the proper anatomy, the components connect to form a plausible shape

95

Figure 6.9: Some assembled insects.

(c.3). Without making this cut, the deformation for compatibility unnaturally raises the

grasshopper’s abdomen (c.4).

Note that we have only shown the process for a single model. Our approach jointly considers

these factors for six models. Conducting this process by hand would be a tedious and difficult

task. Figure 6.9 shows some assembled insects and their prints.

6.2.2 Cross-Category Components

We demonstrate that our approach is flexible enough to generate interchangeable compo-

nents that produce coherent shapes from input models belonging to different categories. We

combined the Armadillo model from the humanoids collection with three insects, and three

four-legged animals. The Armadillo’s original semantic segmentation from the humanoid

example is directly compatible with the insects. To make it compatible with the animals,

we merged the chest and abdomen into a single semantic region. No other changes to the

segmentation were made.

Figure 6.10 shows how our contour optimization scheme (Section 4.2) generates significantly

different edge loops depending on which category we target. For example, because the

96

(a) With Insects (b) With Animals

Figure 6.10: The change in edge loops made by our approach for maximizing the armadillo’s
compatibility with (a) insects and (b) four-legged animals. The original edge loops are
shown in gray and the new edge loops in red. Some shapes constructed from the resulting
components are shown on the right. The components can form both upright and crawling
shapes.

insects tend to have relatively narrow, circular shaped necks, the edge loop for the armadillo

is tightly closed around its neck. For the animals, which have larger, oval-shaped chests, the

armadillo’s edge loop cuts into its chest. The resulting components are versatile, capable of

generating creatures which walk upright or on four or six legs, as shown in the constructed

shapes in Figure 6.10.

6.2.3 Sensitivity to Initial Segmentation

We examine our the dependence of our approach on the input semantic segmentation. For

three faces, we run our contour optimization (Section 4.2) on the border between the nose

and face. We apply three different levels of perturbation to the initial segmentation. Fig-

ure 6.11 visualizes the results. The resulting contours are all semantically valid unless the

perturbation is severe, which causes them to cross into the eyes.

97

(a) Original Segmentation (b) Small Perturbation

(c) Medium Perturbation (d) Large Perturbation

Figure 6.11: The effect of perturbing the input segmentations on the contours found by our
optimization. Only upon large perturbation to the inputs do the output contours become
non-viable.

Figure 6.12: The improvement in shape preservation from compatibility-based optimization.

98

(a) Without Compatibility (b) With Compatibility

Figure 6.13: Visualizing the distortion caused by satisfying component interchangeability.
Red indicates distortion level. Compatibility optimization reduces the distortion consider-
ably.

6.2.4 Compatibility Optimization and Mesh Deformation

We quantitatively evaluated the improvement of the component’s quality resulting from the

compatibility-based optimization (Section 4.2). We ran our full approach and measured the

extent of the deformation for compatibility (Section 4.3) using the ARAP mesh energy. Next,

we re-ran the approach with the compatibility-based optimization omitted and compared the

energies. See Figure 6.12 for the results. The extent of our improvement ranges from over

100% for the faces to about 17% for the humanoids. Figure 6.13 visualizes how the distortion

is distributed over the mesh.

6.2.5 Performance

We tested a single-threaded implementation of our approach on a 2.4 GHz laptop. The

optimization for compatible edge loops in Section 4.2 is the longest step. It took less than

4 minutes in all our experiments. The constrained optimization problems for finding the

initial common edge loops in Section 4.3.1 and for finding an RBF surface in Section 4.4 can

be solved in a few seconds using standard solvers. The time required to minimize the total

mesh deformation energy in Section 4.3.2 scales linearly with the total number of vertices

in the input set. In all our experiments it took less than 30 seconds to converge. In total,

the approach took about 8 minutes for the 13 input model animals and 6 minutes for the 5

99

Figure 6.14: Animals assembled by our interchangeable components. Note that each assem-
bled animal is different and even more variations are possible.

input model faces.

Appendix B provides detailed performance data.

6.2.6 Fabrication

We fabricated our Interchangeable Components results on an Objet Connex 3D printer in

solid material. The printer possessed sufficient precision to enable the components to fit

together smoothly, making most seams virtually unnoticeable, although components with

highly curved connections will have more visible seams. We expect that fabricating the parts

with a higher precision technique, such as molding, should make the seams less visible. Some

parts of the fabricated components were not covered by support material, which gave them a

shinier appearance than parts that were covered. This effect, which is visible in Figure 6.14,

may interfere with the perception of seamlessness. Components that lack any graspable

protrusion and lie in concave regions like the mouth and eyes are easier to extract with a

small flat-head screwdriver than by hand. Components involved in higher-order constraints,

like the arms in the armchairs, require a greater degree of precision from the printer for a

perfectly seamless connection. Since the printer lacks this precision, these components often

have more visible seams, though they still connect.

100

Pieces J. Constraints Runtime

Dog-Bone 6 8 438 min

Cat-Fish 6 8 410 min

Dove-Bomb 6 8 368 min

Bunny-Egg 6 9 583 min

Serpent-Apple 5 8 96 min

Table 6.1: Performance on several inputs. For each test, we list the number of pieces used,
the number of connection constraints, and the total runtime.

6.3 Approximate Dissections

6.3.1 Performance

We implemented our approximate dissections method in C++ and tested it on a 2.6 GHz

laptop. Due to the exponential nature of the problem, our solution search takes a substantial

amount of time. However, the search procedure described in Section 5.4.3 is embarrassingly

parallelizable, and we would expect our runtimes to decrease substantially with the addition

of more processors.

Table 6.1 summarizes the performance of our method. We note that it is not unusual to see

similar performance characteristics when solving geometric problems in a vast combinatorial

search space. For example, recent work by Kwan et al. (2016) that tackled the 2D collage

problem had comparable timing, taking about 12 hours to generate their most complex

result.

