UNIVERSITY OF CALIFORNIA

Los Angeles

Data-driven Locomotion of

Virtual Humans in Unity

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Computer Science

by

Ankit Arora

2011

The thesis of Ankit Arora is approved.

Petros Faloutsos

Glenn Reinman

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2011

1

TABLE OF CONTENTS

1 INTRODUCTION....uuuteirirruensnessannsnessaessansssassssssssasssassssassses 1
1.1 PROCEDURAL ANIMATION......ccccocviiiiiiiiiniiiiniiicieciee 4
1.2 PHYSICS-BASED TECHNIQUES..........ccoooiiiiiiiniiiiiiiee 5
1.3 EXAMPLE-BASED MOTION.......cccoiiiiiiiiiiiiiiiiinicicciee 5
2 RELATED WORK.ouinienrinninnnnnsnnesnessansssnesssesssssssasees 7
3 OUR WORK......cuurenrentrnnnennnnnnensanesssessasssssssssnesssssssssssases 10
3.1 GAME ENGINE SELECTION.......c.cccccoiiiiiniiiiiiniiiiciceeee, 10

3.2 MOTION CLIPS PREPARATION IN 3DS MAX

AND IMPORT IN UNITY....cooiiiiiiiiiiiniiiiiicicieeee 11
3.3 DATA-DRIVEN LOCOMOTIOM MODULE............c..cccocueeee. 13
4 RESULTS....ccoonueninninnennnnnnnnennessnssaessaenns 16
5 APPENDIX — SOURCE CODE LISTING........c.ccceveruenne 18
6 REFERENCES.................. 34

il

LIST OF FIGURES

FIGURE 1 ARTICULATED FIGURE WITH THIRTY DEGREES OF FREEDOM...2

FIGURE 2 CHARACTERISTIC PHASES OF THE WALKING MOTION............. .. 3
FIGURE 3 SYSTEM OVERVIEW AND MAIN COMPONENTS........cccccevviiniiinne 9
FIGURE 4 (a) CHARACTER AT WORLD ORIGIN........cccccccciniiiiniiiiiniiiiinies 12
FIGURE 4 (b) CHARACTER AFTER OFFSET......ccccooiiiiiiiiiiecccceecee 12
FIGURE 5 ANIMATION CLIPS USED FOR THE CHARACTER.........c.cccocuvenneee 13
FIGURE 6 (a) CHARACTER APPROACHING IT'S TARGET........ccccccoveeniinnrnen 16
FIGURE 6 (b) CHARACTER AT IT'S TARGET POSITION.......cccccecevvinieniniennene 16
FIGURE 7 (a) LARGE TURNING ANGLE..........ccccoiiiiiiiiiiiiiiiciciece 17
FIGURE 7 (b) SMALL TURNING ANGLE........cccccccoiniminininiiicieiceceneeeeee 17
TABLE 1 MOTION DATABASE ...ttt 7

v

ABSTRACT OF THE THESIS

Data-driven Locomotion of

Virtual Humans in Unity

by

Ankit Arora

Master of Science in Computer Science
University of California, Los Angeles, 2011

Professor Demetri Terzopoulos, Chair

Virtual characters are graphical analogues of real-life people capable of performing
human-like behaviors. They are found in an array of fields now-a-days such as movies,
games and as tutoring guides. Much research has been done in the areas of animation,
artificial intelligence and biomechanics to make them as close to their human
counterparts as possible in their locomotion, perceptual, cognitive and planning

capabilities.

In this paper, we focus on the aspect of locomotion control for virtual characters so that
they can not only find a way to reach their target position but do so in a natural and
realistic manner. By employing a data-driven method, we can query from a set of
animation clips and select the best one so that the character can walk, turn and stop given

online input commands.

