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Abstract

This paper develops artificial life patterned after animals as evolved as those in the superclass Pisces. It
demonstrates a virtual marine world inhabited by realistic artificial fishes. Our algorithms emulate not only the
appearance, movement, and behavior of individual animals, but also the complex group behaviors evident in
many aquatic ecosystems. We model each animal holistically. An artificial fish is an autonomous agent situated
in a simulated physical world. The agent has (i) a three-dimensional body with internal muscle actuators and
functional fins, which deforms and locomotes in accordance with biomechanic and hydrodynamic principles,
(ii) sensors, including eyes that can image the environment, and (iii) a brain with motor, perception, behavior,
and learning centers. Artificial fishes exhibit a repertoire of piscine behaviors that rely on their perceptual
awareness of their dynamic habitat. Individual and emergent collective behaviors include caudal and pectoral
locomotion, collision avoidance, foraging, preying, schooling, and mating. Furthermore, artificial fishes can learn
how to locomote through practice and sensory reinforcement. Their motor learning algorithms discover muscle
controllers that produce efficient hydrodynamic locomotion. The learning algorithms also enable artificial fishes
to train themselves to accomplish higher level, perceptually guided motor tasks, such as maneuvering to reach a
visible target.

Keywords: artificial life, autonomous agents, animats, artificial fishes, learning, behavior, perception, locomotion,
physics-based modeling, computer graphics.



Published in Artificial Life, 1(4):327–351, 1994. 2

1 Introduction

Imagine a virtual marine world inhabited by a variety of realistic fishes.1 In the presence of underwater currents,
the fishes employ their muscles and fins to swim gracefully around immobile obstacles and among moving aquatic
plants and other fishes. They autonomously explore their dynamic world in search of food. Large, hungry predator
fishes stalk smaller prey fishes in the deceptively peaceful habitat. Prey fishes swim around contentedly until the
sight of predators compels them to take evasive action. When a dangerous predator appears in the distance, similar
species of prey form schools to improve their chances of survival. As the predator nears a school, the fishes scatter
in terror. A chase ensues in which the predator selects victims and consumes them until satiated. Some species of
fishes seem untroubled by predators. They find comfortable niches and feed on floating plankton when they get
hungry. Driven by healthy libidos, they perform elaborate courtship rituals to secure mates.

The computer emulation of the above scenario presents a formidable challenge in the field of artificial life. In this
paper we propose a computational framework for creating fully functional artificial animals—in this instance, arti-
ficial fishes. Artificial fishes are autonomous agents with functional bodies controlled by brains. Their appearance,
motivations, and complicated group interactions aspire to be as faithful as possible to nature’s own. To simulate
artificial worlds with the level of complexity of the one depicted above, we have taken a bottom-up, compositional
approach. In our approach we model not just 3D form and appearance, but also the basic physics of the animal and
its environment. Upon the simulated physics substrate, we can effectively model the animal’s means of locomotion.
This in turn positions us to model the animal’s perceptual awareness of its world, its behavior, and its ability to learn.
Our holistic approach to modeling the animal and its world is crucial to achieving realism.

The long-term goal of our research is a computational theory that can potentially account for the interplay of
physics, locomotion, perception, behavior, and learning in higher animals. A good touchstone of such a theory is
its ability to produce visually convincing results in the form of realistic computer graphics animation with little
or no animator intervention. We have been able to achieve such results in two instances to date. Our animation
“Go Fish!” [23] shows a colorful variety of artificial fishes foraging in translucent water. A sharp hook on a line
descends towards the hungry fishes and attracts them. A hapless fish, the first to bite the bait, is caught and drawn
to the surface. The color plates show stills from our 1994 animation “The Undersea World of Jack Cousto.” Plate
1a shows a variety of animated artificial fishes. The reddish fish are engaged in a mating ritual, the greenish fish
is a predator hunting for small prey, the remaining fishes are feeding on plankton (white dots). Dynamic seaweeds
grow from the ocean bed and sway in the current. In Plate 1b, the large male in the foreground is courtship dancing
with the female (top). The prey fish in the background are engaging in schooling behavior, a common subterfuge for
avoiding predators. Plate 1c shows a shark stalking the school. The detailed motions of the artificial fishes emulate
the complexity and unpredictability of movement of their natural counterparts, and this enhances the visual beauty
of the animations.

1“Fish” is both singular and plural; when plural, it refers to more than one fish within the same species. The plural “fishes” is used when
two or more species are involved [25].
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Plate 1a: Artificial fishes in their physics-based world.

Plate 1b: Mating behaviors. Female (top) is courted by large male.
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Plate 1c: Predator shark stalking school of prey fish.

1.1 Background

Our approach to developing artificial animals is consistent with the “animat” approach proposed by Wilson [26].
To render our computational model visually convincing, we attempt as well to capture with reasonable fidelity the
appearance and physics of the animal and its world. Artificial fishes may be viewed as animats of unprecedented
sophistication. They are autonomous virtual robots situated in a continuously dynamic 3D virtual world. Their func-
tional design, including motor control, perceptual modeling, and behavioral simulation presents hurdles paralleling
those encountered in building physical autonomous agents (see, e.g., the compilation [13]). Previously, the most
complex animats were inspired by insects. Brooks (see [8]) describes a physical insect robot “Genghis”, bristling
with sensors, that can locomote over irregular terrain, while Beer develops a virtual counterpart, a cockroach with
simple behaviors in a 2D world [5] (see also [13]).