6.3.2 Approximation Accuracy

We tested how increasing the piece count improves the accuracy of approximating the input

shapes. Figure 6.15(a) shows the results across four dissections. We used the maximum

angular error from our optimization (5.1) to measure the approximation accuracy. For the

three piece counts tested, we observed a roughly linear relationship.

101

(a) Approximation Error vs.
Piece Count

(b) Dog-bone dissection with
four and five pieces

(c) Effect of Pruning For 5-
Piece Dissections

Figure 6.15: (a) Decline in approximation error as the number of pieces used is increased.
(b) The best solutions for the dog-bone dissection obtained with four and five pieces. (c)
Performance gains obtained from the pruning tests.

6.3.3 Pruning Efficiency Gain

We measured the extent to which the pruning tests (Section 5.4) improve the performance

of the solution search. Figure 6.15(b) compares the runtimes for pruning versus no pruning,

for four dissections, using a piece count of five. At this piece count, the pruning improves

the performance by a factor of roughly 15. For six pieces, all the trials run without pruning

did not finish after 24 hours.

6.3.4 Results

We used our approach to generate several dissections, which are shown in Figure 6.16. All

the input shapes were obtained by taking one of the first results from a Google image search.

Appendix C provides an alternate visualization of these results.

Our method supports organic objects (Figure 6.16(a)–(e)), man-made objects (Figure 6.16(b),

(g)), the outlines of geographic entities (Figure 6.16(f), (h)), and abstract shapes (Fig-

ure 6.16(f), (g)). In most cases, six pieces were needed to form a satisfactory approximation

of the input shapes. The two exceptions were the serpent-apple and Trump-USA dissections,

which used only five pieces. The Trump-USA result (Figure 6.16(h)) shows how simple tex-

turing can enhance a dissection’s appearance.

102

(a) Cat to Fish (b) Dove to Bomb

(c) Bear to Cat (d) Serpent to Apple

(e) Caterpillar to Butterfly (f) Map of Island to X

(g) Nike Logo to Shoe (h) United States to Trump

Figure 6.16: Generating dissections between different shapes. Input shapes are shown on
the left. Assembled pieces are shown on the right.

103

(a) Arrangement Outlines (b) Dog Ar-
rangement

(c) Bone Arrangement (d) Incorrect Ar-
rangement

Figure 6.17: The fabricated dog bone puzzle. (a) Outlines of the arranged pieces that were
shown to the participant.

6.3.5 Application to Puzzles

Our Approximate Dissections technique can be applied to create a type of puzzle as shown

in Figure 6.17. We fabricated several of our results and conducted an informal user study

in which participants were shown outlines of the two shapes and instructed to assemble

the pieces into those shapes. We observed that the puzzles are substantially, albeit not

overwhelmingly, difficult. On average, it took a participant about twenty minutes to solve

the puzzles for both shapes. The pieces can form coherent shapes that are not one of the

intended ones (Figure 6.17(d)), which increases the difficulty of the puzzle.

We can introduce a post-processing step that partitions the original set of dissection pieces

into smaller ones, allowing the user to tune the difficulty of the puzzle. The partition could

aim for high similarity between the pieces, as in traditional jigsaw puzzles.

104

CHAPTER 7

Conclusion

7.1 Summary

This dissertation introduced three novel geometric open-ended design problems and proposed

viable solutions to them. Open-ended design problems are challenging because it is unclear

how one should formalize them. On the one hand, opting for a highly mathematically

satisfying formalization may result in an elegant solution, but the formalization may not

sufficiently capture the nuances of the original problem. On the other hand, a formalization

that tries to capture every subtlety of the original problem might result in an unwieldy,

ad hoc solution that only works for a narrow range of inputs. In this thesis we sought to

avoid these pitfalls by developing a concise formalization to tackle some “core aspect” of the

problem, and then introducing extensions to the formalization to address the subtleties. In

many cases these extensions provided user input through a graphical interface, thus tackling

situations that are difficult for a computer but trivial for a human.

First, we introduced the problem of zoomorphic object creation to computer graphics and

offered a novel approach to solve it. This problem has the unique challenge of combining

very different objects while preserving key properties and structures. Our approach creates

a zoomorphic object by altering and then merging a man-made and animal object. We

developed a novel technique to ensure that the design restrictions of the man-made object are

still satisfied in the zoomorphic object. We incorporated this technique into an optimization

process that jointly deforms the two objects to improve the appearance of the resulting

zoomorphic object, according to high level preferences given by the user.

105

Second, we presented an Interchangeable Components approach to convert 3D models into

interchangeable components that form shapes with a coherent appearance. Our algorithm

chooses how to partition the models into components and how to deform the components

for interchangeability. Both steps consider C0 and C1 continuity between the components

in order to minimize the visual impact of component junctions. This process would be

extremely tedious to perform manually for complex shapes or large numbers of shapes.

Our optimization-based approach generates components which produce shapes of greater

complexity and diversity than those of commercial products while naturally incorporating

user guidance to preserve desired features in the components. The increasing availability

of high quality 3D models and cheap 3D printing services has motivated a recent trend in

Computer Graphics Research, which focuses on allowing casual users to create customized

fabricable objects that possess a desirable property from initial meshes that lacked this

property. Some example properties include stability (Prévost et al., 2013), spinnability

(Bächer et al., 2014), and aerodynamic characteristics (Umetani et al., 2014). Our work

contributes to this trend, with the specific property being the interchangeability of the

components.

Third, we introduced the approximate dissection problem, a relaxation of the exact dissec-

tion problem, which allows us to capture the essence of a pair of complex shapes using a

small number of pieces. We developed a combinatorial search strategy for the problem that

prunes the solution space to identify high-quality dissection solutions in a tractable amount

of time. Since our geometric approach cannot take into account the perceptual significance

of a given deformation, we developed a novel user interface that allows a casual user to refine

the dissection solution. Our interface suggests alterations to the input shapes that would

make the dissection generation easier, while allowing the user to add additional alterations

that preserve the identity of the input shape. Our system enables the creation of dissections

that are qualitatively different than previous ones. Dissections between complex, natural-

istic shapes possess a visceral quality that is lacking in dissections between abstracted or

geometrically ideal shapes. These dissections can be used to convey a message in a unique

fashion (Figure 7.1) or as a puzzle.