The system described above provides good results upto a user-defined degree of error

without problems such as foot-skating. It can further to be used to explore more problems

in virtual character animation by building functionalities on top of existing ones.

vi

1 INTRODUCTION

Within the umbrella branch of computer animation, a lot of research work is being done
to make virtual characters look and behave like their real life counterparts. Animation of
human walking is a field of interest because of it's widespread applications in games,
movies and various other fields. Much research is being done in the area of locomotion to
render actions such as walking and running as realistically as possible because the keen

human eye can easily identify between any artifact in motion and natural fluent motion.

Animation of virtual humans is a complex process which involves synthesizing the
motion first for a skeleton after which this skeleton can be coated with deformable
surfaces modeling skin or clothes [1]. A virtual human is represented as a hierarchical set
of interconnected bones each with their own degrees of freedom stored in a state vector
as shown in Figure 1. How this state vector changes over time describes the motion of the

character.

Shoulder-3D

Al = 3
Foot-1D ; Y

Figure 1 Articulated figure with thirty degrees of freedom

The main idea behind human walking (abstracted from [1]) is:

Researcher in biomechanics characterize human walking as the succession of phases
separated by footstrikes FS (the foot is in contact with the ground) and takeofts TO (the
foot leaves the ground). In gait terminology, a stride is defined as a complete cycle from a
left foot takeoff to another left foot takeoff, while the part of the cycle between the

takeoff events occur during a stride: left takeoff (1TO), left footstrike (IFS), right takeoff

(rTO), and right footstrike (rFS). This leads to the characterization of two motion phases

for each leg as shown in Figure 2:

1. The period of support which is referred to as the stance phase,

2. The period of non-support which is known as the swing phase.

rFS 11O IFS

doublg single doublg single dioht
states | support support (Ieft) support suppm-r(ght)

oy
L -

IFS rIO

_— | il
- | il

left swing

left stance

4

right stance

phases ~ right swing

50% 100%

0% 1 step

IFS = left footstrike v»FS = right footstrike
»TO = right takeoff 1TO = left takeoff

Figure 2 Characteristics phases of the walking motion

Virtual human locomotion can be broadly classified into three classes as described below.
1.1 Procedural Animation

The basic idea underlying procedural or kinematic animation is the use of forward
kinematics and inverse kinematics to get updated state vector of the articulated figure at
each time step and thus synthesize motion. Taking as input the change in end effector
position AX, the change in joint angles Af can be calculated by the use of forward
kinematics with the formula:

AX=1JA0
where J is the Jacobian matrix which is the matrix of all first-order partial derivatives of a

vector function with respect to another vector.

By applying this formula to the key-frames created by the designer and using
interpolation techniques to obtain in-between frames, motion can be computed. Using
procedural animation techniques gives the user a high-level control such as configuring
velocity and step-length but suffers from drawbacks such as decoupling of joints and foot
penetration since a particular end effector position can be achieved by potentially various
different configurations of the joints. These can be corrected using the technique of

inverse kinematics by reversing the above formula which is beyond the scope of this

paper.

1.2 Physics-based techniques

Physics-based techniques are used to provide realism to the motion in cases where the
actor has to respond to external stimuli such as laws of physics, external forces or torques
and to capture the essence of the character's interaction with the changing virtual
environment. Based on Newton's law of physics and Lagrangian dynamics, they use
similar principles as kinematic animation and generate motion by simulating from root
link onwards given external factors by maintaining joint constraints. A virtual character
is rendered more lifelike with the use of these techniques and can successfully adjust it's
posture and subsequently motion when encountered with situations such as walking up an
elevated slope or carrying a heavy load. These techniques tend to be computationally

expensive and generally require trade-offs between realism and performance.

1.3 Example-based motion

Out of the three classes of locomotion, the most recent ones are the example-based
approaches or motion capture approach. Techniques are in place to use magnetic and
optical technologies to store the position and orientation of points located on human body
and adapt captured trajectories to synthetic skeleton [2]. Since the motion clips are pre-
generated, the volume of the database tends to grow very large and there is little
interactive control in these techniques. Within the branch of example-based approaches,

there are many sub-branches such as motion blending and motion warping but the most

relevant to our work is the combination of blending algorithms and the step-space
approach [3].