Our work tackles animals much more highly evolved and complex than insects. To deal with the broad behavioral
repertoire of fishes, we exploit ideas from classical ethology [22, 12, 15, 1]. Tinbergen’s landmark studies of the
three-spined stikleback highlight the great diversity of piscine behavior, even within a single species. We achieve
the nontrivial patterns of behavior outlined in the introductory paragraph of this paper in stages. First, we implement
primitive reflexive behaviors, such as obstacle avoidance, that directly couple perception to action [7]. Then we
combine the primitive behaviors into motivational behaviors whose activation depends also on the artificial fish’s
mental state, including hunger, libido, and fear.

Useful behavior is supported by perception of the environment as much as it is by action. Reynolds’ “boids”
maintained flocking formations through perception of other nearby boids [20]. Recently Matarić has demonstrated
similar flocking behaviors with physical robots [14]. Artificial fishes sense their world through simulated visual
perception within a deliberately limited field of view. They can sense lighting patterns, determine distances to
objects, and identify objects, subject to the natural limitations of occlusion. Furthermore, they are equipped with
secondary nonvisual modalities, such as the ability to sense local water temperature.

At its lowest level, our work makes use of computational physics. We model the biomechanics of a broad class
of fishes and their muscle-based locomotion abilities that exploit the physics of their liquid medium [6, 2]. The
mechanical model that we develop was inspired by the simple but surprisingly effective computer graphics model
of snake and worm dynamics proposed by Miller [17].

We have provided artificial fish with algorithms that enable them to learn automatically from first principles how to
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achieve hydrodynamic locomotion by controlling their internal muscle actuators. The locomotion learning algorithm
that we describe is more continuous and closer connected to actuation than most of the animat “behavior learning”
algorithms surveyed in [16]. Our multilevel reinforcement learning procedure first performs a global search for
actuator activation functions that produce efficient locomotion. The process then abstracts these activation functions
into a highly compact representation. The representation emphasizes the natural periodicities of the derived muscle
actions and makes explicit the coordination among multiple muscles that leads to effective locomotion. Finally, the
artificial fish can put into practice the compact, efficient controllers that it has learned and train itself to accomplish
higher level sensorimotor tasks.

1.2 Functional Overview of the Artificial Fish

Fig. 1 presents an overview of an artificial fish situated in its simulated physical world. The body of the fish harbors
a brain or mind with motor, perception, behavior, and learning centers.
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Figure 1: Control and information flow in artificial fish.

The motor system, comprising the actuators and a set of motor controllers (MCs), drives the dynamic model
of the fish. We have crafted a mechanical body model that represents a good compromise between anatomical
consistency, hence realism, and computational efficiency. Our model is rich enough so that we can build MCs by
gleaning information from the fish biomechanics literature [6, 2]. The MCs are parameterized procedures. Each is
dedicated to carrying out a specific motor function, such as “swim forward” or “turn left.” They translate natural
control parameters such as the forward speed or angle of the turn into detailed muscle actions.

The perception system relies on a set of on-board virtual sensors to provide sensory information about the
dynamic environment, including eyes that can produce time-varying retinal images of the environment. The brain’s
perception center includes a perceptual attention mechanism which allows the artificial fish to train its sensors at the
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world in a task-specific way, hence filtering out sensory information superfluous to its current behavioral needs. For
example, the artificial fish attends to sensory information about nearby food sources when foraging.

The behavior center of the artificial fish’s mind mediates between its perception system and its motor system. An
intention generator, the fish’s cognitive faculty, harnesses the dynamics of the perception-action cycle. The innate
character of the fish is established by a set of habits that determine whether or not it is male or female, predator
or prey, etc. The intention generator combines the habits and mental state with the incoming stream of sensory
information to generate dynamic goals for the fish, such as to hunt and feed on prey. It ensures that goals have
some persistence by exploiting a single-item memory. The intention generator also controls the perceptual attention
mechanism. At every simulation time step, the intention generator activates behavior routines that attend to sensory
information and compute the appropriate motor control parameters to carry the fish one step closer to fulfilling
its current intention. Primitive behavior routines, such as obstacle avoidance, and more sophisticated motivational
behavior routines, such as mating, implement the behavioral repertoire of the artificial fish.

The learning center of its mind enables the artificial fish to learn how to locomote through practice and sensory
reinforcement. Through optimization, the motor learning algorithms discover muscle controllers that produce
efficient locomotion. Their brain’s learning center also enable artificial fishes to train themselves to accomplish
higher level sensorimotor tasks, such as maneuvering to reach a visible target.

2 Realistic Modeling of Form and Appearance

To achieve realism, our artificial fish model must first represent the form and appearance of real fishes with sufficient
fidelity. To this end, we have perused photographs of real fishes, such as those shown in Fig. 2(a), and have built 3D
geometric models of several different species using nonuniform rational B-spline (NURBS) surfaces (Fig. 2(b)).

The next step is to map realistic textures onto the geometric fish model (Fig. 2(e)). We extract natural textures from
digital images of the fish photos, employing a “snake-grid” tool to determine appropriate texture map coordinates
in the image. Snakes are interactive deformable contours that are subject to a force field derived from an image
[11]. The force field attracts them towards interesting image features such as intensity edges. A collection of
coupled snakes forms a deformable grid (Fig. 2(c–d)). The snake-grid floats freely over an image and it can be
pulled into position using the mouse. When its border approaches the intensity edges that demarcate the fish from
its background in the image, the border snakes lock on and adhere to these edges. The remaining snakes in the grid
relax elastically to cover the imaged fish body with a nonuniform but smooth coordinate system (Fig. 2(d)). The
snake crossing points serve as texture map image coordinates for the NURBS surfaces.

3 Physics-Based Fish Model and Locomotion

Studies into the dynamics of fish locomotion show that most fishes use their caudal fin as the primary motivator [24].
Caudal swimming normally uses posterior muscles on either side of the body, while turning normally uses anterior
muscles. To synthesize realistic fish locomotion we have designed a dynamic fish model consisting of 23 nodal
point masses and 91 springs. The spring arrangement maintains the structural stability of the body while allowing
it to flex. Twelve of the springs running the length of the body also serve as simple muscles (Fig. 3).