106

(a) (b) (c)

Figure 7.1: The application of our method to a horror movie scene. (a) A plate on a
countertop. (b) The plate begins to vibrate and splits into pieces. (c) The pieces rearrange
themselves to form a devilish visage.

7.2 Limitations and Future Work

In our Zoomorphic Design approach, our volumetric design restriction cannot preserve the

functionality of the base object in the final zoomorphic object in all cases. We do not guaran-

tee that the zoomorphic object will be aerodynamic, physically stable, or capable of bearing

a given weight. An interesting direction for future work is to integrate our optimization

framework with other approaches that handle these more complex types of functionality (see

(Prévost et al., 2013) and (Umetani et al., 2014)).

Our approach considers the animal object as a coherent entity, which constrains its parts

to locations that will not induce a large global deformation. However, some real world

designers relax this constraint, which allows them to create viable zoomorphic objects that

our approach cannot. For example, the designer of the scorpion chair in Figure 7.2(a) chose

to place the scorpion arms above and behind the scorpion head such that they overlap with

the chair arms. The designer effectively disconnected the arms from the rest of the object,

prioritizing semantic correspondence over physical validity. A real scorpion cannot deform

in this manner, yet the Scorpion Chair is visually provocative. A scorpion chair generated

using our approach cannot place the arms in this manner, as it would incur an extremely

high deformation energy. Instead we place the scorpion arms at the sides of the chair

107

(a) (b) (c) (d)

Figure 7.2: Limitations. Our system can only place the scorpion arms at the sides (a) while
an artist places them to coincide with the chair arms (a). (c)–(d) Zoomorphic objects that
could not be created by our system, suggesting alternative models based on texture synthesis
guided by geometry (c) or shape abstraction (d).

(Figure 7.2(b)), which may be undesirable since the arms take up much space. We believe

our approach could be extended naturally to handle this type of deformation by allowing

parts of the animal object to disconnect themselves should the deformation energy become

too large.

There are other styles of zoomorphic art that our approach is not designed to handle. Fig-

ures 7.2(c)–(d) show two examples. The development of approaches to handling these styles

offers interesting directions for future work in zoomorphic design.

We see several directions for future work related to our Interchangeable Components ap-

proach. The components generated by the current approach correspond to semantically

meaningful regions of the input models. While the semantic constraint makes shape assem-

bly more intuitive, it also limits the geometric diversity of the components. An interesting

problem would be to synthesize a set of components from scratch that can approximate

the geometry of a set of models, without any semantic considerations on the components.

The resulting components would form a kind of 3D tangram puzzle. The present approach

dealt with objects which are reconfigurable between a set of states specified by appearance.

Specifying the states by a higher level goal such as functionality or a physical property while

108

(a) (b) (c)

Figure 7.3: (a-b) A failure case due to severe differences in the initial component geome-
try. (a) The default deformation produced by our approach distorts the dog’s mouth. (b)
Adjusting the weights to preserve the dog’s mouth creates undesirable deformations in the
other shapes. (c) Interference between components prevents physical assembly.

relaxing constraints on the appearance is an intriguing problem for future work.

Our approach deforms the input meshes to achieve part compatibility, but does not guarantee

anything about the extent of the deformation. In some cases the deformations introduced

may be semantically incorrect. The user interaction discussed in Section 4.5.3 can mitigate

these issues, but may be unable to resolve cases where the components of the input meshes

differ fundamentally in their geometry. Figure 7.3(a-b) shows such a case. In a few cases the

diversity of our component geometry creates configurations where components interfere with

one another, as shown in Figure 7.3(c). We leave the problem of automatically deforming

the components to eliminate these cases for future work. The relative alignment between

components when they are connected is determined by the local coordinate frame for the

contours, whose computation is described in Section 4.2. Since the automatic local frame

computation may not always produce a satisfactory component alignment, future work could

allow the user to adjust the frame if desired.

When dealing with man-made shapes, our approach could benefit from using parametrized

shape templates (Schulz et al., 2014) instead of simple triangle meshes. To incorporate shape

templates, we would replace the mesh based deformation energy in Section 4.3.2 with one

that incorporated template parameters.

Our approach only considers geometric, not physical properties of the assembled objects. For

109

(a) Design with egg prioritized (b) Design with bunny prioritized

Figure 7.4: A failure. The input shapes are shown in gold. Even with user interaction,
problematic regions (circled) in both shapes cannot be eliminated in a single design.

example, it is possible to construct a humanoid (Section 6.2.1) that does not stand stably

on its legs. Combining our geometric problem with the physical problems posed by works

like (Prévost et al., 2013) offers an interesting direction for future work: guaranteeing that

any object assembled from a set of components possesses some physical properties.

Our Approximate Dissections approach offers several opportunities for future work. First,

we could generalize it to support dissections between more than two shapes. Second, the

search time for the solution is substantial, even with the pruning tests. Since we currently

use a commodity solver (Wächter and Biegler, 2006), we can potentially boost performance

by developing a special procedure for the dissection geometry optimization (Section 5.2).

Developing additional ways of pruning partial solutions could provide even bigger gains.

Our approach does not naturally generalize to 3D, because we represent dissection pieces as

a ring of one-dimensional boundary intervals and do not take piece interlocking into account.

Hence, a substantially different method would be needed to tackle the approximate dissection

problem in three dimensions.

In some cases our approach fails to generate a satisfactory dissection. Figure 7.4 shows an

example. Even with manual editing, the constraints of the design preclude capturing the

details of the Stanford bunny without causing unsightly bulges and cavities on the egg. In

such cases, the trade-off between the two options is left to the user.