The underlying idea behind the step-space approach is to generate a database of step
space using information about step coordinates, their angular displacement with respect
to the supporting foot, the swing time and the stance time. Once the database is
generated, using weighted nearest neighbor approach, a set of steps are found
corresponding to the query footsteps in the foot plan given. The steps are planted on the
foot plan and rotational corrections are done to make them as close to desired footsteps as
possible. Finally, temporal and spatial warping take care of any mismatch in speed while

transitioning and produce a neat animation without problems of footskating.

2 RELATED WORK

The work of Wenjia Huang [3] in implementation of data-driven locomotion control in
OgreMax has been pivotal to our work and it's motion database provides a framework for
our application to be built upon. Figure 3 shows the system overview of the above

described work.

Step Queus
commands skeleton
y 3,
i JH,
Motion Stap w| Step ; T
— = — Render
Da@base selector “| Blender 11
M
||
7 ik

Figure 3 System overview and main components

The motion database referred to above contains animation clips of walking at different
speeds and angles, and transition between walking and standing animation. It is used in
the following way (abstracted from [3]):

The motion data is parametrized in step space, so that the step selector can access
individual step clips and their corresponding step parameters. The step selector gets in the

walking commands of type/speed/angle and also the stop facing angle, then it chooses the

best step clips from the motion database and pushes them in step queue. The step blender
will access the first two steps in the queue, and ease-out the first step and ease-in the
previous step of the second step, while the resulting data is applied to the skeleton of the

character mesh rendered in 3D environment.

The character first turns towards the target position, and with the goal in mind, takes the
appropriate steps. Towards the end of a particular animation clip, it queries the facing
angle and required angle again and pushes steps in the queue to ease-in to. Using this
technique, it can reach a distant location conveniently. The above system works well to
achieve it's goals but will fall short in constrained environments due to the nature of the
motion clips constructed in 3DS Max by placing footsteps and achieving the required

turning angle.

The motion clips used in our work are derived from [3] as described in the table below.

Maotion type Description Available step pattern(s)
Walk Turn 180 left RLR
Walk Turn 180 right LRL
Walk Turn 135 left RLR
Walk Turn 135 right LRL
walk Turn 90" left RLR
Walk Turn 90° right LRL
Walk Turn 45" left RLR
Walk Turn 45" right LRL
Walk Turn 10° left RLR
Walk Turn 10° right LRL
Walk Turn 20" left RLR
walk Turn 20 right LRL
Walk Turn 30° left RLR
Walk Turn 30° right LRL
Walk Straight LR
RL
Walk to stand transition Walk to stand LR
RL
Stand to walk transition Stand to walk LR
RL
Walk to stand transition Walk to stand 45" left RL
Walk to stand transition Walk to stand 45 right LR
Walk to stand transition Walk to stand 90° left RL
Walk to stand transition Walk to stand 90" right LR
walk Straight slow LR
RL
Walk Slow to normal LR
RL
Walk MNormal to slow LR
RL
Walk to stand transition Slow walkto stand RL
LR
Walk to stand transition Stand to slowwalk RL

LR

Table 1 Motion Database-

3 OUR WORK

As mentioned earlier, for our work we reuse motion clips from [3] and import them into
Unity for our framework to be built upon. The following sections describe our work in
detail.

3.1 Game engine selection

At the start of this work, the question we had was regarding which game engine suits our
needs the best and should be picked. After looking at various engines such as Panda3D,
Unity, Unreal Engine, we chose Unity due to the following reasons:

1. Unity is an academic standard while an engine like Unreal is industry standard.
While there is an obvious performance trade-off in picking Unity, it's use is more
practical to our situation and gives flexibility to add functionality to our modules
later on if a researcher decides to pick it up since it's used widely in academic
settings.

