
Synthetic Motion Capture for Interactive Virtual Worlds

Qinxin Yu and Demetri Terzopoulos
Department of Computer Science, University of Toronto

10 King’s College Road, Toronto, Ontario, Canada, M5S 1A4
E-mail: fqyujdtg@cs.toronto.edu

Abstract

The numerical simulation of biomechanical models enables
the behavioral animation of realistic artificial animals in
virtual worlds. Unfortunately, even on high-end graphics
workstations, the biomechanical simulation approach is at
present computationally too demanding for the animation of
numerous animals at interactive frame rates. We tackle this
problem by replacing biomechanical animal models with
fast kinematic replicas that reproduce the locomotion abil-
ities of the original models with reasonable fidelity. Our
technique is based on capturing motion data by systemati-
cally simulating the biomechanical models. We refer to it as
synthetic motion capture, because of the similarity to natu-
ral motion capture applied to real animals. We compile the
captured motion data into kinematic action repertoires that
are sufficiently rich to support elaborate behavioral anima-
tion. Synthetic motion capture in conjunction with level-
of-detail geometric modeling and object culling during ren-
dering has enabled us to transform a system designed for
the realistic, off-line biomechanical/behavioral animation
of artificial fishes, into an interactive, stereoscopic, virtual
undersea experience.

1. Introduction

Artificial life modeling is an exciting new trend in com-
puter graphics [13]. It has yielded impressive animations
such as Tu and Terzopoulos’ artificial fishes [15]. Seen in
pre-recorded action, these lifelike virtual animals beckon
active involvement. One feels compelled ultimately to in-
teract with artificial fishes in their virtual marine environ-
ment as scuba divers would interact with the marine life
inhabiting a coral reef. On the level of motion synthe-
sis and control, however, the realistic, artificial life model-
ing of animals typically relies on biomechanical modeling
techniques, which unfortunately require intensive numeri-
cal computation. In addition to those employed in artificial
fishes, physics-based locomotion models also form the ba-

sis of Miller’s snakes and worms [11], the virtual humans
of Hodgins et al. [8], and other realistically self-animating
characters.

This paper proposes an approach that brings us closer
to developing engaging virtual environments populated by
lifelike characters. Our goal is to develop fast derivatives
of biomechanics based animation capable of supporting the
interactive animation and rendering of virtual worlds in-
habited by numerous lifelike creatures. We would like to
achieve this goal without necessarily relying on costly, spe-
cialized virtual reality equipment, such as flight simulators
[19, 12] or CAVE-like installations [3]. Unfortunately, in
addition to the burden of photorealistic rendering, the dy-
namic simulation of biomechanical animal models of any
complexity is usually too computationally intensive to run
at interactive rates on current desktop or deskside graphics
workstations.

Our solution is to replace computationally expensive
biomechanical animal models with fast kinematic replicas
that preserve as much as possible the lifelike appearances,
locomotions, and behaviors of the fully dynamic originals.
In particular, we capture motion data through the system-
atic biomechanical simulation of locomotion in the original
models. We refer to this technique as synthetic motion cap-
ture since it is in principle not unlike natural motion capture
applied to real animals, particularly human actors. We ap-
propriately process the recorded data and compile the cap-
tured actions into action repertoires. The action repertoire
implements motion synthesis in a kinematic creature, and
it is rich enough to support natural looking locomotion and
complex behavior.

To demonstrate our approach, we have transformed the
non-realtime world of artificial fishes presented in [15] into
an interactive virtual undersea experience. The user pilots
a submarine, navigating in a 3D virtual world populated by
lifelike marine fauna (see Figs. 5, 6, and 7). The user may
maneuver the submarine into a large school of fishes, chase
a fleeing fish, or simply look around and observe colorful
marine life unfold. Our interactive virtual marine world is
inhabited by 60 artificial fishes of 7 different species. Each



fish is an autonomous behavioral agent that interacts with
other fishes. Our virtual marine world runs at interactive
rates on a deskside graphics workstation and also in a large-
scale “Reality Theater”.

