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Abstract

We present a cognitively-controlled vision system that com-
bines low-level object recognition and tracking with high-level
symbolic reasoning for the purpose of solving difficult space
robotics problems—satellite rendezvous and docking. The rea-
soning module, which encodes a model of the environment,
performs deliberation to 1) guide the vision system in a task-
directed manner, 2) activate vision modules depending on the
progress of the task, 3) validate the performance of the vi-
sion system, and 4) suggest corrections to the vision system
when the latter is performing poorly. Reasoning and related
elements, among them intention, context, and memory, con-
tribute to improve the performance (i.e., robustness, reliability,
and usability). We demonstrate the vision system controlling a
robotic arm that autonomously captures a free-flying satellite.
Currently such operations are performed either manually or
by constructing detailed control scripts. The manual approach
is costly and exposes astronauts to danger, while the scripted
approach is tedious and error-prone. Therefore, there is sub-
stantial interest in performing these operations autonomously,
and the work presented here is a step in this direction. To our
knowledge, this is the only satellite-capturing system that re-
lies exclusively on vision to estimate the pose of the satellite
and can deal with an uncooperative satellite.

1 Introduction

Since the earliest days of the field, computer vision
researchers have struggled with the challenge of effec-
tively combining low-level vision with artificial intelli-
gence. Some of the earliest work involved the combi-
nation of image analysis and symbolic AI to construct
autonomous robots [1, 2]. These attempts met with lim-
ited success because the vision problem is hard. The fo-
cus of vision research shifted from vertically-integrated,
embodied vision systems to low-level, stand-alone vision
systems. Currently available low- and medium-level vi-
sion systems are sufficiently competent to support sub-
sequent levels of processing. Consequently, there now is
renewed interest in high-level, or cognitive vision, which
is necessary if we are to realize autonomous robots capa-
ble of performing useful work. In this paper, we present

an embodied, task-oriented vision system that combines
object recognition and tracking with high-level symbolic
reasoning. The latter encodes a symbolic model of the
environment and uses the model to guide the vision sys-
tem in a task-directed manner.

We demonstrate the system guiding a robotic manipu-
lator during a satellite servicing operation involving ren-
dezvous and docking with a mockup satellite under light-
ing conditions similar to those in orbit.On-orbit satel-
lite servicingis the task of maintaining and repairing a
satellite in its orbit. It extends the operational life of
the satellite, mitigates technical risks, and reduces on-
orbit losses. Hence, it is of particular interest to mul-
tiple stakeholders, including satellite operators, manu-
facturers, and insurance companies. Currently, on-orbit
satellite servicing operations are carried out manually;
i.e., by an astronaut. However, manned missions usually
have a high price tag and there are human safety con-
cerns. Unmanned, tele-operated, ground-controlled mis-
sions are infeasible due to communications delays, in-
termittence, and limited bandwidth between the ground
and the servicer. A viable option is to develop the ca-
pability of autonomous satellite rendezvous and docking
(AR&D). Most national and international space agencies
realize the important future role of AR&D and have tech-
nology programs to develop this capability [3, 4].

Autonomy entails that the on-board controller be ca-
pable of estimating and tracking the pose (position and
orientation) of the target satellite and guiding the servic-
ing spacecraft as it 1) approaches the satellite, 2) maneu-
ver itself to get into docking position, and 3) docks with
the satellite. Our vision system meets these challenges
by controlling the visual process and reasoning about
the events that occur in orbit—these abilities fall under
the domain of “cognitive vision.” Our system functions
as follows: First, captured images are processed to esti-
mate the current position and orientation of the satellite
(Fig. 1). Second, behavior-based perception and memory
units use contextual information to construct a symbolic
description of the scene. Third, the cognitive module
uses knowledge about scene dynamics encoded using the
situation calculusto construct a scene interpretation. Fi-
nally, the cognitive module formulates a plan to achieve



Figure 1: Images observed during satellite capture. The left
and center images were captured using the shuttle bay cameras.
The right image was captured by the end-effector camera. The
center image shows the arm in hovering position prior to the
final capture phase. The shuttle crew use these images during
satellite rendezvous and capture to locate the satellite at a dis-
tance of approximately 100m, to approach it, and to capture it
with the Canadarm—the shuttle manipulator.

the current goal. The scene description constructed in the
third step provides a mechanism to verify the findings of
the vision system. The ability to plan allows the system
to handle unforeseen situations.