2. The learning curve for Unity is believed to be easier than that of other engines due
to a wealth of available online documentation and it's easy to understand
graphical user interface.

3. The file import feature for Unity is very simple and intuitive. It supports files
from most modeling packages which can simply be dropped on to the working

folder for import.

10

4. Unity supports many well-known scripting languages such as Javascript, C# and
Boo whereas Unreal Engine exclusively uses UnrealScript and Panda3D uses

Python only.

A game engine like Unreal surely provides more design tools and has a better physics

engine for the purpose of our work, Unity meets all the requirements.

3.2 Motion clips preparation in 3DS Max and import in Unity

All the clips in our motion database have animation starting at the origin of the world
coordinate system. Even though it's a good practice since it maintains consistency, it
creates an issue as well. Imagine the following scenario:

Suppose there are two animation clips X and Y that need to be played back to back but
only the second half of clip Y is required. In the present scenario, clip X is played at the
end of which the character position is updated and the local coordinate system is set to
zero. Unity provides the option of querying the length of the clip and playing an
animation clip from a certain time onwards. On playing the latter half of clip Y, the
problem that arises is that the character snaps to the position where it should have been
had the whole clip been used and begins animation there instead of starting at it's
immediate position. This breaks the smoothness in the motion and creates artifacts that

look ugly.

11

Similar was the problem faced in our implementation during motion blending phase
described later. We found an easy fix for it by modifying some motion clips in 3DS Max.
Instead of now starting at the origin of world coordinate system, by using the Move All
Mode under the Biped tab in Motion, we created an offset in the clips as shown in Figure

5 so that when they're played from a certain frame onwards, no artifacts are produced.

Figure 4 (a) Character at world origin (b) Character after offset

The next part involved uploading these corrected motion clips into Unity. Unity allows
the user to import animations using the (@ animation naming scheme. For different

actions such as walking straight or turn 10 degrees left, one can just name the files like

12

Guy@walk_straight and Guy@turn_10_left. Upon importing these files, Unity collects
all the animations under the header Guy and will set up to reference walk straight or turn

10 degrees left automatically. This is shown in figure 6 below. By dragging just the Guy

b Of Guy

b Ufy Guy@Correction

b Ufy Guy@sharp_turn_4s_left
b Ufy Guy@sharp_turn_45_right
b Ufy Guy@sharp_turn_90_right
b Ufy Guy@stand_rotate_90_left
b Ufy Guy@stand_rotate_180_left
b Ufy Guy@turn_10_left

b Ufy Guy@turn_10_right

b Ufy Guy@turn_20_left

b Ufy Guy@turn_20_right

b Ufy Guy@turn_30_left

b Ufy Guy@turn_30_right

b Ufy Guy@walk_straight

asset onto the scene, one can now use all the animation clips attached to it.

Figure 5 Animation clips used for the character

3.3 Data-driven locomotion module
Our system consists of four scripts explained below:
1. Point to target: This script is used to display the target position for the character. It
uses the Unity script function Camera.ScreenPointToRay which returns a ray
going from the camera through a screen point. We find the world coordinates of

the point where the ray intersects the plane and display a sphere as a target marker

13

there.

2. Camera target: This script simply describes where the camera should look at using
the inbuilt function transform.LookAt.

3. Line renderer: This script is tied to the plane on which the character walks and
draws a line between the position of the character at the start of the animation clip
and the sphere marker at the target position.

4. Character controller: The character controller script controls which animation is

played at any given point and is responsible for taking the character to the user-
defined target position. It has a start function which sets all the parameters used in
the script. In Unity, the primary function is the update function where all the game

logic goes. It is called before rendering every frame.

The direction that the character is currently facing can be queried using the
transform.forward function. Just for user reference, we draw a line projecting outwards
from the character in the direction where it is looking to give user an idea of the angle

between the current character position and the target position.

Next, we check whether the target is to the right or the left of the character simply by

doing standard cross and dot product routines.