Section 2 reviews related work. Section 3 explains how
we apply synthetic motion capture to artificial fishes. Tu’s
biomechanical fish models provide motion data for the ac-
tion repertoires of our kinematic fishes. Section 4 presents
techniques for processing the motion data to produce a func-
tional motor control system. Section 5 discusses how we
have adjusted Tu’s artificial fish behavioral model to deal
with the new, fully kinematic motor system. Section 6 re-
ports on how we accelerate rendering by culling objects rel-
ative to the view frustum and geometrically modeling vis-
ible objects with a suitable level of detail based on their
distance from the viewpoint. Section 7 discusses the perfor-
mance that our approach achieves, and Section 8 presents
conclusions.

2. Related work

Researchers and VR system developers have employed
various techniques to increase the complexity of models
in virtual environments while maintaining realism and fast
frame rates.

Carlson and Hodgins [2] used simulation levels of detail
(LOD) for the real-time animation of single-legged hoppers,
switching between a full dynamic model of a hopper, a less
expensive hybrid dynamic/kinematic model, and a simple
point-mass model. We too exploit multiple levels of de-
tail in animation, but the intrinsically higher biomechanical
complexity of artificial fishes makes it infeasible to main-
tain an acceptable frame rate using any reasonable dynamic
model. Instead, we propose synthetic motion capture as a
means of achieving interactive frame rates without exces-
sively compromising the quality of the animation.

Granieri et al. [5] used an off-line process to record
posture graphs for a human model. The recorded posture
graphs were played back to animate human figures in a dis-
tributed simulation. They also used motion levels of detail,
but concentrated more on procedurally generated motion.
Van de Panne [16] used footprints as a basis for generating
locomotion for bipedal figures at interactive rates.

In creating action repertoires for virtual creatures, we
were motivated by motion capture techniques [1, 6, 10]. Wi-
ley and Hahn [17] applied an interpolationsynthesis process
to motion captured data to generate new motions for articu-
lated figures. Lamouret and van de Panne [9] discussed var-
ious problems associated with the use of motion databases
to create novel animations. They implemented a prototype
system for a planar three-link articulated hopping figure.
We have addressed some of the problems outlined in their
paper and have successfully built a much more elaborate

2 Swimming Segments
2 Turning Segments

Muscle springs

Node 0

1

2

3

4

5

6

7

8

9

10

11

13

15

16

17

18

19

20

21

22

14

12

Pectoral fin

Figure 1. The artificial fish biomechanical
model (reproduced from [14]).

system.

3. Compiling action repertoires

In this section, we explain the application of synthetic
motion capture to artificial fishes. The artificial fish model
is described in [15]. Additional details are available in [14].

The original biomechanical fish model is a dynamic
mass-spring-damper system consisting of 23 nodal point
masses as illustrated in Fig. 1. Under the action of the
12 contractile muscle springs, at each time frame t the nu-
merical simulator performs an implicit time integration of
the system of 69 coupled, second-order ordinary differential
equations of motion that govern the biomechanical model.
This involves first computing the external hydrodynamic
forces at time t, then solving a sparse 69�69 system of lin-
ear algebraic equations for the 23 nodal velocities at t+�t,
and finally integrating explicitly in time to obtain the 23
nodal positionsni, for i = 0; : : : ; 22, at the next time frame
t+�t.

3.1. Motion data capture and processing

To eliminate this computationally intensive numerical
simulation, we capture and compile into action reper-
toires the nodal positions computed over sequences of time
frames.

The numerical simulator computes nodal positions ni

with respect to a fixed world coordinate system. To compile
an action repertoire and facilitate multiple level-of-detail
modeling, we express these nodal positions with respect to
a body-centered coordinate system B, illustrated in Fig. 2,
that translates and rotates in accordance with the dynamic
fish model. At each time frame, we record the incremental
translation (i.e., the change in position) and rotation (i.e.,



0

1

2

3

6

7

8 4

5

z

o

y

x

Figure 2. The body coordinate system of a
fish.

the change in orientation) of B, as well as the “body de-
formation”, or the nodal positions with respect to this body
coordinate system.