Our method does not consider the physical properties of the pieces, so it can generate

pieces with extremely narrow sections that would be weak if fabricated. In our current

110

implementation, the user may manually edit the solution to remove these sections. A term

penalizing such sections may be added to the optimization (5.1). We also ignore the semantic

significance of the pieces. For example, in the cat-fish dissection (Figure 6.16(a)), one of

the pieces corresponds almost exactly to the cat’s head. These cases may be undesirable

when designing a puzzle as they reduce its difficulty. Also, allowing pieces to flip between

arrangements, in addition to rotating, would enable us to generate a wider range of solutions.

Finally, this thesis discussed open-ended problems whose solution is ultimately judged by

human perception. In our geometrically-formulated solutions to these problems, geometry

was used as a rough approximation of human perception. To deal with this gap we incorpo-

rated user guidance into our approaches, allowing users to tweak the solution in places their

perception flagged as incorrect. However, recent advances in machine learning have built

rich models of the relationship between perception and geometry. For a notable example

in the graphics community, see Yumer et al. (2015). Future work could incorporate such

models, leading to semantically-formulated solutions to open-ended design problems.

111

APPENDIX A

Supplemental Material on Zoomorphic Design

This appendix provides more details about the shape graph construction, the graph kernel

evaluation, the automatic transfer of VDR labels, and the informal studies.

A.1 Suggesting Objects to Blend

A.1.1 Shape Graph

We describe how to construct the shape graph for an input object which has been pre-

segmented. Figure A.1 shows a chair separated into its segments. Each segment corresponds

to a node of the shape graph. Each adjacency between segments corresponds to an edge of

the shape graph. For each node of the shape graph we record the following attributes:

1. γ1, γ2, γ3 - The three dimensional attributes of the segment.

2. µ1, µ2, µ3 - The relative segment scales used in (Xu et al., 2010a), which measure how

planar, linear and spherical a segment is.

3. ymin, ymax - The minimum and maximum y-coordinate of all the vertices in the segment.

4. κ - The average centricity of the segment. Centricity is defined as the average geodesic

distance from a vertex to all the other vertices in the mesh. The geodesic distances are

normalized between 0 and 1.

112

Figure A.1: Shape graph representation of a chair. Each segment is represented as a node.
Blue boxes show the attributes stored in each node. Orange arrows refer to the edges
connecting each pair of adjacent nodes.

5. sp - A binary attribute denoting whether the segment is a supporting segment. We

classify a segment as supporting if ymin is within 10% of the minimum y-coordinate

across the entire mesh. This attribute assumes that the mesh is oriented upright, which

can be automatically inferred by Fu et al. (2008).

6. sm - A binary attribute denoting whether the segment is positioned in the center of

the object’s bilateral symmetry plane or if it has a symmetric counterpart on the other

side of the plane.

A.1.2 Graph Kernel

We use a graph kernel to measure the similarity between two shape graphs. Graph kernels

are a general tool for measuring the similarity between two graphs. An example use is

113

measuring the similarity between scenes (Fisher et al., 2011). We use a graph kernel which

compares two shape graphs by evaluating the similarity of all pairs of length p walks on

the graphs (p = 3 in our experiments). The similarity between two walks is evaluated by

using a node kernel between corresponding nodes and an edge kernel between corresponding

edges of the walks. The evaluation can be done efficiently through a dynamic programming

algorithm (Shawe-Taylor and Cristianini, 2004).

Node Kernel. For any node u, let ua denote the value of its attribute a. Our node kernel

Knode measures the similarity between the input nodes u and v:

Knode(u, v) = δ(usp, vsp)δ(usm, vsm)

×1

2
(Kcentricity(u, v) +Kscale(u, v)) ,

(A.1)

Kcentricity(u, v) = exp

(
−(uκ − vκ)2

σκ2

)
, (A.2)

Kscale(u, v) =
3∏
i=1

exp

(
−(uγi − vγi)2

σγ2

)

×
3∏
i=1

exp

(
−(uµi − vµi)2

σµi
2

)
,

(A.3)

where δ is the Kronecker delta function, σκ is the largest centricity difference, σγ is the

largest scale difference between all the segments of the two objects and σµi is the largest

difference in µi.

Edge Kernel. We measure the horizontalness of an edge e connecting two nodes u and v

(corresponding to two adjacent segments), by the following formula:

h(u, v) =
max(0,min(uymax , vymax)−max(uymin

, vymin
))

0.5 · ((uymax − uymin
) + (vymax − vymin

))
. (A.4)

114

Figure A.2: Common substructures (red) between the two objects found by the graph kernel.

For simplicity, denote eh = h(u, v). Our edge kernel Kedge measures the difference in hori-

zontalness between the input edges e and f :

Kedge(e, f) = exp

(
−(eh − fh)2

σh2

)
, (A.5)

where σh is the largest difference in horizontalness between all the edges of the two objects.

A.1.3 Graph Kernel Evaluation

We can visualize the operation of our graph kernel to confirm that it gives reasonable results.

The length p graph walk kernel will compute a score for every pair of length p walks in the

two graphs being compared. For each node in the graphs we record the maximum walk

score across all pairs of walks that involved that node. In Figure A.2 we color the segments

of the objects by this score. The red areas of a shape indicate substructures that have

corresponding substructures in the other shape. The case where we compare a horse and a

rocking-horse is a partial failure, because we fail to detect similarity between the horse’s legs

and the central supports of the rocking-horse. This failure is because the horse’s legs have

symmetrical counter-parts, but the central supports do not.

115

Figure A.3: Query base objects (tables) and the top five returned animal objects.

Figure A.4: Query animal shape (a phoenix) and the top five returned base objects.

In Figure A.3, we test the graph kernel’s ability to discriminate between geometric charac-

teristics at the part-level by querying on two tables which are identical except for the length

of their legs. The top five results are all quadrupeds which possess similar structure to the

table. However, the order of these results depends on their legs’ geometric similarity to those

of the table.

Figure A.4 shows an example of using a phoenix as the query animal shape and the returned

base object results. Because there were only four airplanes present in the database, the fifth

result is a cup which matches the body of the phoenix.