14

We then do a simple check to see if the character is already at the target position. If not,
we play the appropriate clip. This is also the time we do the motion blending referred to
in the earlier section. The way the motion clips are designed in 3DS Max, each animation
begins with the character taking the left foot stride and each animation ends at a pose
where the character has it's left knee bent. If two animation clips are played back to back,
it creates artifacts in the motion because there is no proper transition between clips. To
this effect, we have the correction clip. The correction clip blends motion by easing out
the previous animation and easing in the next one. In essence, it is a one step animation
which corrects the motion to make it smooth. Since the latter part of the correction clip is
the same as the starting of every other motion clip, playing the correction clip upto a
certain time, stopping it and starting the next one exactly where it is coincides with the
correction clip gives good results. This careful manipulation prevents problems of

footskating and produces a smooth motion without artifacts.

The only issue left then is to update the position and rotation of the character at the end of

each animation clip. It is so because if it were not done, the character would snap back to

the point where it started that particular animation.

15

4 RESULTS

The system produces good results. Given the target position online, the character is able
to walk, turn and stop close to the destination in a satisfactory manner. For large turning
angles, the character rotates on it's own axis thereby reducing the angle and then follows

the footsteps corresponding to smaller angles. Figure 7 below shows snapshots of the

system.

Figure 6 (a) Character approaching it's target (b) Character at it's target position

16

Figure 7 (a) Large turning angle (b) Small turning angle

17

5 APPENDIX - SOURCE CODE LISTING
1 Point to target
var plane : Plane = new Plane(Vector3.up, Vector3.zero); //Defines a plane

function Start()
{ renderer.material.color = Color.red; }

/* This function converts the screen coordinates to world coordinates*/

function Update ()

{
if(Input. GetMouseButton(0)) //Check for mouse button down
{

/*Ray through mouse position*/

var ray = Camera.main.ScreenPointToRay(Input.mousePosition);
var ent : float = 100.0;

if (plane.Raycast(ray, ent))

{
var hitPoint : Vector3= ray.GetPoint(ent);
transform.position = hitPoint;
b
Iy
2 Camera target
function Update ()
{
transform.LookAt(Vector3.zero); //Look at world origin
}
3 Line renderer

function start()

{

var lineRenderer] : LineRenderer = gameObject. AddComponent(LineRenderer);
lineRenderer1.SetWidth(0.5,0.5);
lineRenderer1.SetVertexCount(2);

18

}

/* Draws a line from character to target marker™®/
function Update ()
{
var lineRenderer1 : LineRenderer = GetComponent(LineRenderer);
lineRenderer1.useWorldSpace = true;
lineRenderer1.SetPosition(0,GameObject.Find("Guy").transform.position);
lineRenderer1.SetPosition(1,GameObject.Find("Sphere").transform.position);

}
4 Character controller

private var myRigidbody : Rigidbody;
var a : int;

var b : Vector3;

var pos : Vector3;

var roty : Quaternion;

var newtarget : Vector3;

var resume_oKk : int;

var check : int;

function Start()

{

var linerenderer : LineRenderer = gameObject. AddComponent(LineRenderer);
linerenderer.SetWidth(0.5,0.5);

linerenderer.SetVertexCount(2);

myRigidbody = rigidbody;

a=1; //variable to check whether character position has been updated

pos=transform.Find("CMan0016-Bip").position;
pos.y=8.7;

check=0; //variable that checks whether the correction clip has been played
roty.x = transform.Find("CMan0016-Bip").localRotation.x;
roty.y = transform.Find("CMan0016-Bip").localRotation.y;

roty.z = transform.Find("CMan0016-Bip").localRotation.z;
roty.w = transform.Find("CMan0016-Bip").localRotation.w;

19

newtarget = GameObject.Find("Sphere").transform.position;

resume_ok=1; //Variable to make sure that the correction clip doesn't play in
loop

