
Cathedral-I11 : Architecture-Driven High-level Synthesis for High
Throughput D S P Applications. *

Stefaan Note’ Werner Geurts’ Francky CatthoorL.2 Hugo De Man’’2

’ IMEC Laboratory, Kapeldreef 75, B-3001 Leuven, Belgium
’ESAT Laboratory, Katholieke Universiteit, K. Mercierlaan 94, B-3001 Leuven, Belgium

Abstract
The goal of this paper is to extend the synthesis of real
time digital signal processing (DSP) algorithms towards the
domain of high throughput applications. A novel architec-
tural style specifically suited for this application domain
is presented. Furthermore, a synopsis of a novel synthe-
sis script typically oriented towards this architecture is de-
scribed (architecture-driven synthesis). The emphasis in
the script is on the design of the data-paths which are
dedicated to the application, and special attention is paid
to the memory synthesis problem. In this paper only the
data-path related tasks, namely data-path partitioning and
data-path definition, are discussed. The new methodology
is demonstrated using an image processing application.

1 Introduction
This paper is focusing on the synthesis of high through-
put DSP applications which can be found in the telecom-
munication, medium-end image and video processing do-
main. These applications are characterixed by signal
flow graphs which exhibit a large amount of repetitiuity
(due to FOR, WHILE-loops), recursion (occurring when-
ever a new time-loop iteration depends on the result
of the previous iteration), multi-dimensional signals, and
non-linear operations (such as absolute value and maxi-
mum/minimum calculations). Furthermore, the total num-
ber of operations to be performed per second is large
(> 100Moperations/second).

A first class of high-level synthesis systems is mainly
tuned towards a highly multiplexed architectural style [l, 21,
which is based on predefined highly programmable data-
paths (such as ALUs). The target applications are low
sample rate, complex decision making algorithms contain-
ing a large number of operations. For these applications,
scheduling/assignment is one of the most important syn-
thesis tasks. Heuristics have been developed to cope with
scheduling large signal flow graphs (100 - 5 * lo5 opera-
tions) assuming a large (100 - lo”) number of clock cycles
available. A limitation of this architectural style and the
corresponding synthesis techniques is that recursive bottle-
necks, require too many cycles to execute. This limits the
maximal achievable sample frequency.

*Research suppoiled bv the “bSPttl1 2260‘’ pitigram id thc
E.<:.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

On the other hand, for high throughput applications,
pipeline scheduling techniques have been proposed in [4, 5 ,
61. Typically, the target architecture consist of a large (5 ..
20) number of predefined functional units (FUs). A FU is
defined as an unit that can only perform a few (< 5) number
of operation types. These approaches solve the high perfor-
mance requirements by pipelining the time loop. As a result
of pipelined scheduling, the DSP algorithm is partitioned
into sequences of operations in such a way that they can be
executed concurrently. Because the existing approaches, do
not take the repetitiuity in the algorithm into account, the
interconnection and register cost between the diflerent FUs
is large. Furthermore, these approaches cannot handle in
an efficient way recursive algorithms. The reason is that
the architectural style and the software algorithms only al-
low limited chaining of operations.
Another interesting approach to the synthesis problem of
high throughput DSP applications is the HYPER sys-
tem [7]. The designer can define flexible data-paths onto
which all the operations of the algorithm are scheduled.
Emphasis in this environment is on transformations and
scheduling.

The basis of this paper is the lowly multiplezed co-
operating data-path architectural style [a], which is fully ori-
ented towards the domain of high performance applications.
The fundamental principle of this style in terms of data-
paths is to base their composition on the repetitiuity, and
the signal pow dependencies of the signal flow graph rep-
resenting the DSP algorithm. These dedicated data-paths
are necessary in order to cope with the high throughput
requirements of the applications, taking recursion and the
non-linear operations of the algorithm into account. Since
the ratio of the maximal achievable clock frequency and
the sample frequency is low, ranging between 1 and 10,
the allocated hardware resources are shared only for a lim-
ited number of clock cycles. This explains the term “lowly
multiplexed”. Figure 1 gives an example of a processor ar-
chitecture composed out of distributed memories, dedicated
data-paths and a controller. It shows the typical internal
structure of a dedicated data-path composed out of ABBs.
An abstract building block (ABB) is an abstract type of
primitive operator at the RT-level for which one or more
hardware representations exist in a hardware library. An
example is the ABB adder, which can be realized as either
a ripple-carry, a carry-bypass or a lookahead adder. Note
in figure 1 the different ABBs which are chained together.
Due t o the dedicated composition and interconnection of
the ABBs, crztical parts of the algorithm can be evaluated
zn le33 cycles than is possible on a predefined, highly pro-
grammable data-path such as a arithmetic logic unit. Fur-
thermore, the critical path of the dedicated data-path is
only slightly larger than the delay of a single ABB, since