Referring to Fig. 2, the origin o = [o1 o1 o3]
T (center

point of the fish) and the three unit vectors that define the
body coordinate system B are computed as follows:

o =
1

2
(n5 + n7) (1)

x =
n0 � o

kn0 � ok
(2)

y = x �
n5 � n6

kn5 � n6k
(3)

z = x � y: (4)

The x = [x1 x2 x3]T axis points to the anterior of the fish,
the y = [y1 y2 y3]T axis points in the dorsal direction,
and the axis z = [z1 z2 z3]T points in the right lateral
direction. This body coordinate system can be represented
by the homogeneous matrix

B =

2
664
x1 y1 z1 o1
x2 y2 z2 o2
x3 y3 z3 o3
0 0 0 1

3
775 ; (5)

within which the upper-left 3 � 3 submatrix R =�
x y z

�
indicates the rotation required to transform a

point in the body coordinate system to a point in world co-
ordinate system.

At each time frame t, we record the change in orienta-
tion and position. The orientation change is recorded in the
form of a 3� 3 rotation matrix Mt that transforms Rt into
Rt+�t:

Mt = Rt+�t(Rt)�1; (6)

where (Rt)�1 = (Rt)T , since it is an orthonormal matrix.
This rotation matrix Mt captures the three orientation de-
grees of freedom. The change of position is recorded as the
translation of the center point with respect to the orientation
of the body coordinate system:

tt = (Rt)�1(ot+�t � ot): (7)

Let d0;d1; : : : ;d22 denote the deformation data, where
di is a vector indicating the position for the ith node in the
fish model. The deformation data are recorded with respect
to the body coordinate system as follows:

dt

i = (Rt+�t)�1(nt+�t

i
� ot+�t); i = 0; 1; : : : ; 22:

(8)

Figures 3 and 4 show examples of recorded locomotion
segments, a forward swim segment and a right turn seg-
ment, respectively. For each frame, the trajectory of the lo-
cal x and z axis shows (in top view) the evolving sequence
of position and orientation changes up to the current frame,
while the fish body shows the deformation relative to the
body coordinate system in the current frame.

The artificial fish geometric display model uses NURBS
surfaces. To display the original artificial fish, the NURBS
control points are computed relatively inexpensively from
the nodal positions of the biomechanical model. We have
the option of explicitly storing control points as part of the
synthetic motion capture process. Since there are many
more control points (426) than there are nodes (23), there
is a tradeoff between the memory required to store control
points explicitly versus the time required to compute them
on the fly from the nodal points. As the storage require-
ments grow, memory paging is exacerbated, tending to slow
down the animation. Thus, the recording of control points
for a particular species of fish can be justified only when
its population in the animation is substantial. In our marine
world, only the schooling fish, whose population totals 51,
satisfies this condition. We record the control points S in
body system coordinates for the schooling fish as

st
i
= (Rt+�t)�1(ct+�t

i
� ot+�t); i = 0; 1; : : : ; 425;

(9)

where the ci denote the control point positions in global
world coordinates.

3.2. Pattern abstraction

The dynamic simulation of the physics-based artificial
fishes uses 9 motor controllers to generate coordinated mus-
cle actions [15, 14]. The 9 basic swimming patterns—
forward swimming, left turning, right turning, gliding, as-
cending, descending, balancing, braking, and retreating—
can be combined to synthesize continuous locomotion. To



(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10)

Figure 3. A forward swim action segment. In each frame, the trajectory of the x-axis (darker arrow)
and z-axis (lighter arrow) of the body-centered coordinate system shows the sequence of position
and orientation changes. The fish body shows the body deformation.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 4. A right turn action segment. Refer to the caption of Fig. 3.



reduce the size of the action repertoire, the following con-
siderations lead us to abstract from these a smaller set of
fundamental motion types.

Gliding serves as a transition action between forward
swimming and turning. For example, it is used to switch
smoothly from swimming forward to turning left, or from
turning left to turning right, etc. Significant storage space is
required for this action to be stored in the repertoire, since
it assumes different forms in different transitions. Fortu-
nately, motion warping [18] serves as a good replacement
for gliding, and it requires almost no storage. Ascending
and descending can be easily represented by a forward swim
heading upwards and downwards respectively. The balanc-
ing action helps a fish to maintain its balance, so it does not
go belly-up, and it must be done with care when we gen-
erate animations. Section 4.2 will describe gliding and bal-
ancing in more detail. Braking slows the forward velocity
and it can be approximated by a forward swim with a nega-
tive acceleration. Similarly, retreating can be accomplished
by a forward swim with a negative velocity. The pectoral
fin movements that play a vital role in animating a life-like
swimming fish continue to be computed using a kinematic
model as in the original system.