3.1 Mechanics

The mechanics of the spring-mass model are specified as follows: Let node i have mass mi, position xi(t) =
[xi(t); yi(t); zi(t)], velocity vi(t) = dxi=dt, and acceleration ai(t) = d2

xi=dt
2. Let elastic spring Sij connect node

i to node j and denote its spring constant as cij and natural, rest length as lij . Its deformation is eij(t) = jjrijjj� lij ,
where rij(t) = xj � xi. The force Sij exerts on node i is f sij(xi;xj) = cijeijrij=jjrijjj (note that f sij = �f sji). The
Lagrange equations of motion of the dynamic fish are:

mi

d2
xi

dt2
+ �i

dxi
dt

�wi = f
w
i ; i = 0; :::; 22; (1)
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(a) (b)

(c) (d)

(e)

Figure 2: (a) Digitized images of fish photos. (b) 3D NURBS surface fish bodies. Initial (c) and final (d) snake-grid
covering an imaged fish body. (e) Texture mapped 3D fish models.
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Figure 3: Dynamic fish model. Nodes are lumped masses. Lines are springs (shown at their natural lengths). Bold
lines are muscle springs.

where �i is the damping factor, wi(t) =
P

j2Ni
f
s
ij is the net internal force on node i due to springs connecting it to

nodes j 2 Ni, where Ni is the index set of neighboring nodes. Finally, fwi (t) is the external (hydrodynamic) force
on node i.

To integrate the differential equations of motion, we employ a numerically stable, implicit Euler time stepping
method [19]. Since the elastic forces depend nonlinearly on the position variables xi, the method assembles the
sparse stiffness matrix for the spring-mass system in efficient “skyline” storage format, then factorizes and solves
the resulting system of algebraic equations at every time step to obtain the position increments. 2

We couple the control points of the aforementioned texture mapped NURBS body model to the time-varying
positions of the mass points (the nodes in Fig. 3), such that the fish body deforms in accordance with the simulated
dynamics of the actuated spring-mass system.

3.2 Swimming Using Muscles and Hydrodynamics

The artificial fish moves as a real fish does, by contracting its muscles. If Sij is a muscle spring, it is contracted
by decreasing the rest length lij. For convenience, we assign a minimum contraction length lmin

ij to the muscle
spring and express the contraction factor as a number in the range [0; 1]. The brain of the fish controls the muscles
continuously through time by specifying the vector of muscle actuation functionsu(t) = [u1(t); : : : ; u12(t)], whose
components specify a time-varying contraction factor for each of the 12 muscles. The characteristic undulation of
the fish’s tail can be achieved by periodically contracting the swimming segment springs on one side of the body
while relaxing their counterparts on the other side.

When the fish’s tail beats, it sets in motion a volume of water. The inertia of the displaced water produces a
reaction force normal to the fish’s body proportional to the volume of water displaced per unit time, which propels
the fish forward (Fig. 4). Under certain assumptions, the instantaneous force on the surface S of a body due to a
viscous fluid is approximately proportional to �

R
S(n � v)n dS, where n is the unit outward normal function over

the surface and v is the relative velocity function between the surface and the fluid. For efficiency, we triangulate
the surface of the dynamic fish model between the nodes and approximate the force on each planar triangle as

2In our simulation: mi = 1:1 for i = 0 and 13 � i � 19; mi = 6:6 for 1 � i � 4 and 9 � i � 12; mi = 11:0 for 5 � i � 8, and
mi = 0:165 for i = 21;22. The cross springs (e.g., c27) which resist shearing have spring constants cij = 38:0. The muscle springs (e.g.,
c26) have spring constants cij = 28:0, and cij = 30 for the remaining springs. The damping factor �i = 0:05 and the time step used in the
Euler time-integration procedure is 0:055.
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f = min[0; �A(n � v)n], where A is the area of the triangle and v is its velocity relative to the water. The fwi
variables at each of the three nodes defining the triangle are incremented by f=3.
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Figure 4: Hydrodynamic locomotion. With tail swinging towards positive X axis, reaction force Fw
i at point ni

acts along the inward normal. Component Fw
ix resists the lateral movement, while Fw

iy is forward thrust. Aggregate
thrust propels fish towards positive Y axis.

3.3 Motor Controllers

Currently the artificial fish has three MCs. The swim-MC produces straight swimming, while the left-turn-MC and
right-turn-MC execute turns. The MCs prescribe muscle contractions to the mechanical model. The swim-MC
controls the swimming segment muscles (see Fig. 3), while the turn MCs control the turning segment muscles.

According to [24], the swimming speed of most fishes is roughly proportional to the amplitude and frequency
of the periodic lateral oscillation of the tail, below certain threshold values. Our experiments with the mechanical
model agree well with these observations. Both the swimming speed and the turn angle of the fish model are
approximately proportional to the contraction amplitudes and frequencies/rates of the muscle springs.

The swim-MC (swim-MC(speed) 7! fr1; s1; r2; s2g) converts a swim speed parameter into contraction ampli-
tude and frequency control parameters for the anterior (r1, s1) and posterior (r2, s2) swim segments. One pair
of parameters suffices to control each of the two swim segments due to symmetry—the four muscle springs have
identical rest lengths and minimum contraction lengths, identical spring constants, and the contractions of the
muscle spring pairs on opposite sides are exactly out of phase. Moreover, the swim-MC produces periodic muscle
contractions in the posterior swim segment which lag 180 degrees behind those of the anterior swim segment; hence
the mechanical model displays a sinusoidal body shape as the fish swims (see [24]).