In Figure A.5, we use an armchair as the query base shape and show the returned animal

objects. Four-legged animals come first, followed by the armadillo which has two arms and

two legs, and then by the eight-legged octopus. The hummingbird which has no legs and

the ant whose legs extend more horizontally then downwards receive the lowest rankings.

116

Figure A.5: Query base object (an armchair) and the suggested animal objects for merging.
Objects are sorted from left to right in descending order of graph kernel match.

Figure A.6: Left: Manually labeled training meshes (labels in green). Right: Automatically
labeled mesh. The geometry of the automatically labeled mesh is significantly different from
that of the training set.

A.2 Automatic Transfer of VDR Labels

An advantage of the VDR is that a classifier can be trained to transfer VDR labels auto-

matically for meshes in a given category. We conducted some simple experiments to verify

that the approach of Kalogerakis et al. (2012) can be applied transfer them successfully.

We test the labeling method of Kalogerakis et al. (2012) on our problem by comparing the

automatic VDR labeling to the ground-truth labeling across four different object categories

and four different training data set sizes. In Figure A.6 we show manually labeled cups used

as training examples and an automatically labeled cup.

Table A.1 shows the relationship between the size of the training data set and the labeling

Training Set Size
3 6 12 19

Chairs 72.13% 89.07% 94.42% 94.84%
Cups 79.83% 89.93% 89.78% 90.70%

Airplanes 81.34% 80.14% 96.78% 98.634%
Tables 90.78% 88.31% 92.49% 96.05%

Table A.1: Training set size and the corresponding automatic VDR labeling accuracies.

117

armchair carousel chair motorcycle gokart

mug office chair rocking horse tricycle vase

Figure A.7: Base objects used in our informal studies.

accuracy computed using the Segment-Weighted Error used by Kalogerakis et al. (2012).

Their method gives reasonable results when applied to our problem. We find that in general

a training data set of about 12-19 meshes is enough to obtain a classification accuracy of

about 90% or above.

A.3 Informal Studies Details

Figure A.7 and A.8 show the base and animal objects used to generate the zoomorphic

objects in our informal studies. Figure A.7 and A.9 show the objects used in the first test.

Figure A.9 and A.10 show the objects used in the second test. Note that in our actual

studies, all the 3D models were rendered in the same color, so that our test participants

could not determine the categories of the objects from their colors. Tables A.2 and A.3

summarize the responses.

118

armadillo bull dolphin dragon 1 dragon 2

head puma horse

Figure A.8: Animal objects used to generate the zoomorphic objects in our informal studies.

armadillo gokart horse armchair 1 horse armchair 2 horse armchair 3 rocking cow

dolphin tricycle dragon vase face mug horse tricycle puma motorcycle

Figure A.9: Zoomorphic objects used in our informal studies, generated with the volumetric
design constraint.

119

armadillo gokart 1 armadillo gokart 2 rocking horse 1 dolphin tricycle face mug

horse armchair horse chair rocking horse 2 horse tricycle puma motorcycle

Figure A.10: Zoomorphic objects used in our informal studies, generated without the volu-
metric design constraint.

Yes No Undecided
Our Result 89.55% 9.09% 1.36%
Base Shape 11.36% 86.14% 2.50%

Table A.2: Responses for the first test. The participant was asked “Is this object zoomor-
phic?”.

Yes No Undecided
With VDC 85.85% 12.20% 1.95%

Without VDC 36.59% 59.02% 4.39%

Table A.3: Responses for the second test. The participant was asked “Is this a plausible
category?”, where category refers to the object category of the base object from which the
zoomorphic object shown was created.

120

APPENDIX B

Supplemental Material on Interchangeable

Components

This appendix provides details on the computational performance of our Interchangeable

Components approach and visualizes the distortions incurred in enforcing interchangeability

between components.

B.1 Performance and Combinations Data

In Table B.1, we show the total runtimes to generate each of our main results, along with the

number of input models, total number of vertices in the input models, number of components

and the number of possible shapes which can be assembled from the components. For the

simple case of N input models, each with K components, this number is simply NK .

Num. Num. Possible Num. Runtime

Models Components Shapes Vertices (sec.)

Insects 6 70 302M 105144 229

Faces 5 42 250K 79975 370

Humanoids 5 35 78K 95500 293

Animals 13 91 62M 122764 465

Chairs 6 47 1.6M 152648 148

Table B.1: Interchangeable components runtimes.

121

B.2 Deformation Comparison

The following figures show the initial input shapes colored by their semantic regions and the

input shapes after deformation for component compatibility. The deformations were created

using the default uniform weights, without any user guidance.

122

(a)

(b)

Figure B.1: (a) The original input animals colored by their segmentations. (b) The same
animals after deformation.

123

(a)

(b)

Figure B.2: (a) The original input faces colored by their segmentations. (b) The same faces
after deformation.

(a)

(b)

Figure B.3: (a) The original input chairs colored by their segmentations. (b) The same
chairs after deformation.

124

(a)

(b)

Figure B.4: (a) The original input humanoids colored by their segmentations. (b) The same
humanoids after deformation.

125

(a)

(b)

Figure B.5: (a) The original input insects colored by their segmentations. (b) The same
insects after deformation.

126

APPENDIX C

Supplemental Material on Approximate Dissections

This appendix visualizes the closeness of the dissection pieces’ approximation of the original

shapes and describes how to initialize the geometry optimization.

C.1 Comparing the Input and Output Shapes

In Figure C.1 we show each input shape next to its corresponding arrangement of dissection

pieces without showing the interior dissection piece boundaries. This style lets us more easily

see how accurately the dissection pieces approximate the input shapes.

C.2 Initializing the Full Geometry Optimization

The geometry optimization in Section 5.2 is non-convex and hence the final objective value is

dependent on the starting point. We use the optimization result from the orientation-based

pruning described in Section 5.4.1 to obtain a reasonable starting point. The orientation-

based pruning is posed as a mixed-integer linear programming problem and does not need a

starting point of its own to find the global optimum.

The optimization variables for the full geometry optimization are the dissection piece rotation

angles θ and the junction constraint edge vector sequences E = {E1, ...,EM}.