28th ACM/IEEE Design Automation Conference@

’ 1991 ACM 0-89791-395-7/91/0006/0597 $1.50
Paper 35.2

597

I I I I

Park [5]
GE. [6]
c-I11

I I Hierarchical Pro-r Controller I I

HSF + muz reg -
3 5 3 23 42 ‘

2 8 4 20 18
2 8 4 3 4

J

Dedicated data-paths

Figure 1: Processor architecture and a dedicated data-path.

Table 1: Cornpatison of the results of traditional approaches
and our C-III approach.

the propagation delay has to be accounted only once [9]. Fi-
nally, because of the local connections inside the data-path,
global interconnections between the different data-paths are
reduced significantly. Such a customized data-path is re-
ferred to as an application specific unit (ASU).

Since in the lowly multiplexed data-path architecture
[lo], the internal composition of the data-paths is not pre-
defined, they have to be defined “on the fly” during synthe-
sis. As a consequence, one of the main high-level synthe-
sis requirements is the definition and optimization of these
data-paths (A S Us) starting from a high-level description of
the complete algorithm. Furthermore, because of the high
data rates and the multi-dimensional signals, memory man-
agement is an important design task.

1 illustrates the considerable savings in terms
of multiplexers and registers obtained with our approach
compared to the results of [5 , 61 for the 16 tap symmetri-
cal FIR filter [4] ’. Figure 2 shows our architecture based
on dedicated data-paths. In order to arrive to this efficient
solution, first the data-paths are defined and then the op-
erations are scheduled on these data-paths. By optimizing
the data-paths [9], the final clock frequency can be made
the same as in [5 , 61.

Table

2 The Cathedral-I11 design script
The synthesis process is divided into 2 main tasks : be-
havioural synthesis, and structural synthesis. Figure 3 gives
a global overview of the CATHEDRAL-III script.

2.1 Behavioural synthesis process
The input of this task is a description of the behaviour of
the algorithm. For our purposes the applicative language
SILAGE [11] is used. Behavioural synthesis produces an
architecture netlist while iterating over the following steps.

’ FcIr a definition c i f HSF see seclirrn 3. L

Figure 2: Cathedral-III architecture for the 16 tap symmet-
rical filter.

1. High-level memory management :
The main tasks are : (i) the determination of the num-
ber and type of back-ground memory units, (ii) the selec-
tion of the relative address locations in one of the allocated
memories to store the signals. A back-ground memory is
a large memory (RAM, FIFO) required for storing large
multi-dimensional signals such as speech frames or parts of
images. The objectives are three-fold : (i) providing SUB-
cient memories and memory ports so that the communica-
tion with the memory does not limit the performance re-
quirement, (ii) reduce the total amount of memory, and (iii)
reduce the complexity of the addressing units. Since mrm-
ories constitute more than 50% of the total size of chip, i t
is important first to look at the memory organization. As a
result, additional constraints occur which have to be taken
into account during the following data-path synthesis step.
2. High-leuel data-path mapping tasks :
This main task involves different subtasks related with the
definition and generation of the customized data-paths.

Before the data-paths are generated, the signal p o w
graph description is optimized. The optimizations consid-
ered here affect the composition and the performance of the
resulting data-paths. A specific DSP transformation is the
combination of retiming and tree-height reduction.