By experimenting, we have found a set of four maximal parameters, r̂1, ŝ1, r̂2 and ŝ2, which produce the fastest
swimming speed. The swim-MC generates slower swim speeds by specifying parameters that have values between
0 and the maximal parameters. For example, f0:8r̂1; ŝ1; 0:7r̂2; ŝ2)g results in a slower-swimming fish.

As mentioned earlier, most fishes use their anterior muscles for turning, and the turn angle is approximately
proportional to the degree and speed of the anterior bend, up to the limit of the fish’s physical strength [24]. The
artificial fish turns by contracting and expanding the springs of the turning segments (Fig. 3) in similar fashion. For
example, a left turn is achieved by quickly contracting the left side springs of the segments and relaxing those on the
right side. This deflects the fish’s momentum and brings it into the desired orientation. Then the contracted springs
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are restored to their rest lengths at a slower rate, so that the fish regains its original shape with minimal further
change in orientation.

Similarly, the left and right turn MCs (turn-MC(angle) 7! fr0; s0; r1; s1g) convert a turn angle to control
parameters for the anterior and posterior turning segments to execute the turn (note that the posterior turning
segment also serves as the anterior swim segment). Through experimentation, we established 4 sets of parameter
values Pi = fri0; s

i
0; r

i
1; s

i
1g which enable the fish to execute natural looking turns of approximately 30, 45, 60, and

90 degrees. By interpolating the key parameters, we define a steering map that allows the fish to generate turns of
approximately any angle up to 90 degrees. Turns greater than 90 degrees are composed as sequential turns of lesser
angles.

3.4 Pectoral Fins

On most fishes the pectoral fins control pitching (the up-and-down motion of the body) and yawing (the side-to-side
motion). The pectorals can be held close to the body to increase speed by reducing drag or they can be extended to
increase drag and serve as a brake [25]. Many reef fishes use a pectoral swimming style, keeping their bodies still
and using their pectoral fins like oars to achieve fine motion control, including reverse motions, when foraging.

The artificial fish is neutrally buoyant in the virtual water and has a pair of pectoral fins which enable it to
navigate freely in its 3D world. The pectoral fins function in a similar, albeit simplified, manner to those on real
fishes. For our purposes the detailed movement of the pectoral fins is of lesser interest than the movement of the
fish body. To simplify the fish model and its numerical solution, we do not simulate the elasticity and dynamics of
the pectoral fins. However, we do approximate the dynamic forces that the pectoral fins exert on the body of the fish
to control locomotion.

g

gd

E

fish’s  orientation

d

n

v

Figure 5: The pectoral fins

The pectoral fins (Fig. 5) work by applying reaction forces to nodes in the midsection, i.e. nodes 1 � i � 12 (see
Fig. 3). The fins are analogous to the airfoils of an airplane. Pitch, yaw, and roll control stems from changing their
orientations relative to the body; i.e., the angle �=4 � 
 � �. Assuming that a fin has an area A, surface normal
n and the fish has a velocity v relative to the water (Fig. 5), the fin force is Ff = �A(n � v)n = �A(jjvjj cos
)n
which is distributed equally to the 12 midsection nodes. When the leading edge of a fin is elevated, a lift force
is imparted on the body and the fish ascends, and when it is depressed a downward force is exerted and the fish
descends. When the fin angles differ the fish yaws and rolls. The artificial fish can produce a braking effect by
angling its fins to decrease its forward speed (i.e. 
 = �). This motion control is useful in maintaining schooling
patterns, for instance.

4 Learning Muscle-Based Locomotion

We have discussed how locomotion controllers may be carefully hand crafted using knowledge gleaned from the
piscine biomechanics literature and long hours of experimentation with our mechanical fish model. In this section,
we consider the following general question: Given a physics-based model of an animal with internal muscle actuators
capable of producing locomotion, such as the fish model of Fig. 3, is it possible for the model to learn from first
principles how to control its actuators in order to locomote in a natural fashion? Furthermore, can it employ
the controllers that it has learned in order to accomplish higher level tasks guided by sensory perception? We
demonstrate affirmative answers to both questions by developing a learning center in the mind of the artificial fish
that applies a form of reinforcement learning.
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4.1 Learning Strategy

We formulate a two-phase, bottom-up strategy for learning muscle controllers. The artificial fish has a fully functional
body, but at first it is “brain-dead” and does not know how to use its muscles to locomote. In phase one, it repeatedly
practices a variety of muscle activation functions and remembers activation patterns that improve its locomotion,
thus learning how to locomote with increasingly better efficiency. Repeated improvements eventually lead to natural
looking locomotion patterns that are optimally efficient.

When an adequate degree of optimization has been achieved in the low-level learning phase, the learning
algorithm enters phase two, where it abstracts the activation functions into a highly compact representation. The
representation drastically reduces the dimensionality of the learning problem by using basis functions that make
explicit the natural periodicities of the derived muscle actions and the pattern of coordination among multiple
muscles that yields effective locomotion. The artificial fish trains itself with routine locomotion drills and associates
the low-level muscle activation functions that it has learned with specific higher-level tasks that it needs to perform.
Finally, it can put to use the compact, efficient controllers that it has learned, to accomplish higher level sensorimotor
tasks—for example, it can locomote and execute turning maneuvers to reach a visible target. The learned controllers
can subsequently be employed during advanced behaviors such as hunting.

4.2 Low-Level Learning

At the foundation of our approach lies the notion that natural motion patterns are energetically efficient. This allows
us to reduce the problem of learning realistic locomotion into a problem of optimizing an objective function, for
which various solution techniques are available.