The performance of a cognitive vision system is
closely tied to the capabilities of its components: low-
level visual routines, short- and long-term memory pro-
cessing, and symbolic reasoning. Reliable low-level vi-
sual routines are essential for meaningful higher-level
processing. Early attempts at designing high-level vi-
sion systems failed precisely due to the lack of compe-
tent low-level visual algorithms. Consequently, the cog-
nitive vision system described in this paper depends upon
the reliable operation of the object recognition, tracking,
and pose-estimation routines. The cognitive vision sys-
tem is able to handle short-duration errors in the low-
level visual routines, such as momentary loss of tracking,
by using short-term memory facilities. It, however, can
not accomplish the task when the low-level vision algo-
rithms altogether fail to track the satellite, in which case
the high-level routines aborts the mission. We have not
proved the correctness of the reasoning module; how-
ever, it appears to meet the task requirements in practice:
autonomous and safe satellite rendezvous and docking.

To our knowledge, the system described here is
unique inasmuch as it is the only AR&D system that uses
vision as its primary sensor and that can deal with an
uncooperative target satellite. Other AR&D systems ei-
ther deal with target satellites that communicate with the
servicer craft about their heading and pose, or use other
sensing aids, such as radars and geostationary position
satellite systems [5].

1.1 Related Work

The state of the art in space robotics is the Mars Ex-
ploration Rover, Spirit, that is now visiting Mars [6].
Spirit is primarily a tele-operated robot that is capable
of taking pictures, driving, and operating instruments in
response to commands transmitted from the ground. It
lacks any cognitive or reasoning abilities. The most suc-
cessful autonomous robot to date that has cognitive abil-

ities is “Minerva,” which takes visitors on tours through
the Smithsonian’s National Museum of American His-
tory; however, vision is not Minerva’s primary sen-
sor [7]. Minerva has a host of other sensors at its disposal
including laser range finders and sonars. Such sensors
are undesirable for space operations, which have severe
weight/energy limitations.

A survey of work about constructing high-level de-
scriptions from video is found in [8]. Knowledge mod-
eling for the purposes of scene interpretation can either
be hand-crafted [9] or automatic [10] (i.e., supported by
machine learning). The second approach is not feasible
for our application: It requires a large training set, which
is difficult to gather in our domain, in order to ensure
that the system learns all the relevant knowledge, and it
is not always clear what the system has learnt. Scene de-
scriptions constructed in [11] are richer than those in our
system, and their construction approach is more sound;
however, they do not use scene descriptions to control
the visual process and formulate plans to achieve goals.

In the next section, we explain the object recognition
and tracking module. Section 3 describes the high-level
vision module. Section 4 describes the physical setup
and presents results. Section 5 presents our conclusions.

2 Object Recognition and Tracking

The object recognition and tracking module [12] pro-
cesses images from a calibrated passive video camera-
pair mounted on the end-effector of the robotic manip-
ulator and computes an estimate of the relative position
and orientation of the target satellite. It supports medium
and short range satellite proximity operations; i.e., ap-
proximately from 20m to 0.2m.

During the medium range operation, the vision sys-
tem cameras view either the complete satellite or a sig-
nificant portion of it (left image in Fig. 2), and the system
relies on natural features observed in stereo images to es-
timate the motion and pose of the satellite. The medium
range operation consists of the following three phases:

• In the first phase (model-free motion estimation),
the vision system combines stereo and structure-
from-motion to indirectly estimate the satellite mo-
tion in the camera reference frame by solving for
the camera motion, which is just the opposite of the
satellite motion [13].