Hence, the action repertoires consist of three funda-
mental motion types—forward swimming, left turning, and
right turning. Furthermore, fishes from different species ex-
hibit different muscle actions for any given swim pattern be-
cause of differences in body shapes and mass distributions.
As a result, we must compile a different action repertoire for
each species. Fish in the same species may vary in size, but
they display similar muscle actions for the same swim pat-
tern. In this case, we scale the stored data to accommodate
the variability in size. Consequently, the action repertoires
contain data for three swim patterns for each species.

3.3. Action segments

Our goal is to select the minimal set of action segments
that can best represent each swim pattern. Since extended
swimming motion is cyclic in nature, we record one cycle
for each selected segment. For a forward swim, the loco-
motion speed is approximately proportional to the contrac-
tion amplitudes and frequencies of the muscles, and a fish
can swim no faster than a certain top speed. Hence, we se-
lect three segments with three speeds—slow, medium and
fast—which serve adequately to approximate the full range
of possible speeds. Fig. 3 shows a sample forward swim
segment.

The turn angle of a fish is also proportional to the con-
traction amplitudes and frequencies of the muscles. We cat-
egorize turns into sharp and gradual turns. Hence, a single
segment of each category is recorded for each species. Fig-
ure 4 shows a sample right turn segment.

4. The motor system

Each fish navigates around the virtual world au-
tonomously and its motor system is responsible for loco-
motion. In this section, we describe how we use the action
repertoire to synthesize fast, kinematic locomotion.

4.1. Action reconstruction

When we generate a new animation, the recorded data
must be adapted to the current position and orientation of
a fish. At any time step, we need to determine the nodal
positions based on the data stored in the repertoire. First,
we apply the orientation and position changes to establish
where the fish should be by updating the body coordinate
system as follows:

Rt =Mt��tRt��t; (10)

and

ot = ot��t +Rt��ttt��t: (11)

The nodal positions can then be computed according to the
deformation data:

nt

i = ot +Rt(�dt��t

i
); i = 0; 1; : : : ; 22; (12)

where � is a scaling factor for applying the motion data
to fish of the same species, but of varying sizes, and it is
computed as the ratio of the size of the animated fish to the
size of the recorded fish. For the schooling fish, the control
points can be restored similarly as:

ct
i = ot +Rt(�st��t

i
); i = 0; 1; : : : ; 425: (13)

4.2. Gliding and balancing

We replace the gliding action with motion warping [18]
where the nodal points serve as correspondence points. It
turns out that a linear interpolation is sufficient to provide
a smooth transition between swimming patterns. Since the
fish’s tail usually undergoes the largest deformation, the dis-
tance that node 22 (refer to Fig. 1) travels between the last
frame of a data segment to the first frame of the subsequent
segment is used to determine how many linearly interpo-
lated intermediate frames are necessary to produce a seam-
less transition, by setting a maximum distance that a corre-
spondence point can move in a simulation time step.

The continuous application of rotation to the body coor-
dinate system employed by motion synthesis may introduce
artifacts that occasionally cause the fish to swim on its side.
A compensatory rolling motion is needed to maintain the
fish’s balance. We determine the necessary roll angle, de-
fined as the angle of rotation about the fish’s body-centered
x-axis such that the projection of the y-axis in the vertically
up direction is maximal, and slowly roll the fish to an up-
right posture.



4.3. Level-of-detail animation

The animation may be simplified significantly when the
fish is not in view. In this case, it is unnecessary to render
the graphical display model, hence we suppress the recon-
struction of the nodal positions (12) and the NURBS sur-
face control points (13). Motion warping is also disabled.
We only update the body-centered coordinate system of an
invisible fish using equations (10) and (11).

5. Behavior system

The behavior system of the artificial fish is responsible
for higher level behavior, such as dynamic goal setting,
obstacle avoidance, foraging, schooling, mating, etc. (see
[15]). At each time step, an intention generator examines
sensory information acquired by the perception system and
selects appropriate action. Because we replace the original
biomechanical locomotion controllers of the artificial fish
with our action repertoire, we must introduce a secondary
controller to mediate between the intention generator and
our new motor system.