Fig. 6 illustrates the learning algorithm. The objective function takes the form

E(u(t)) =
Z t1

t0

�
�1Eu(u(t)) + �2Ev(v(t))

�
dt; (2)

a weighted sum, with weighting variables �1; �2, of a term Eu that evaluates the vector of muscle actuator control
functions u(t), which dictate the lengths lij of muscle springs in the dynamic model (see Sec. 3.2), and a term Ev

that evaluates the resulting trajectory v(t) of the artificial fish. Note that to compute v(t) and hence E, we must
perform a forward simulation of the dynamic model over a time interval t0 � t � t1 with the actuation function
inputs u(t).

The term Eu guides the optimization by discouraging large, rapid fluctuations of u. The rationale is that chaotic
muscle actuations usually produce energy-inefficient body motions. We encourage smoothness through the function

Eu = �
1
2

�
�1

����dudt
����
2

+ �2

�����
d2
u

dt2

�����
2�
; (3)

with weighting factors �1 and �2. The two terms are potential energy densities of linear and cubic splines in time,
respectively. The former penalizes muscle effort more than the latter.

The criterion Ev for a good trajectory that we used most often in our learning experiments was the final distance
of the fish from a target location. Depending on the task, other possible criteria are: the closeness to a specified
speed, the closeness to a specified trajectory, etc.

Learning low level control involves the application of simulated annealing to optimize (2) [19]. Simulated
annealing is applied after discretizing the actuator control functions u(t) by sampling them in the time interval
under consideration to obtain the set of discrete samples ui = u(ti) for 1 � i � N (typically, we set N to 15 time
samples, and recover the continuous u(t) through linear or cubic spline interpolation of the ui). The annealing
algorithm repeatedly perturbs the ui to modify the actuator activation functions that control the muscles in the fish.
It retains those perturbations that produce increasingly better locomotion as measured by the objective function E,
and sometimes accepts those that don’t to escape local minima. Note that after performing a forward simulation
using u(t), the artificial fish can evaluate E with its on-board sensors. Hence, learning proceeds autonomously.

Fig. 7 shows six artificial leopard sharks in a race. The furthest shark has completed only 90 annealing steps,
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Figure 6: Low-level algorithm for learning locomotion. Muscle control inputs actuate body of artificial animal to
produce a locomotion trajectory through forward physical simulation. A fitness function measures the quality of
input control and output trajectory.

which results in muscle control functions that are essentially random and achieve very poor locomotion. Nearer
sharks have learned for progressively longer periods of time (1350 more annealing steps). After learning for 6840
annealing steps, the nearest shark locomotes very efficiently and it wins the race decisively.

4.3 Abstraction of High-Level Controllers

In the second stage of the learning process abstracts higher-level muscle controllers. This is a dimensionality
reducing change of representation that compresses the information content of the many control points to a compact
form in terms of a few global basis functions. Specifically, it tries to represent the control functions as accurately as
possible in the form u(t) �

PM
i=0 �iBi(t), where Bi are basis functions, �i are scalar quantities, and M is a small

number.
Since natural locomotion patterns are generally periodic [18], the Fourier basis is a reasonable choice. We

employ the short time FFT to perform the change in basis (the wavelet transform may also be applied). If the Fourier
space is a suitable representation that captures the temporal structure of the control functions, the dimensionality
reduction can be achieved easily by eliminating all basis functions whose coefficients �i in the above approximation
formula are negligible. This will result in a small set ofM significant basis functions, usually 1 or 2, with associated
coefficients that define the abstracted muscle controller.

The artificial fish can now train itself to perform several routine locomotion tasks, such as swimming forward
at different speeds and executing turns of different radii. Fig. 8 illustrates the control abstraction procedure and
its results after straight swim and left turn training sessions. After it has abstracted controllers for these tasks,
the artificial fish can construct a forward speed and steering map by interpolating across amplitudes, frequencies,
and phases of the sinusoidal basis functions in the set of abstracted controllers. Finally, it can put these learned
abstractions to use to accomplish higher level tasks, such as target tracking. Fig. 9 shows a shark model that has
trained itself to swim between targets (spherical buoys); having swum from the left to the far target, it has now
turned and is proceeding to the near target.
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Figure 7: Race between sharks that have learned to locomote for progressively longer times.

5 Sensory Perception

The perception system of the artificial fish, illustrated in Fig. 1, comprises a set of virtual on-board sensors and a
perceptual focusser. Currently the artificial fish is equipped with two sensors that provide information about the
dynamic environment—a temperature sensor that measures the ambient (virtual) water temperature at the center of
the artificial fish’s body and a much more elaborate cyclopean vision sensor.

5.1 Vision Sensor

We have not attempted to emulate the vision system of real fishes. Instead, we have incorporated a basic cyclopean
vision sensor into the fish model. It is crucial to model the basic limitations of animal vision systems, otherwise the
perceptually driven behaviors will not be natural. The cyclopean vision sensor has a 300 degree spherical field of
view extending frontally and latterally to an effective radius Vr appropriate to the visibility of the translucent water
(Fig. 10(a)). An object is “seen” only if some part of it enters this view volume and it is not fully occluded behind
some other opaque object (Fig. 10(b)).

The artificial fish’s vision sensor has access to the geometry, material property, and illumination information
that is available to the graphics pipeline for rendering purposes. In addition, the vision sensor can interrogate the
world model database to identify nearby objects and interrogate the physical simulation to obtain information such
as the instantaneous positions and velocities of objects of interest. In this way, the vision sensor extracts from the
3D virtual world only some of the most useful information that piscine visual processes can provide real fishes about
their world, such as overall brightness, and the colors, sizes, distances, and identities of visible objects.