• The second phase (motion-based pose acquisition)
performs binary template matching to estimate the
pose of the satellite without using prior informa-
tion [14]. It matches a model of the observed satel-
lite with the 3D data produced by the last phase and
computes a rigid transformation, generally compris-
ing 3 translations and 3 rotations, that represent the
relative pose of the satellite. The six degrees of free-
dom (DOFs) of the pose are solved in two steps.
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Figure 2:Images from a sequence recorded during an experi-
ment (left image at 5m; right at 0.2m)

The first step, which is motivated by the observation
that most satellites have an elongated structure, de-
termines the major axis of the satellite. The second
step solves the four unresolved DOFs—the rotation
around the major axis and the three translations—
by an exhaustive 3D template matching over the re-
maining four DOFs.

• The last phase (model-based pose tracking) tracks
the satellite with high precision and update rate by
iteratively matching the 3D data with the model
using a version of the iterative closest point algo-
rithm [15]. This scheme does not match high-level
features in the scene with the model at every itera-
tion. This reduces its sensitivity to partial shadows,
occlusion, and local loss of data caused by reflec-
tions and image saturation. Under normal opera-
tive conditions, model based tracking returns an es-
timate of the satellite’s pose at 2Hz with an accuracy
on the order of a few centimeters and a few degrees.

At close range, the target satellite is only partially vis-
ible and it can not be viewed simultaneously from both
cameras (the center and right images in Fig. 2); hence,
the vision system processes monocular images. The con-
straints on the approach trajectory ensure that the dock-
ing interface on the target satellite is visible from close
range, so markers on the docking interface are used to
determine the pose and attitude of the satellite efficiently
and reliably at close range [12]. Here, visual features
are detected by processing an image window centered
around their predicted locations. These features are then
matched against a model to estimate the pose of the satel-
lite. The pose estimation algorithm requires at least 4
points to compute the pose. When more than four points
are visible, sampling techniques choose the group of
points that gives the best pose information. For the short
range vision module, the accuracy is on the order of a
fraction of a degree and 1mm right before docking.

The vision system can be configured on the fly de-
pending upon the requirements of a specific mission.
It provides commands to activate/initialize/deactivate a
particular configuration. The vision system returns a 4x4
matrix that specifies the relative pose of the satellite, a
value between 0 and 1 quantifying the confidence in that
estimate, and various flags that describe the state of the
vision system.

3 Cognitive Vision Controller

The cognitive vision controller controls the image
recognition and tracking module by taking into account
several factors, including the current task, the current
state of the environment, the advice from the symbolic
reasoning module, and the characteristics of the vision
module, including processing times, operational ranges,
and noise. It consists of a behavior-based, reactive per-
ception and memory unit and a high-level deliberative
unit. The behavior-based unit acts as an interface be-
tween the detailed, continuous world of the vision sys-
tem and the abstract, discrete world representation used
by the cognitive controller. This design facilitates a vi-
sion controller whose decisions reflect both short-term
and long-term considerations.

3.1 Perception and Memory: Symbolic Scene
Description

The perception and memory unit performs many crit-
ical functions. First, it provides tight feedback loops be-
tween sensing and action that are required for reflexive
behavior, such as closing the cameras’ shutters when de-
tecting strong glare in order to prevent harm. Second,
it corroborates the readings from the vision system by
matching them against the internal world model. Third,
it maintains an abstracted world state (AWS) that repre-
sents the world at a symbolic level and is used by the
deliberative module. Fourth, it resolves the issues of per-
ception delays by projecting the internal world model at
the current instant. Fifth, it performs sensor fusion to
combine information from multiple sensors; e.g., when
the vision system returns multiple estimates of the satel-
lite’s pose. Finally, it ensures that the internal mental
state reflects the effects of egomotion and the passage of
time.