Based on the ratio of the estimation of the clock fre-
quency fr and the given sample frequency fll, the signal
flow graph is partitioned into clusters (groups of 1..20 op-
erations) which are grcuped into one or more sets, and for
each set a dedicated data-path is defined which can execute
each of the clusters of the set in one cycle. The first task
is referred to as ASU-partitioning (section 3.1), and the
second as ASU-definition (section 3.2).

Each cluster in the signal flow graph is assigned to an
ASU instance, and is substituted by 1 superoperation. The
resulting graph is a graph of superoperations. After schedul-
ing this graph, the total number of clock cycles #cycles is
derived.

The next step involves optimization of the data-paths
[9] given the clock frequency estimate. If the throughput
requirement fc cannot be satisfied, iterations ouer the high-
leuel data-path mappzng tasks are required : other clusters
arc defined which are grouped in an alternative way, the
data-paths are pipelined (multi-cycle operations) which can
affect the schedule.
3. Low-leuel memory management :
Low-level memory management involves the allocation of
fore-ground memory and the selection of memory locations
for temporarily storing signals. Examples are individual
registers and register files.

Paper 35.2
598

HIGH-LEVEL MEMORY MANAGEMENT - Memory allocation. selection and assignment
-Address generation

HIGH-LEVEL DATA-PAM MAPPING - Optimizing transfonnatlons
Patlitionlng and albcation - Data-path definition and assignment
Data-path optimhation . Initial scheduling

I I -
LOW-LEVEL MEMORY MANAGEMENT

Fore-gmund memory allocation and assignment

W m
I

LOW-LEVEL MAPPING . Interconnect definition and Rnal scheduling

Controller Data-pat h
description 'DSFG' description 'ANL'

U I 1
DATA-PATH SYNTHESIS I- C/) CONTROLLER SYMHESIS

Figure 3: Global CATHEDRAL-III design script.

4. Low-level data-path mapping tasks :
Low-level mapping mainly involves the detailed scheduling,
and the detailed interconnect generation.

2.2 Structural synthesis process
Structural synthesis involves the detailed netlist generation
of the data-paths and the controllers. These netlists are
the input for layout generation programs such as data-path
assemblers and general cell place and route systems.

3 ASU-partitioning and definition.
3.1 ASU-partitioning.
Before a particular strategy for partitioning a signal flow
graph is described, the following 4 definitions are given.

Deflnition 1 A cluster cl; is a connected subgraph g;(v, e)
of the complete signal flow graph G (V , E) with vertices v
corresponding to arithmetic/logic/relational operations and
edges e corresponding to signals.

Deflnition 2 A set S = {cl,, ... ,elk} is a collection of
k clusters for which a dedicated data-path has to be con-
structed that can execute the clusters each in only one cycle.

Each cluster has a multiplicity mi corresponding to the
number of times a cluster will be executed during the execu-
tion of the algorithm. The multiplicities mi are calculated
from the parameters of the loops surrounding the cluster
cli (excluding the infinite time loop).
Assume the algorithm has a maximal hardware sharing fac-
tor HSF,,,, defined as the ratio of the interval available to
execute the algorithm for one set of input data periodically,
T,- = l / fJ , and the clock period T, = l /fc. This means that
the hardware resources allocated for the algorithm can only
be shared HSF,,, times.

Deflnition 3 The size of a set S = {cl,) ..., clk} with mul-
tiplicities {ml , ..., mk} is defined as z:=L mi = HSF,,~.

Deflnition 4 The cardinality of a set S = {cll, ..., clk} is
defined as the number of clusters in the set .

In the context of the generation of application specific
data-paths, the goal of partitioning is twofold :
(i) divide the complete signal flow graph G(V, E) describ-
ing the algorithm into clusters gi(v,e) such that Vv e V :
3!g;(v,e) : v E v .
(ii) determine the number of sets Si and the clusters that
belong to the same set Si such that the total area of the
ASUs is minimized.
The result of the partitioning phase consists of different sets
S; determining the exact number of data-path instances al-
located in the architecture netlist. Each set corresponds to
the specification of a dedicated data-path. For most of the
applications targeted in this work, the cardinality of a set
Si is relatively small < 10. Furthermore, the number of
operations in a cluster is typically smaller than 20.