5.1. Secondary controller

The intention generator makes a decision about the swim
pattern and sets the appropriate motor controller parame-
ters for the dynamic model. We rely on these parame-
ter values to select among the action segments in the ac-
tion repertoire to produce the desired swim pattern. For
a forward swim, the parameters determine the swimming
speed—slow, medium, or fast—and a suitable swim seg-
ment is selected. Similarly for a turn, the parameters deter-
mine the turn angles—gradual or sharp—and a suitable turn
segment is selected.

The limited number of action segments in the repertoire
reduces the locomotion abilities of the fishes. As a result,
the probability of multiple fishes swimming in synchrony
increases. To address this problem, the secondary controller
monitors how long a fish has been pursuing any particular
segment. When the duration exceeds a threshold, the con-
troller will post a recommendation to the intention gener-
ator to switch randomly to a different swim pattern. The
intention generator decides the feasibility of the recommen-
dation. This approach succeeds in synthesizing the diversity
of motion essential to a natural looking marine world.

5.2. Behavior planner adaptation

Replacing the dynamic model by a kinematic action
repertoire reduces the precision in the maneuverability of
the fishes, and they may experience problems accomplish-
ing certain goals. For example, the obstacle avoidance

mechanism may fail more frequently. We adjust the rele-
vant behavior planners to compensate.

For obstacle avoidance, we enlarge the sensitivity re-
gion for detecting collision threats, giving the fishes enough
time and space to maneuver around each other despite their
somewhat weakened motor abilities. Another affected be-
havior is the pursuit of targets. The original approach had
the fish attending increasingly carefully to the location of
the target as it approaches. For instance, the fish swims
merely in the general direction of a distant target. As it
approaches the target, it tries harder to steer to its exact lo-
cation. To offset the weakened motor system, we increase
the fish’s alertness. The motion planner begins at a further
distance its careful steering towards the exact location of the
target. This strategy has proved successful, as evidenced by
the fish’s ability to navigate towards and ingest food.

6. Graphical display model

Although synthetic motion capture saves significant
computation time, the complexity of the highly textured
NURBS-based graphical display hampers the synthesis of
real-time animation. We applied view frustum culling and
level-of-detail (LOD) techniques [4, 7] to reduce the render-
ing time.

Because only a limited number of objects are typically
visible at any time in a virtual world such as ours, culling
the display of fishes outside the view frustum helps to main-
tain a relatively fast frame rate, not only by avoiding the
graphical display, but also by avoiding nodal position recon-
struction and the processing of the NURBS surface control
points, as was described in Section 4.3. To reduce the cost, a
single point visibility check is used for the fishes. Each fish
is approximated by its center point. This requires a slight
enlargement of the view frustum so that a fish with its cen-
ter point just off-screen will still be correctly considered as
visible. This may cause a few fishes that are marginally out-
side the view volume occasionally to be regarded as visible,
but the reduction in computation time for visibilitychecking
more than offsets. Culling is also applied to the seaweeds.

Among visible fishes, those that are close to the view-
point are rendered using NURBS surfaces, while those suf-
ficiently distant are displayed as control point meshes at sig-
nificantly lower cost. In Figs. 5 and 6, for instance, most
fishes in the school are far away and they are displayed us-
ing control point meshes, while the rest are displayed as
NURBS surfaces.

7. Results and discussion

The sustainable update rate of the original (bio-
mechanics-based) artificial fishes animation system running



Figure 5. We stop the submarine to watch
a group of tropical fishes swimming across
the viewport, with a school passing by in the
distance. Some fishes are feeding on white
plankton floating among the aquatic plants.

Figure 6. Let’s approach the school to take a
closer look.

on a Silicon Graphics 1 � 194 MHz R10000 InfiniteReal-
ity workstation is about 0.25 frames per second, making it
impossible for the user to perceive continuous motion, let
alone navigate the virtual world. Using the techniques pre-
sented in this paper, we achieve an interactive frame rate
on the same workstation. With the improved speed, users
can explore the virtual marine world as if they are piloting
a submarine. The user can navigate the vessel using the
mouse. Fig. 5, 6 and 7 are still images captured on one
of our virtual submarine dives. We also implemented the
option to see the world stereoscopically, providing a com-
pelling depth perception and a quasi-immersive 3D experi-
ence. Fig. 8 shows a user enjoying the ride, wearing a pair

Figure 7. While on our way up towards the
surface, we see a variety of fishes beneath
us.