At each instant, the perception unit receives the most
current information from the active vision configurations
and computes an estimate of the satellite position and
orientation. In doing so, it takes into account contex-
tual information, such as the current task, the predicted
distance from the satellite, the operational ranges of var-
ious vision configurations, and the confidence values re-
turned by the active configurations. Anαβ tracker then
validates and smoothes the computed pose. Validation is
done by comparing the new pose against the predicted
pose using an adaptive threshold.

The servicer craft sees its environment egocentrically.
The memory center constantly updates the internal world
representation to reflect the current position, heading,
and speed of the robot. It also ensures that, in the ab-
sence of new readings from the perception center, the
confidence in the world state should decrease with time.
The reactive module requires detailed sensory informa-
tion, whereas the deliberative module deals with abstract
features about the world. The memory center filters out
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unnecessary details from the sensory information and
generates the AWS which describes the world symboli-
cally.

3.2 Symbolic Reasoning: Planning and Scene
Interpretation

The symbolic reasoning module constructs plans to
accomplish goals and to explain the changes in the AWS.
The plan that best explains the evolution of the AWS is
an interpretation of the scene, as it consists of events that
might have happened to bring about the changes in the
AWS. The cognitive vision system monitors the progress
of the current task by examining the AWS, which is
maintained in real-time by the perception and memory
module. Upon encountering an undesirable situation, the
reasoning module tries to explain the errors by construct-
ing an interpretation. If the reasoning module success-
fully finds a suitable interpretation, it suggests appro-
priate corrective steps; otherwise, it suggests the default
procedure for handling anomalous situations.

The current prototype consists of two planners: Plan-
ner A specializes in the satellite capturing task and Plan-
ner B monitors the abstracted world state and detects and
resolves undesirable situations. We have developed the
planners in GOLOG, which is an extension of thesit-
uation calculus[16]. GOLOG uses logical statements
to maintain an internal world state (fluents) and describe
what actions an agent can perform (primitive action pred-
icates), when these actions are valid (precondition pred-
icates), and how these actions affect the world (succes-
sor state predicates). GOLOG provides high-level con-
structs, such as procedure calls, conditionals, loops, and
non-deterministic choice, to specify complex procedures
that model an agent and its environment. The logical
foundations of GOLOG enable us to prove plan correct-
ness properties, which is desirable.

The planners cooperate to achieve the goal—safely
capturing the satellite. The two planners interact through
a plan execution and monitoring unit [17] to avoid the
undesirable artifacts of their interactions. Upon receiv-
ing a new “satellite capture task” from the ground sta-
tion, the plan execution and monitoring module activates
Planner A, which generates a plan that transforms the
current state of the world to the goal state—a state where
the satellite is secured. Planner B, on the other hand,
is only activated when the plan execution and monitor-
ing module detects a problem, such as a sensor fail-
ure. Planner B generates all plans that will transform
the last known “good” world state to the current “bad”
world state. Next, it determines the most likely cause
for the current fault by considering each plan in turn
(Algorithm 3.2. After identifying the cause, Planner B
suggests corrections. In the current prototype, correc-
tions consist of “abort mission,” “ retry immediately,”
and “retry after a random interval of time” (the task is
aborted if the total time exceeds the maximum allowed

time for the current task). Finally, after the successful
handling of the situation, Planner A resumes.

Find the most likely reason for the fault [1]Construct
plans that account for the current error conditions by using the
knowledge encoded within the error model. Sort these plans in
ascending order according to their length. We do not consider
the default plan, which usually has a length of 1. For example,
the plan “aBadCamera” in Fig. 3. Plans Simulate plan execu-
tion; this consists of querying the perception and memory unit,
e.g., to determine whether or not the Sun is in front of the cam-
eras. The execution is successful. The current plan is the most
likely explanation. Break No explanation is found The default
plan is the most likely explanation. Generate a solution based
on the current explanation; this requires another round of rea-
soning. The solution corrects the problem Keep doing the cur-
rent task. Abort the current task and ask for user assistance.