Partitioning the signal flow graph as a preprocessing
step for ASU definition consists of the following 2 steps.

3.1.1

The definition of clusters in a graph is mainly guided by
the available hierarchy and repetitivity present in the high
throughput DSP algorithm [IO].

4 The full body or part of the body of a repetitive def-
inition such as a FOR - loop or a WHILE - loop.
Since such a body is executed a large number of
times, it is worthwhile to evaluate this body as fast
as required.

4 The full body or part of the body of a function defi-
nition (hierarchy).

The result is a DSP algorithm which is partitioned into
several clusters such that each operation in the DSP algo-
rithm is contained in f and only f cluster.

Deflning clusters in a graph

3.1.2 Deflning sets

In a second step, the goal is to group the clusters into one
o r more sets based on the compatibility of the clusters.
Suppose C, is the area cost of a data-path able to execute
cluster cZ,, and c a b is the area cost of a dedicated data-path
able to execute both clusters cl, and Clb. The compatibility
of 2 clusters is defined as the overhead cost of merging the 2
clusters on the same data-path : Cn,(a, b) = 2Cob - c, - c b

[13]. If CA, = 0, there is no area overhead as a result
of merging 2 clusters on the same data-path. The costs
C, and C,, are respectively computed as the sum of the
area of the ABBs required to implement the operations of
clusters cl, and clb. The cost C a b is estimated using the
algorithm proposed in section 3.2. A compatibility graph is
constructed with vertices corresponding to all the clusters,
and edges between each pair of vertices a and b with weight
C,~r(a, b). This graph is partitioned into different sets in
such a way that the total weight of the edges which do
not cross the partitions is minimized, given the constraint
that the size of each partition (set) must be smaller than
HSF,,,.,,.. The partitioning problem is formulated as a 0/1

quadratic programming formulation.

3.2 ASU-deflnition
The result of the partitioning process consists of one or
more sets S, each containing a number of clusters. The
goal of ASU-definition is to define for each set a dedicated
data-path which can execute each cluster in the set in one

Paper 35.2
599

Clusters

d1*

:i*

inial specific unit1 Panial specnic units I

Figure 4: Overview of the ASU generation process.

cycle. The number of sets determines the total number
of data-path instances. As a preprocessing step, high-level
operations are expanded to primitive operations which are
available in the operation-operator library. For example,
the cluster S' = {cll} = {(y = abs(a - b))} becomes S' =
s cl^} = {(tmp = a - b,cnd = a > b,out = cnd?tmplO -
tmp)}. Furthermore, if a cluster contains conditional op-
erations, it is expanded into several clusters. In the above
example of the absolute value operation, 2 clusters are de-
rived which are collected in the same set S = {cll,,,cll,,} :
cli, = (i m p = a - b;cnd = a >= b;out = tmp), and
cllh = (tmp = a - b;cnd = a >= b;out = 0 - tmp). The
multiplicity of ell, = cllb = c l ~ /2. In this section, we will
describe how a lowly programmable, customized data-path
is generated given a set S. A CAD tool MOZART has been
developed which consists of the following 3 phases [lo] :

1. Derive for the set S, the initial hardware require-
ments. This results in the specification of an initial
specific unit ISU.

2. Assign all the clusters cl; of the set S onto the defined
initial specific unit ISU. Since different assignments
of the operations E cl; on the ISU are possible, this
will result in a number of partial specific units PSUjj.

3. Construct from all the partial specific units PSUij
corresponding to the clusters c l ; , the final application
specific unit ASU.

3.2.1 Initial Speciflc Un i t Selection

The goal of this step is to define the initial composition of
the data-path in terms of ABBs and their interconnection.
The selection is derived from the most complex cluster for
which a hard-wired data-path solution, ISU, is generated :
a one-to-one mapping of operations to ABBs and signals
to connections is performed. The complexity of a cluster is
measured as the total area of the ABBs corresponding to
the operations in the cluster. For example, figure 4 shows
the initial specific unit derived from the most complex clus-
ter cll.