Simulation Method CPU Time (ms)
Dynamics 40

Synthetic Motion Capture 0.01

Table 1. The processing time for each fish
with dynamic simulation and with synthetic
motion capture on a Silicon Graphics R10000
InfiniteReality workstation.

Graphics CPU Time (ms)
Without Culling/LOD 2340

With Culling/LOD 85

Table 2. The rendering time for a similarly
complex scene without and with the use of
culling and level-of-detail rendering.

of CrystalEyes stereo glasses.
With the help of culling and level-of-detail in the graph-

ical display, our current implementation has a fluctuating
frame rate that depends on the number of visible fishes and
the percentage of fishes that are in close view. We observe
frame rates in the range of 10 to 50 frames per second. This
is fast enough to provide the user a sense of action and in-
teractiveness.

The speed up over the original biomechanical anima-
tion is attained by accelerating the motor system and the
graphical display model. Table 1 compares the computa-
tion times required for the dynamic model and our motion
capture model, for a single fish. The indicated times are for



Figure 8. A user is enjoying the ride stereo-
scopically, wearing a pair of CrystalEyes
stereo glasses.

the case when the fish is fully visible, which includes the
reconstruction of the body coordinate system and positions
of all the nodal points. The computation time is reduced by
a factor of 4000. Table 2 shows the rendering time for a
complex scene (about 40 fishes can be seen) with and with-
out culling and multi-resolution. Our current technique cuts
the rendering time by a factor of about 27:5.

We have furthermore developed a large scale ver-
sion of our virtual undersea world in a “Relocat-
able Reality Theater” marketed by Trimension, Inc.
(http://www.trimension-inc.com), which combines a Sili-
con Graphics 8 � R10000 CPU Onyx2 system and mul-
tichannel PRODAS projection technology from SEOS Dis-
plays, Ltd. The system features three InfiniteReality graph-
ics pipelines, each feeding video to an overhead projector.
This system animates and renders our virtual world at a sus-
tainable rate of at least 30 frames per second. It renders
through the three projectors a seamless image of approx-
imately 4000� 1000 pixel resolution across a 18 � 8-foot
curved screen, producing a large panoramic display that fills
the peripheral view. Fig. 9 shows the theater.

8. Conclusion

We have introduced the idea of replacing biomechan-
ical models of animals with ultra-fast kinematic replicas
that capture with reasonable fidelity the locomotion abilities
of the original models. In applying synthetic motion cap-
ture, we collect segments of motion data generated through
the systematic numerical simulation of the biomechanical
model, select a minimal set of action segments that parsi-

Figure 9. The virtual undersea world experi-
enced on the panoramic display in a Trimen-
sion Reality Theater.

moniously represents the various locomotion patterns, and
compile these segments into an action repertoire for the ar-
tificial animal. The motor system retrieves action segments
from the action repertoire to synthesize continuous kine-
matic locomotion, using motion warping to smooth tran-
sitions between different locomotion patterns. The arti-
ficial animal’s behavior system combines locomotion pat-
terns into meaningful higher-level behavior.

To demonstrate the power of our approach, we have de-
veloped an interactive system that provides users a virtual
undersea experience. The user pilots a virtual submarine to
explore a marine environment populated by lifelike fauna.
The virtual marine world may be easily extended so that
the artificial fishes will interact with users, further enhanc-
ing interactivity and enjoyment. Excluding rendering, our
synthetic motion capture approach is three orders of mag-
nitude faster than the original biomechanical simulation of
the artificial fishes. By eliminating the significant burden
of numerical simulation, the frame rate of our virtual world
becomes bounded by graphics rendering performance. We
accelerated rendering by culling objects relative to the view
frustum and displaying visible objects with a suitable geo-
metric level of detail based on their distance from the view-
point.