A more biologically plausible emulation of piscine visual processes would involve the application of various
computer vision algorithms [10] to extract information from “retinal” images of the 3D world rendered from the
vantage point of the artificial fish’s cyclopean vision sensor. Intrinsic images are a useful paradigm for this purpose
[4]. The rendering pipelines of 3D graphics workstations can readily synthesize retinal images, associated z-buffers,
and object identity maps for artificial fish vision. Currently, the fish determines only the overall brightness of
its environment by computing the mean intensity of the retinal image. Fig. 11 shows examples of retinal images
acquired by a fish “witnessing” another fish being baited by a fishing line.
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Figure 8: Abstraction of muscle controllers in straight swim (a) and left turn (b) training sessions. Upper plots:
muscle controls gleaned by low-level learning algorithm. Center plots: primary modes. Lower plots: compact
muscle controls abstracted from primary modes.

6 Behavioral Modeling

The artificial fish’s behavior system runs continuously within the simulation loop. At each time step the intention
generator issues an intention based on the fish’s habits, mental state, and incoming sensory information. It then
chooses and executes a behavior routine which in turn runs the appropriate motor controllers. It is important to
note that the behavior routines are incremental by design. Their job is to bring the artificial fish one step closer to
fulfilling the intention during the current time step. The intention generator employs a memory mechanism to avoid
dithering.

6.1 Habits and Mental State

The innate character of the fish is determined by a set of habit parameters that determine whether or not it likes
brightness, darkness, cold, warmth, schooling, or is a male/female, etc.

The artificial fish has three mental state variables, hunger H , libido L, and fear F . The range of each variable
is [0; 1], with higher values indicating a stronger urge to eat, mate and avoid danger, respectively. The variables are
calculated as follows:

H(t) = min[1� ne(t)R(∆tH)=�; 1];

L(t) = min[s(∆tL)(1�H(t)); 1];

F (t) = min
hX

i

F i; 1
i
; where F i = min[D0=d

i(t); 1];

where t is time, ne(t) is the amount of food consumed as measured by the number of food particles or prey fishes
eaten, R(x) = 1� p0x with constant p0 is the digestion rate, ∆tH is the time since the last meal, � is a constant that
dictates the appetite of the fish (bigger fishes have a larger �), s(x) = p1x with constant p1 is the libido function,
∆tL is the time since the last mating,D0 = 100 is a constant, and F i and di are, respectively, the fear of and distance
to sighted predator i. Nominal constants are p0 = 0:00067 and p1 = 0:0025. Certain choices can result in ravenous
fishes (e.g, p0 = 0:005) or sexual mania (e.g., p1 = 0:01).
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Figure 9: Trained shark swimming between targets.

6.2 Intention Generator

Fig. 12 illustrates the generic intention generator which is responsible for the goal-directed behavior of the artificial
fish in its dynamic world.

The intention generator first checks the sensory information stream to see if there is any immediate danger
of collision. If any object penetrates the fish’s collision sensitivity region (a bounding box) then the intention I
generated is to avoid collision. A large sensitivity region results in a ‘timid’ fish that takes evasive action to avoid
a potential collision well in advance, while a tight sensitivity region yields a ‘courageous’ fish that takes evasive
action only at the last second.

If there is no immediate danger of collision, the neighborhood is searched for predators, the fear state variable
F and the most dangerous predator m for which Fm � F i are calculated. If the total fear F > f0 (where
0:1 � f0 � 0:5 is a threshold value) evasive action is to be taken. If the most dangerous predator is not too
threatening (i.e. Fm < f1 where f1 > f0) and the fish has a schooling habit, then the school intention is generated,
otherwise the escape intention is generated.

If fear is below threshold, the hunger and libido mental state variables H and L are calculated. If the greater of
the two exceeds a threshold 0 < r < 0:5, the intention generated will be to eat or mate accordingly.

If the above test fails, the intention generator accesses the ambient light and temperature information from the
perception system. If the fish’s habits dictate contentment with the ambient conditions, the intention generated will
be to wander about, otherwise it will be to leave the vicinity.

Note that after the intention generator chooses an intention, it invokes the perceptual focus mechanism. For
example, when the avoid intention is generated, the perception focusser is activated to locate the positions of the
obstacles, paying special attention to the most dangerous one, generally the closest. Then the intention generator
computes motor preferences (qualitative constraints, such as another fish to the left ) no left turn). The focusser
passes only the position of the most dangerous obstacle along with these constraints to the behavior routines. When
the intention of a male fish is to mate, the focusser targets the most desirable female fish; when the intention is to
escape from predators, only the information about the most threatening predator is passed to the next layer; etc.

6.3 Behavior Memory and Persistence

In a complex dynamic world, the artificial fish should have some persistence in its intentions, otherwise it will tend
to dither, perpetually switching goals. If the current behavior is interrupted by a high priority event, the intention
generator stores in a single-item short term memory the current intention and some associated information that may
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Figure 10: Artificial fish vision sensor. (a) Visual perception is limited to 300 degree solid angle. (b) Occlusion and
distance limits the perception of objects (only the fish towards the left is visible).

be used to resume the interrupted behavior. Persistence is particularly important in making long duration behaviors
such as foraging, schooling, and mating more robust. Suppose, for example, that the current behavior is mating
and an imminent collision is detected with another fish. This causes an avoid intention and the storage of the mate
intention (we refer to the stored intention as Is) along with the identity of the mating partner. After the obstacle has
been cleared, the intention generator commands the focusser to generate up-to-date heading and range information
about the mating partner, assuming it is still in viewing range.

Our design of the intention generator and focusser simplifies the modification of existing personalities and
behaviors and the addition of new ones. For example, we can create artificial fishes with different persistences by
augmenting the focusser with a new positive threshold. Suppose the current intention of a predator fish is to eat and
let the distance to some currently targeted prey be lc and the distance to some other prey be ln. If lc � ln is greater
than the threshold, the fish will target the new prey. Varying the threshold will vary the fish’s level of persistence.
The same heuristic can be applied to mates when the fish is trying to mate. One can make the fish ‘fickle’ by setting
the value of the threshold close to zero or make it ‘devoted’ by setting a large value.