}

function Update ()
{
var linerenderer : LineRenderer = GetComponent(LineRenderer);
var temp : Vector3 =
Vector3((transform.position.x+(15*transform.forward.x)),(transform.position.y+(15*tran
sform.forward.y)),(transform.position.z+(15*transform.forward.z)));
linerenderer.SetPosition(0,transform.position);
linerenderer.SetPosition(1,temp);

b=transform.position;

var t1 = transform.forward;

var t2 = GameObject.Find("Sphere").transform.position - transform.position;
var angle = Vector3.Angle(t2,t1);

var direct : int;

var perp : Vector3 = Vector3.Cross(t1,t2);

var dir : float = Vector3.Dot(perp, Vector3.up);

/*Checks whether the target marker is to the left or right*/

if (dir > 1.0)

{

direct=1;
}
else if (dir < 1.0)
{

direct = -1;
}
else
{

direct = 0;
}

/*Checks if target has been updated*/
if(newtarget!=GameObject.Find("Sphere").transform.position)

{

20

GameObject.Find("Sphere").renderer.material.color = Color.red;
newtarget = GameObject.Find("Sphere").transform.position;

}

var sphere_color = GameObject.Find("Sphere").renderer.material.color;
if(sphere_color==Color.red)

{

var distance from target : float =
(Mathf.Sqrt((Mathf.Pow(((transform.Find("CMan0016-Bip").position.x)-
(GameObject.Find("Sphere").transform.position.x)),2))+(Mathf.Pow(((transform.Find("C
Man0016-Bip").position.z)-(GameObject.Find("Sphere").transform.position.z)),2))));

if(distance from_target<=7.0)

{
h

GameObject.Find("Sphere").renderer.material.color = Color.green;

/*Selects appropriate animation clip*/
if(angle>=0 & ((angle<=67.5 & direct==-1) | (angle<=135 & direct==1)) &
resume ok==1 & check==0 & a==1)

{
animation["Correction"].time=0.66;
animation.Play("Correction");
a=0;
resume_ok=0;
check=1;
H
if(animation["Correction"].time>1.1)
{
animation.Stop("Correction");
h
if(animation["walk straight"].time>2.8)
{
animation.Stop("walk straight");
H

if(animation["sharp turn 45 left"].time>4.8)

21

{
}

animation.Stop("sharp turn 45 left");

if(animation["sharp turn 45 right"].time>4.8)

{
h

animation.Stop("sharp _turn 45 right");
if(animation["sharp turn 90 right"].time>4.8)
{
}

if(animation["turn_10 left"].time>4.8)

{
b

if(animation["turn_20 left"].time>4.8)

{
}

if(animation["turn_30 left"].time>4.8)

{
h

animation.Stop("sharp turn 90 right");

animation.Stop("turn_10_left");

animation.Stop("turn_20 left");

animation.Stop("turn_30_left");
if(animation["turn_10 right"].time>4.8)
{
b

if(animation["turn_20 right"].time>4.8)

{
h

animation.Stop("turn_10_right");

animation.Stop("turn_20_right");

22

if(animation["turn_30 right"].time>4.8)

{
h

if (angle>=0 & angle<=5 & a==1 & check==1)
{

animation.Stop("turn_30_right");

animation["walk straight"].time=1.1;
animation.Play ("walk_straight");
a=0;

check=0;

resume ok=1;

}

if(angle>5 & angle<=15 & a==1 & direct==1 & check==1)
{
animation["turn_10 right"].time=1.1;
animation.Play("turn 10 right");
a=(0;
check=0;
resume ok=1;

}

if(angle>5 & angle<=15 & a==1 & direct==-1 & check==1)
{
animation["turn 10 left"].time=1.1;
animation.Play("turn_10_left");
a=0;
check=0;
resume_ok=1;

if(angle>15 & angle<=25 & a==1 & direct==1 & check==1)
{
animation["turn_20 right"].time=1.1;
animation.Play("turn 20 right");
resume_ok=1;