Acknowledgments

We would like to thank Xiaoyuan Tu for making this re-
search possible by providing her artificial fishes software
upon which we have developed our system. We are grateful
to Michiel van de Panne, Victor Ng-Thow-Hing, Joe Las-
zlo, Radek Grzeszczuk, and Neil Enns for their invaluable



suggestions and assistance. Special thanks to Mark Deacon
and the SMART Toronto organization for providing access
to the Trimension/SGI Reality Theater as a development
and test facility during Reality 98. Gary Schissler from SGI
Canada was among the helpful people who provided tech-
nical support in the Reality Theater. QY acknowledges the
financial support of an NSERC Postgraduate Scholarship.
The research reported herein was funded by the Natural Sci-
ences and Engineering Research Council of Canada through
a E.W.R. Steacie grant.

References

[1] A. Bruderlin and L. Williams. Motion signal processing.
In SIGGRAPH 95 Conference Proceedings, pages 97–104,
Aug. 1995.

[2] D. A. Carlson and J. K. Hodgins. Simulation levels of de-
tail for real-time animation. In Proceedings of the Graphics
Interface, pages 1–8, May21–23 1997.

[3] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-
screen projection-based virtual reality: The design and im-
plementation of the CAVE. In Computer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 135–142, Aug.
1993.

[4] T. A. Funkhouser and C. H. Séquin. Adaptive display al-
gorithm for interactive frame rates during visualization of
complex virtual environments. In Computer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 247–254, Aug.
1993.

[5] J. P. Granieri, J. Crabtree, and N. I. Badler. Production
and playback of human figure motion for visual simulation.
ACM Transactions on Modeling and Computer Simulation,
5(3):222–241, July 1995.

[6] B. Guenter, C. F. Rose, B. Bodenheimer, and M. F. Co-
hen. Efficient generation of motion transitions using space-
time constraints. In SIGGRAPH 96 Conference Proceed-
ings, pages 147–154, Aug. 1996.

[7] P. S. Heckbert and M. Garland. Multiresolution modeling
for fast rendering. In Proc. Graphics Interface ’94, pages
43–50, May 1994.

[8] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F.
O’Brien. Animating human athletics. In SIGGRAPH 95
Conference Proceedings, pages 71–78, Aug. 1995.

[9] A. Lamouret and M. van de Panne. Motion synthesis by ex-
ample. In Proceedings of the 7th Eurographics Workshop on
Simulation and Animation, pages 199–212, Poiters, France,
1996.

[10] R. Maiocchi. 3-D character animation using motion capture.
In N. Magnetat-Thalmann and D. Thalmann, editors, In-
teractive Computer Animation, pages 10–39. Prentice-Hall,
London, 1996.

[11] G. S. P. Miller. The motion dynamics of snakes and worms.
In SIGGRAPH 95 Conference Proceedings, pages 169–178,
Aug. 1988.

[12] R. Pausch and T. Crea. A literature survey for virtual envi-
ronments: Military flight simulator visual systems and sim-
ulator sickness. Technical Report CS-92-25, Department of
Computer Science, University of Virginia, Aug. 19 1992.

[13] D. Terzopoulos, editor. Artificial Life for Graphics, Anima-
tion, Multimedia, and Virtual Reality, volume 23 of ACM
SIGGRAPH’97 Course Notes. 1997.

[14] X. Tu. Artificial Animals for Computer Animation: Biome-
chanics, Locomotion, Perception, and Behavior. PhD thesis,
University of Toronto, 1996.

[15] X. Tu and D. Terzopoulos. Artificial fishes: Physics, loco-
motion, perception, behavior. In Proceedings of SIGGRAPH
’94, pages 43–50, July 1994.

[16] M. van de Panne. From footprints to animation. Computer
Graphics Forum, 16(4):211–223, 1997.

[17] D. J. Wiley and J. K. Hahn. Interpolation synthesis of artic-
ulated figure motion. IEEE Computer Graphics and Appli-
cations, 17(6):39–45, Nov./Dec. 1997.

[18] A. Witkin and Z. Popović. Motion warping. In SIGGRAPH
95 Conference Proceedings, pages 105–108, Aug. 1995.

[19] J. K. Yan. Advances in computer-generated imagery for
flight simulation. IEEE Computer Graphics and Applica-
tions, 5(8):37–51, Aug. 1985.