6.4 Behavior Routines

Once the intention generator selects an intention it attempts to satisfy the intention by passing control to a behavior
routine along with the data from the perception focusser. The artificial fish currently includes eight behavior
routines: avoiding-static-obstacle, avoiding-fish, eating-food, mating, leaving, wandering, escaping, and schooling
which serve the obvious purposes. The behavior routine uses the focused perceptual data to select an MC and
provide it with the proper motor control parameters. We now briefly describe the function of the routines.

The avoiding-static-obstacle and avoiding-fish routines operate in similar fashion. Given the relative position
of the obstacle, an appropriate MC (e.g. left-turn-MC) is chosen and the proper control parameters are calculated
subject to the motor preferences imposed by other surrounding obstacles. For efficiency the avoid-fish routine treats
the dynamic obstacle as a rectangular bounding box moving in a certain direction. Although collisions between
fishes cannot always be avoided, bounding boxes can be easily adjusted such that they almost always are, and the
method is very efficient. An enhancement would be to add collision resolution.

The eating-food routine tests the distance d from the fish’s mouth to the food (see Fig. 5). If d is greater than some
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Figure 11: Fisheye view of the world showing fishing line (a) and hooked fish (b).

threshold value, the subroutine chasing-target is invoked.3 When d is less than the threshold value the subroutine
suck-in is activated where a “vacuum” force (to be explained in Sec. 6.1) is calculated and then exerted on the food.

The mating routine invokes four subroutines: looping, circling, ascending and nuzzling (see Sec. 7.3 for details).
The wandering routine sets the fish swimming at a certain speed by invoking the swim-MC, while sending random
turn angles to the turn-MCs. The leaving routine is similar to the wandering routine. The escaping routine chooses
a suitable MC according to the relative position, orientation of the predator to the fish. The schooling routine will
be discussed in Sec. 7.2.

7 Artificial Fish Types

In the introductory paragraph of the paper we described the behavior of three types of artificial fishes—predators,
prey, and pacifists. This section presents their implementation details.

3The chasing-target subroutine guides a fish as it swims towards a goal. It plays a crucial role in several behavior routines.
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Figure 12: Generic intention generator (simplified). Set of intentions: f avoid, escape, school, eat, mate, leave,
wander g. f0 and f1 are thresholds with f0 < f1.

7.1 Predators

Fig. 13 is a schematic of the intention generator of a predator, which is a specialized version of Fig. 12. For
simplicity, predators currently are not preyed upon by other predators, so they perform no predator detection, and
escape, school, and mate intentions are disabled (F = 0, L = 0). Since predators cruise perpetually, the leave
intention is also disabled.

Generally prey is in less danger of being hunted when it is far away from the predator, or is in a school, or is
behind the predator. A predator chases prey k if the cost Ck = dk(1 + �1Sk + �2Ek=�) of reaching it is minimal.
Here, dk is the distance between the mouth of the predator and the center of prey k’s body, Sk = 1 if prey k is in
a school of fishes, otherwise Sk = 0, and the angle Ek 2 [0; �) (Fig. 5) measures the turning cost. �1 and �2 are
parameters that tune the contributions of Sk and Ek. We use �1 = 0:5 and �2 = 0:2 in our implementation of the
focusser. Plate 1c shows a shark predator stalking a school of prey fish.

Most teleost fishes do not bite on their victims like sharks do. When a fish is about to eat it swims close to
the victim and extends its protrusile jaw, thus creating a hollow space within the mouth. The pressure difference
between the inside and the outside of the mouth produces a vacuum force that sucks the victim and anything else in
the nearby water into the mouth. The predator closes its mouth, expels the water through the gills, and grinds the
food with pharyngeal jaws [25]. We simulate this process by enabling the artificial fish to open and close its mouth
kinematically. To suck in prey, it opens its mouth and, while the mouth is open, exerts vacuum forces on fishes (the
forces are added to external nodal forces fi in equation (1) and other dynamic particles in the vicinity of the open
mouth, drawing them in (Fig. 14).

7.2 Prey

The intention generator of a prey fish is given by specializing the generic intention generator of Fig. 12, as shown
in Fig. 15.

Schooling and evading predators are the two distinct behaviors of prey. We briefly describe the implementation
of the schooling behavior. Schooling is a complex behavior where all the fishes swim in generally the same direction.
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Figure 13: The intention generator of a Predator

Each fish constantly adjusts its speed and direction to match those of other members of the school. They establish
a certain distance from one another, roughly one body length from neighbors, on average [25]. Each member of
a school of artificial fish acts autonomously, and the schooling behavior is achieved through sensory perception
and locomotion. An inceptive school is formed when a few fish swim towards a lead fish. Once a fish is in some
proximity to some other schooling fish, the schooling behavior routine outlined in Fig. 16 is invoked.

The intention generator prevents schooling fish from getting too close together, because the avoid collision
intention has highest precedence. To create more compact schools, the collision sensitivity region of a schooling
fish is decreased, once it gets into formation. When a large school encounters an obstacle, the autonomous behavior
of individual fishes trying to avoid the obstacle may cause the school to split into two groups and rejoin once the
obstacle is cleared and the schooling behavior routine regains control (Fig. 17).

7.3 Pacifists

The intention generator of a pacifist differs from that of prey in that intention mate is activated and escape and school
are deactivated.