23

a=0;
check=0;
}

if(angle>15 & angle<=25 & a==1 & direct==-1 & check==1)
{
animation["turn_20 left"].time=1.1;
animation.Play("turn 20 left");
resume_ok=1;
a=0;
check=0;
b

if(angle>25 & angle<=37.5 & a==1 & direct==1 & check==1)
{
animation["turn 30 right"].time=1.1;
animation.Play("turn_30 right");
resume ok=1;
a=(0;
check=0;
}

if(angle>25 & angle<=37.5 & a==1 & direct==-1 & check==1)
{
animation["turn_30 left"].time=1.1;
animation.Play("turn 30 left");
resume_ok=1;
a=0;
check=0;
h

if(angle>37.5 & angle<=67.5 & a==1 & direct==1 & check==1)
{
animation["sharp turn 45 right"].time=1.1;
animation.Play("sharp turn 45 right");
resume ok=1;
a=0;
check=0;

24

if(angle>37.5 & angle<=67.5 & a==1 & direct==-1 & check==1)

{
animation["sharp turn 45 left"].time=1.1;
animation.Play("sharp turn 45 left");
resume ok=1;
a=0;
check=0;
}
if(angle>67.5 & angle<=135 & a==1 & direct==1 & check==1)
{
animation["sharp turn 90 right"].time=1.1;
animation.Play("sharp turn 90 right");
resume ok=1;
a=0;
check=0;
b
if(angle>67.5 & angle<=135 & a==1 & direct==-1)
{
animation.Play("stand rotate 90 left");
resume ok=1;
a=0;
check=0;
b
if(angle>=135 & a==1)
{
animation.Play("stand rotate 180 left");
resume_ok=1;
a=0;
check=0;
h

/*Updates character position at the end of each clip*/
if(!animation.IsPlaying("Test") & !animation.IsPlaying("Correction") &

lanimation.IsPlaying("walk straight") & !animation.IsPlaying("turn_10 left") &

lanimation.IsPlaying("turn 20 left") & !animation.IsPlaying("turn 30 left") &

25

lanimation.IsPlaying("turn 10 right") & !animation.IsPlaying("turn_20 right") &
lanimation.IsPlaying("turn 30 right") & !animation.IsPlaying("sharp turn 45 right") &
lanimation.IsPlaying("sharp turn 45 left") &
lanimation.IsPlaying("stand rotate 90 left") &
lanimation.IsPlaying("sharp turn 90 right") &
lanimation.IsPlaying("stand rotate 180 left") & a==0)
{

var newpos : Vector3;

newpos.x = transform.Find("CMan0016-Bip").position.x;

newpos.y = 8.7;

newpos.z = transform.Find("CMan0016-Bip").position.z;

var newrot : Quaternion = transform.Find("CMan0016-
Bip").localRotation;

transform.Find("CMan0016-Bip").localPosition = Vector3.zero;
transform.Find("CMan0016-Bip").localPosition.y = 8.7,

var rottemp : Quaternion;
rottemp.Xx = roty.x;
rottemp.y = roty.y;
rottemp.z = roty.z;
rottemp.w = roty.w;

transform.Find("CMan0016-Bip").localRotation = Quaternion.identity;
transform.Find("CMan0016-Bip").localRotation *=rottemp;
transform.position += newpos - pos;

transform.localRotation *= newrot * Quaternion.Inverse(roty);

pos = transform.Find("CMan0016-Bip").position;
pos.y = 8.7;
roty = transform.Find("CMan0016-Bip").localRotation;

a=l1;

26

6 REFERENCES

[1] Franck Multon, Laure France, Marie-Paule Cani-Gascuel, Gilles Debunne. Computer
Animation of Human Walking: a Survey. 1998.

[2] T. Molet, R. Boulic, and D. Thalmann. A real time anatomical converter for human
motion capture. In Eurographics workshop on Computer Animation and Simulation,
pages 79-94, September 1996.

[3] Wenjia Huang. www.cs.ucla.edu/~hw;j/

27