4 Results

We have tested the cognitive vision controller in a
simulated virtual environment and in a physical lab envi-
ronment that faithfully reproduces the illumination con-
ditions of the space environment—strong light source,
very little ambient light, and harsh shadows. The physi-
cal setup consisted of the MDRobotics Ltd. proprietary
“Reusable Space Vehicle Payload Handling Simulator,”
comprising two Fanuc robotic manipulators and the as-
sociated control software. One robot with the camera
stereo pair mounted on its end effector acts as the ser-
vicer. The other robot carries a grapple fixture-equipped
satellite mockup and exhibits realistic satellite motion.

The cognitive vision controller met its requirements;
i.e., safely capturing the satellite using vision-based
sensing (see Fig. 2 for the kind of images used), while
handling anomalous situations. We performed 800 test
runs in the simulated environment and over 25 test runs
on the physical robots. The controller never jeopardized
its own safety or that of the target satellite. It gracefully
recovered from sensing errors. In most cases, it was able
to guide the vision system to re-acquire the satellite by
identifying the cause and initiating a suitable search pat-
tern. In situations where it could not resolve the error, it
safely parked the manipulator and informed the ground
station of its failure.

5 Conclusion

Future applications of computer vision will require
more than just low-level vision; they will also have a
high-level AI component to guide the vision system in
a task-directed and deliberative manner, diagnose sens-
ing problems, and suggest corrective steps. Also, an AL-
ife inspired, reactive module that implements computa-
tional models of attention, context, and memory can act
as the interface between the vision system and the sym-
bolic reasoning module. We have demonstrated such a
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aTurnon(_)
aLatch(_)

aErrorHandle(_)

aSensor(_,_)

aSearch(_)

aMonitor

aAlign
aContact

aGo(_,_,_)
aSatAttCtrl(_)

aCorrectSatSpeed

fStatus
fLatch

fSensor

fError

fSatPos

fSatPosConf

fSatCenter
fSatAlign

fSatSpeed
fSatAttCtrl

fSatContact

aBadCamera

aSelfShadow

aGlare
aSun(_)

aRange(_)

fSatPosConf

fSun

fRange

Initial State:

fRange(unknown),

fSun(unknown),
fSatPosConf(yes)

Goal State: fSatConf(no)

Initial State:
fStatus(off), fLatch(unarmed), fSensor(all,off),

fSatPos(medium), fSatPosConf(no), fSatCenter(no), fAlign(no),

fSatAttCtrl(on), fSatContact(no), fSatSpeed(yes), fError(no)

Goal State:

fSatContact(yes)

The Plan:
aTurnon(on), aSensor(medium,on), aSearch(medium), aMonitor,

aGo(medium,near,vis), aSensor(short,on), aSensor(medium,off),
aAlign, aLatch(arm), aSatAttCtrl(off), aContact

Explanation 1:  aBadCamera (Default)

Solution 1:  aRetry

Explanation 2:  aSun(front), aGlare
Solution 2:  aAbort

Explanation 3:  aRange(near),

aSun(behind), aSelfShadow

Solution 3:  aRetryAfterRandomInterval

Actions Fluents

Figure 3:Example plans generated by Planner A and Planner B.

Figure 4:The chaser robot captures the satellite using vision
in harsh lighting conditions like those in orbit.

system within the context of space robotics. Our practi-
cal vision system interfaces object recognition and track-
ing with classical AI through a behavior-based percep-
tion and memory unit, and it successfully performs the
complex task of autonomously capturing a free-flying
satellite in harsh environmental conditions. After receiv-
ing a single high-level “dock” command, the system suc-
cessfully captured the target satellite in most of our tests,
while handling anomalous situations using its reactive
and reasoning abilities.
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