Piscine mating behaviors show great interspecies and intraspecies diversity [21]. However, two behaviors are
prevalent: (i) nuzzling, where typically the male approaches the female from underneath and nudges her abdomen
repeatedly until she is ready to spawn, and (ii) spawning ascent, where in its simplest form, the female rapidly
swims towards the surface pursued by the male and releases gametes at the peak of her ascent. Moreover, courtship
dancing is common in many species, albeit with substantial variation. Two frequently observed patterns are looping,
in which the male swims vigorously up and down in a loop slightly above and in front of the female, and circling,
in which the male and female circle, seemingly chasing each other’s tail.

We have implemented a reasonably elaborate courtship behavior routine which simulates courtship dancing,
circling, spawning ascent, and nuzzling behavior patterns in sequence (Plate 1b). A male fish selects a mating partner
based on the following criteria: a female of the same species is more attractive than one of different species, and
closer females are more attractive than ones further away. A female selects a partner similarly, but shows preference
over the size of the male fish (stronger, more protective) rather than its distance.
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Figure 14: Predator ingesting prey.
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Figure 15: Modified portion of intention generator for prey.

Once fish i has selected a potential partner j based on the above criteria, it sends a signal to fish j, and there
are three possibilities: Case 1: If fish j’s intention is not to mate, fish i approaches j and follows it around using
chasing-target with the center of j’s body as target. Case 2: If fish j’s intention is to mate but its intended partner is
not fish i. In this case, if i is male it will perform a looping behavior in front of j for a certain amount of time. If j
is impressed and selects i during this time limit, then the courtship sequence continues, otherwise i will discontinue
looping and leave j to find a new potential partner. Otherwise, if i is female it will choose another potential male.
Case 3: If fish j’s intention is to mate and its intended partner is fish i, the courtship behavior starts with the male
looping in front of the female while she hovers and bobs her head. Looping is simulated by invoking chasing-target
at a point in front of the female’s head which moves up and down at a certain frequency. The female’s hovering and
head bobbing is accomplished through motor control of her pectoral fins (i.e., parameter 
 in Fig. 5).

The male counts the number of times his mouth reaches the vicinity of the moving point, and when the count
exceeds a set threshold (currently 6) he makes a transition from looping to circling behavior. Although the threshold
count is fixed, the actual motions and duration of looping is highly unpredictable for any number of reasons, including
the fact that looping may be temporarily interrupted to handle high priority events such as potential collisions between
the pair or with other fishes that may pass by.

Before the transition to circling, the female fish may reject her initial partner and turn to a new larger male fish
if the latter joins in the looping display. At this point the initially engaged male turns away as in case 2 described
above. Circling is achieved when the fishes use chasing-target to chase each other’s tail.

The circling routine ends and the spawning ascending routine begins after the female has made a fixed number
of turns during circling. The female fish ascends quickly through fast swimming followed by hovering. The male
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Figure 16: Schooling behavior routine.

Figure 17: School of fish swimming past cylindrical obstacle (from lower left to upper right). Schooling behavior
is interrupted by collision avoidance behavior and then resumed.

fish uses chasing-target to follow the abdomen of the female. The nuzzling routine requires the male to approach
her abdomen from below. Once his mouth touches her abdomen, the male backs off for a number of time steps.
This procedure repeats, until the male successfully touches the female a predetermined number of times (e.g., 3).
To permit the mating pair to come close together, the regions of sensitivity are set very tightly to their bodies. It
is intriguing to watch some of the male artificial fish’s nuzzling attempts fail because of an inappropriate approach
angle to the female which triggers the avoiding-fish response. The male turns away to avoid the collision and tries
again.

8 Conclusion and Research Directions

This paper has presented the results of research spanning the fields of artificial life and computer graphics, with
anticipated future implications for computer vision. We have developed a physics-based, virtual marine world
inhabited by astonishingly lifelike artificial life forms that emulate the appearance, motion, and behavior of fishes
in their natural habitats. Each artificial fish is an autonomous agent with a deformable body actuated by internal
muscles, eyes, and a mind that includes learning, behavior, perception, and motor centers. Through controlled muscle
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actions, artificial fishes are able to swim through simulated water in accordance with simplified hydrodynamics.
Their functional fins enable them to locomote, maintain balance, and maneuver in the water. Though rudimentary
compared to real animals, their minds are nonetheless able to learn some basic motor functions and carry out
perceptually guided motor tasks. In accordance with their perceptual awareness of the virtual world, their minds
arbitrate a repertoire of piscine behaviors, including collision avoidance, foraging, preying, schooling, and mating.
The easy extensibility of our approach is suggested most evidently by the complex patterns of mating behavior that
we have been able to implement in artifical fishes.

Our model achieves a good compromise between realism and computational efficiency. To give an example
simulation rate, our implementation can simulate a scenario with 10 fishes, 15 food particles, and 5 static obstacles at
about 4 frames/sec, including wireframe rendering time, on a Silicon Graphics R4400 Indigo2 Extreme workstation.
More complex scenarios with large schools of fish, dynamic plants, and full color texture mapped rendering at video
resolution can take 5 seconds or more per frame.

Our work opens up many avenues of research. Clearly the artificial fish is a virtual robot that offers a much
broader range of perceptual and animate capabilities, lower cost, and higher reliability than can be expected from
present-day physical robots like those described in [13]. For at least these reasons, artificial fishes in their dynamic
world can serve as a proving ground for theories that profess competence at effectively linking perception to action
[3]. A different research direction would address the goals of researchers interested in evolving artificial life. We may
be within reach of computational models that can imitate the spawning behaviors of the female fish and fertilization
by the male. Through simulated sexual reproduction in a competitive world, gametes representing artificial fish
genotypes can be fused to evolve new varieties of artificial fishes. Interestingly, Pokhilko, Pajitnov, et al., have
already demonstrated the simulated breeding of fish models much simpler than ours using genetic algorithms, and
this idea has resulted in the fascinating computer game “El-Fish” [9].
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