The initial values for θ are simply set to their corresponding values from the orientation-

127

(a) Bunny to Egg (b) Cat to Fish (c) Dove to Bomb

(d) Caterpillar to Butterfly (e) Map of Island to X (f) Snake to Apple

(g) USA to Trump (h) Shoe to Nike Logo

Figure C.1: The input shapes (left) next to the arranged dissection pieces (right).

based optimization’s solution.

The initial values for E are obtained by solving the optimization in Section 5.2 with θ fixed

to the initial values, ignoring the constraints and using the least-squares regularization term

instead of the maximum angular error. This simplified optimization only requires a linear

solve.

This procedure is not guaranteed to produce the “optimal” starting point, but was effective

in practice.

128

REFERENCES

Aldersey-Williams, H. (2003). Zoomorphic: New Animal Architecture. HarperDes. 4

Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., and Zhang, H. (2014). Topology-varying
3D shape creation via structural blending. ACM Trans. Graph. 89

Aliaga, D. G., Vanegas, C. A., and Beneš, B. (2008). Interactive example-based urban
layout synthesis. ACM Trans. Graph., 27(5):160. 1, 15

Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. (2014). Spin-it: Optimizing
moment of inertia for spinnable objects. ACM Trans. Graph., 33(4):96. 14, 16, 106

Baran, I. and Popović, J. (2007). Automatic rigging and animation of 3D characters.
ACM Trans. Graph., 26(3):72. 28

Bischoff, S., Weyand, T., and Kobbelt, L. (2005). Snakes on triangle meshes. In Bildver-
arbeitung für die Medizin 2005, pages 208–212. Springer. 46

Bond, A. (2014). Hands-on toys help kids prep for school and life, research
says. http://www.huffingtonpost.com/2014/03/21/blocks-puzzles-help-kids_n_

5008358.html. Accessed: 1-2-2016. 15

Bosboom, J., Demaine, E., Demaine, M., Lynch, J., Manurangsi, P., Rudoy, M., and
Yodpinyanee, A. (2015). k-piece dissection is NP-hard. In Abstracts from the 18th Japan
Conf. on Discrete and Computational Geometry and Graphs. 10

Bramston, D. (2008). Basics Product Design 01: Idea Searching. AVA Publishing. 4

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C.,
and Evans, T. R. (2001). Reconstruction and representation of 3D objects with radial
basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, pages 67–76. ACM. 54

Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. (2011). Probabilistic reasoning
for assembly-based 3D modeling. ACM Trans. Graph., 30(4):35. 13, 15

Chaudhuri, S. and Koltun, V. (2010). Data-driven suggestions for creativity support in
3D modeling. ACM Trans. Graph., 29(6):183:1–10. 13, 15, 60

Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q., Benes, B., Cohen-Or, D., and
Chen, B. (2015). Dapper: Decompose-and-pack for 3D printing. ACM Trans. Graph.,
34(6):213. 16

Coates, M., Brooker, G., and Stone, S. (2009). The Visual Dictionary of Interior Archi-
tecture and Design. Fairchild Books. 4

129

http://www.huffingtonpost.com/2014/03/21/blocks-puzzles-help-kids_n_5008358.html
http://www.huffingtonpost.com/2014/03/21/blocks-puzzles-help-kids_n_5008358.html

Cohn, M. (1975). Economical triangle-square dissection. Geometriae Dedicata, 3(4):447–
467. 10

Duncan, N., Yu, L.-F., and Yeung, S.-K. (2016). Interchangeable components for hands-
on assembly based modelling. ACM Transactions on Graphics (TOG), 35(6):234:1–14.
3

Duncan, N., Yu, L.-F., Yeung, S.-K., and Terzopoulos, D. (2015). Zoomorphic design.
ACM Transactions on Graphics (TOG), 34(4):95:1–13. 2

Duncan, N., Yu, L.-F., Yeung, S.-K., and Terzopoulos, D. (2017). Approximate dissec-
tions. ACM Transactions on Graphics (TOG), 36(6):182:1–13. 3

Fisher, M., Savva, M., and Hanrahan, P. (2011). Characterizing structural relationships
in scenes using graph kernels. ACM Trans. Graph., 30(4):34. 114

Frederickson, G. (2002). Hinged Dissections: Swinging and Twisting. Cambridge Univer-
sity Press. 9

Frederickson, G. (2003). Dissections: Plane and Fancy. Cambridge University Press. 17

Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. (2008). Upright orientation of man-made
objects. ACM Trans. Graph., 27(3). 113

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S.,
and Dobkin, D. (2004). Modeling by example. ACM Transactions on Graphics (TOG),
23(3):652–663. 13, 15

Gardner, R. (1985). A problem of Sallee on equidecomposable convex bodies. Proc.
American Mathematical Society, 94(2):329–332. 10

Golinkoff, R. M., Hirsh-Pasek, K., and Eyer, D. (2004). Einstein Never Used Flashcards:
How Our Children Really Learn – And Why They Need to Play More and Memorize Less.
Rodale Books. 15

Gurobi Optimization, Inc. (2016). Gurobi optimizer reference manual. 77

Hu, R., Li, H., Zhang, H., and Cohen-Or, D. (2014). Approximate pyramidal shape
decomposition. ACM Trans. Graph., 33(6):213. 16

Huang, Y.-J., Chan, S.-Y., Lin, W.-C., and Chuang, S.-Y. (2016). Making and animating
transformable 3D models. Computers & Graphics, 54:127–134. 18

Igarashi, T., Matsuoka, S., and Tanaka, H. (1999). Teddy: A sketching interface for 3D
freeform design. ACM Trans. Graph., pages 409–416. 13

Igarashi, Y., Igarashi, T., and Mitani, J. (2012). Beady: Interactive beadwork design and
construction. ACM Trans. Graph., 31(4):49. 1, 15

130

Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. (2012). Fast automatic
skinning transformations. ACM Trans. Graph., 31(4):77. 28

Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. (2012). Exploring shape vari-
ations by 3D-model decomposition and part-based recombination. Computer Graphics
Forum, 31(2pt3):631–640. 13, 15

Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. (2012). A probabilistic model
for component-based shape synthesis. ACM Trans. Graph., 31(4):55. 13, 16, 25, 42, 43,
89, 117, 118

Kalogerakis, E., Hertzmann, A., and Singh, K. (2010). Learning 3D mesh segmentation
and labeling. ACM Trans. Graph., 29(4):102:1–102:12. 19, 20

Kaplan, C. and Salesin, D. (2000). Escherization. In Proc. ACM SIGGRAPH ’00 Conf.,
pages 499–510. 17

Kashima, H., Tsuda, K., and Inokuchi, A. (2004). Kernels for graphs. In Kernel Methods
in Computational Biology, pages 155–170. 21

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. Inter-
national Journal of Computer Vision, 1(4):321–331. 46

Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. (2014). Creating works-like
prototypes of mechanical objects. ACM Trans. Graph., 33(6). 16

Kraevoy, V., Julius, D., and Sheffer, A. (2007). Shuffler: Modeling with interchangeable
parts. The Visual Computer. 13, 15

Kranakis, E., Krizanc, D., and Urrutia, J. (2000). Efficient regular polygon dissections.
Geometriae Dedicata, 80(1):247–262. 10

Kwan, K., Sinn, L., Han, C., Wong, T.-T., and Fu, C.-W. (2016). Pyramid of arclength
descriptor for generating collage of shapes. ACM Transactions on Graphics (TOG),
35(6):229. 18, 101

Laga, H., Mortara, M., and Spagnuolo, M. (2013). Geometry and context for seman-
tic correspondences and functionality recognition in man-made 3D shapes. ACM Trans.
Graph., 32(5):150. 14

Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. (2011). Converting 3D furniture
models to fabricatable parts and connectors. ACM Trans. Graph., 30(4):85. 16

Lee, C. H., Varshney, A., and Jacobs, D. W. (2005). Mesh saliency. ACM Trans. Graph.,
24(3):659–666. 31

Li, H., Alhashim, I., Zhang, H., Shamir, A., and Cohen-Or, D. (2012). Stackabilization.
ACM Trans. Graph., 31(6):158. 14

131

Lidwell, W. (2014). Power to the peeps: Empowering children through eyewear design.
http://www.2020mag.com/story/49775/. 4

Lidwell, W. and Manacsa, G. (2011). Deconstructing Product Design: Exploring the Form,
Function, Usability, Sustainability, and Commercial Success of 100 Amazing Products.
Rockport Publishers. 4

Löffler, M., Kaiser, M., van Kapel, T., Klappe, G., van Kreveld, M., and Staals, F.
(2014). The connect-the-dots family of puzzles: Design and automatic generation. ACM
Transactions on Graphics (TOG), 33(4):72. 17

Lozano, J. A. (2006). Towards a New Evolutionary Computation: Advances on Estimation
of Distribution Algorithms, volume 192. Springer. 37

Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. (2012). Chopper: Partitioning
models into 3D-printable parts. ACM Trans. Graph., 31(6):129. 16

Manurangsi, P., Rudoy, M., and Yodpinyanee, A. (2016). Dissection with the fewest pieces
is hard, even to approximate. In 18th Japan Conference on Discrete and Computational
Geometry and Graphs (JCDCGG 2015), volume 9943, page 37. 10

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. (2011). Interactive furni-
ture layout using interior design guidelines. ACM Trans. Graph., 30(4):87. 1, 15

Mitra, N., Wand, M., Zhang, H. R., Cohen-Or, D., Kim, V., and Huang, Q.-X. (2013).
Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses, page 1. ACM. 14

Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. (2013). Make it stand:
Balancing shapes for 3D fabrication. ACM Trans. Graph., 32(4). 14, 16, 40, 106, 107, 110

Schmidt, R. and Singh, K. (2010a). Drag, drop, and clone: An interactive interface for
surface composition. Technical report, Citeseer. 56

Schmidt, R. and Singh, K. (2010b). Meshmixer: An interface for rapid mesh composition.
In ACM SIGGRAPH 2010 Talks, page 6. ACM. 13

Schulz, A., Shamir, A., Levin, D. I., Sitthi-Amorn, P., and Matusik, W. (2014). Design
and fabrication by example. ACM Trans. Graph., 33(4):62. 16, 109

Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and Zhang, H. (2010). Contextual
part analogies in 3D objects. International Journal of Computer Vision, 89(2-3):309–326.
14

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cam-
bridge University Press. 21, 22, 114

Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. (2004). The Princeton shape
benchmark. In Proceedings of Shape Modeling Applications, pages 167–178. IEEE. 83

132

http://www.2020mag.com/story/49775/

Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. (2011). Unsupervised
co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans.
Graph., 30(6). 42

Song, P., Fu, C.-W., Jin, Y., Xu, H., Liu, L., Heng, P.-A., and Cohen-or, D. (2017).
Reconfigurable interlocking furniture. ACM Transactions on Graphics (TOG), 36(6). 18

Sorkine, O. and Alexa, M. (2007a). As-rigid-as-possible surface modeling. In Symposium
on Geometry Processing, volume 4. 30, 36

Sorkine, O. and Alexa, M. (2007b). As-rigid-as-possible surface modeling. In Proceedings
of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pages 109–116,
Aire-la-Ville, Switzerland, Switzerland. Eurographics Association. 53

Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. (2012). Mean curvature skeletons.
Computer Graphics Forum, 31(5):1735–1744. 28

Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T., and Sorkine, O. (2011).
Geobrush: Interactive mesh geometry cloning. Computer Graphics Forum, 30(2):613–622.
13

Umetani, N., Igarashi, T., and Mitra, N. J. (2012). Guided exploration of physically valid
shapes for furniture design. ACM Trans. Graph., 31(4):86. 16

Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. (2011). Sensitive couture
for interactive garment editing and modeling. ACM Trans. Graph., 30(4). 1, 15

Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. (2014). Pteromys: Interactive
design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph.,
33(4):65. 14, 16, 106, 107

Vanegas, C. A., Garcia-Dorado, I., Aliaga, D. G., Benes, B., and Waddell, P. (2012).
Inverse design of urban procedural models. ACM Trans. Graph., 31(6). 1, 15

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57. 51, 67, 110

Wang, J. and Oliveira, M. M. (2003). A hole-filling strategy for reconstruction of smooth
surfaces in range images. In Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI 2003), pages 11–18. IEEE. 54

Xu, J. and Kaplan, C. (2007). Image-guided maze construction. ACM Transactions on
Graphics (TOG), 26(3). 17

Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. (2010a). Style-
content separation by anisotropic part scales. ACM Trans. Graph., 29(6):184. 112

133

Xu, X., Zhang, L., and Wong, T.-T. (2010b). Structure-based ASCII art. ACM Transac-
tions on Graphics (TOG), 29(4). 17

Yao, M., Chen, Z., Luo, L., Wang, R., and Wang, H. (2015). Level-set-based partitioning
and packing optimization of a printable model. ACM Trans. Graph., 34(6):214. 16

Yu, L.-F., Yeung, S. K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. (2011).
Make it home: Automatic optimization of furniture arrangement. ACM Trans. Graph.,
30(4):86. 1, 15

Yumer, M. E., Chaudhuri, S., Hodgins, J. K., and Kara, L. B. (2015). Semantic shape
editing using deformation handles. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2015), 34. 111

Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick, O., and Tagliasacchi,
A. (2008). Deformation-driven shape correspondence. Computer Graphics Forum,
27(5):1431–1439. 14, 36

Zheng, Y., Cohen-Or, D., and Mitra, N. J. (2013). Smart variations: Functional substruc-
tures for part compatibility. Computer Graphics Forum (Eurographics), 32(2pt2):195–204.
27, 89

Zheng, Y., Liu, H., Dorsey, J., and Mitra, N. J. (2016). Ergonomics-inspired reshaping and
exploration of collections of models. IEEE Transactions on Visualization and Computer
Graphics, 22(6):1732–1744. 14

Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. (2014). Boxelization: Folding 3D
objects into boxes. ACM Trans. Graph., 33(4):71. 1, 15, 17

Zhou, Y., Wang, R., et al. (2012). An algorithm for creating geometric dissection puzzles.
In Proc. Bridges Conf., pages 49–58. 17

Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. (2012). Motion-guided
mechanical toy modeling. ACM Trans. Graph., 31(6):127. 1, 15

Zou, C., Cao, J., Ranaweera, W., Alhashim, I., Tan, P., Sheffer, A., and Zhang, H. (2016).
Legible compact calligrams. ACM Transactions on Graphics (TOG), 35(4):122. 17

134

	1 Introduction
	1.1 The Contributions of this Thesis
	1.2 Zoomorphic Design
	1.3 Interchangeable Components
	1.4 Approximate Dissections
	1.5 Dissertation Overview

	2 Related Work
	2.1 Zoomorphic Design
	2.2 Interchangeable Components
	2.3 Approximate Dissections

	3 Zoomorphic Design
	3.1 Preprocessing
	3.2 Candidate Objects Suggestion
	3.2.1 Shape Graphs and Graph Kernels

	3.3 Problem Formulation
	3.3.1 Volumetric Design Restriction
	3.3.2 Deformation Models and Configuration
	3.3.3 Configuration Energy

	3.4 Zoomorphic Object Creation
	3.4.1 Correspondence Search
	3.4.2 Configuration Refinement
	3.4.3 Removals and Merging

	3.5 User Control and Enhancements

	4 Interchangeable Components
	4.1 Representation, Formulation, and Approach
	4.2 Finding Individual Edge Loops
	4.3 Deformation to Common Edge Loops
	4.3.1 Common Edge Loops Initialization
	4.3.2 Shapes and Common Edge Loops Refinement

	4.4 Generating Interchangeable Components
	4.5 User Interaction and Enhancements
	4.5.1 C1 Component Continuity Deformation
	4.5.2 Higher Order Component Connectivity
	4.5.3 Semantics Preservation
	4.5.4 Most-Compatible Subset Selection

	5 Approximate Dissections
	5.1 Representation
	5.2 Evaluation
	5.3 Solution Search
	5.3.1 Initializing the Mapping and Constraints
	5.3.2 Tree Search

	5.4 Pruning the Search Space
	5.4.1 Orientation Based Pruning
	5.4.2 Full Geometry Pruning
	5.4.3 Pruning Usage

	5.5 User Interaction

	6 Experiments and Results
	6.1 Zoomorphic Design
	6.1.1 Pose Constraints.
	6.1.2 Changing Weights.
	6.1.3 User Guidance.
	6.1.4 Other Results.
	6.1.5 Performance.
	6.1.6 Evaluation

	6.2 Interchangeable Components
	6.2.1 Different Categories
	6.2.2 Cross-Category Components
	6.2.3 Sensitivity to Initial Segmentation
	6.2.4 Compatibility Optimization and Mesh Deformation
	6.2.5 Performance
	6.2.6 Fabrication

	6.3 Approximate Dissections
	6.3.1 Performance
	6.3.2 Approximation Accuracy
	6.3.3 Pruning Efficiency Gain
	6.3.4 Results
	6.3.5 Application to Puzzles

	7 Conclusion
	7.1 Summary
	7.2 Limitations and Future Work

	A Supplemental Material on Zoomorphic Design
	A.1 Suggesting Objects to Blend
	A.1.1 Shape Graph
	A.1.2 Graph Kernel
	A.1.3 Graph Kernel Evaluation

	A.2 Automatic Transfer of VDR Labels
	A.3 Informal Studies Details

	B Supplemental Material on Interchangeable Components
	B.1 Performance and Combinations Data
	B.2 Deformation Comparison

	C Supplemental Material on Approximate Dissections
	C.1 Comparing the Input and Output Shapes
	C.2 Initializing the Full Geometry Optimization

	References