5.2.2 Par t i a l Speciflc Un i t Derivation

The goal of this subtask is to generate all possible as-
signments of the operations of the cluster to the ABBs
of the initial specific unit. This process is repeated
for all clusters in the set S = {cll,cl2, ..., cl,,}. This re-
sults in the following set of partial specific units P =

{(psui I ,pSui2, ...,psu1k)~(PSW1 , ...,P3UZI), . a . } .

Each partial specific unit psuij is specified in the following
way :

The i index refers to the cluster cl; for which different
assignments on the ISU are generated. The j index
refers to the different assignments which are possible.

The assignment of every operation and signal in the
cluster cli to respectively the ABBs and the terminals
of the ABBs of the initial specific unit. From this,
the corresponding operation modes of all the ABBs
are derived.

Since it is unlikely that all the clusters can be assigned
on the same hard-wired data-path additional programma-
bility (constructive) is added in one of the following ways :

The functionality of the ABBs is dynamically es-
tended. Consider for example the ABB "adder"
whose functionality is extended to become a pro-
grammable adder/subtractor .
One input/one output ABBs are added to the ini-
tial data-path. Consider for example a programmable
shifter which is added to the initial data-path.

Multiplesers are inserted at the inputs of the data-
path.

The basic idea of the technique is to make a data-path pro-
grammable by first trying to extend the functionality of cer-
tain ABBs, and adding additional ABBs, instead of solely
adding multiplexers. This approach resembles the way hu-
man designers define a programmable data-path. The al-
gorithm to generate these partial specific units is referred
to as a the constructive matching algorithm. As shown in
figure 4, the shaded ABBs in the partial specific unit psuij
correspond to ABBs which have an operation of the cluster
cli assigned to them. Note the shifters which have been
added to the initial specific unit.

3.2.3 Application Speciflc Un i t Generation

Only when for all clusters in the set S, all possible par-
tial specific units are derived, the application specific unit
can be generated. In a first step, all the possible combi-
nations C of the partial specific units of all the clusters cli
in the set S are enumerated. Assume we start from a set
S = {cll , c / ~ , c ~ : I } which results in the following partial spe-
cific units :
P = { (P S U I ~) ,(PSUSI ,psuzz),(psuni , P S ? ~ Z) } (figure 4).
The list of all possible combi-
riations is C = {(PSUII ,PSU~I ,psu:r~) (P ~ ~ I ~ , P ~ ~ ~ I , P S U ~ Z) ,

Due to the constructive nature of the matching algorithm,
all the partial specific units in one combination E C do not
necessarily contain the same hardware resources. There-
fore, for each combination cbl; E G, all the ABBs which
have been additionally allocated during the previous phase,
are added to the initial unit. This results in a potential
application specific unit ASUk corresponding to the com-
bination cbl;. For our example, figure 4 shows the shifters
which have been allocated for both combinations. Finally,
the area of all the ASU,: is estimated based on all the modes
of the ABBs E ASUl;. The ASUl; with the smallest area is
selected. The complexity of this last step is NP-complete,
however heuristics are defined which prune the number of
combinations.

(Psul l ,Ps~22lPs~nI 1, (PSVIl rPS"ZZ,P3~32)).

Paper 35.2
600

func MaxMin (i n [I [I , max) maxminC1 [I =
(i : I .. 512) ::
begin

(j : 1 .. 512) ::
begin

tmpCi1 Cjl C-51 = 0 ;
(m : -1 .. 1) ::
begin

(n : -1 .. 1) ::
begin

tmpCil Cjl C3m+nl =
i f (max)

-> max (tmpCi1 [jlC3m+n-il
I I min (tmpCil [j]C3m+n-i]

inCi-ml Cj-nl)
inCi-ml Cj-nl)

f i ;
end :

end ;
maxmin Cil C jl = tmp Cil j 1 C41;

end ;
end :

Figure 5 : SILdGE description of the max/min unit.

4 The ASIC synthesis process : an ex-
ample.

The example is a 3*3 maximum/minimum unit used in an
image processing environment 1121. The maximal required
processing time for 1 image is 20 ms, which results in a
sample frequency of 5 0 H z . The behavioural description
is expressed in the applicative language SILAGE (see fig-
ure 5) .

The total number of operations to be performed per
second is 512' * 3' I 50 = 117M. If a clock frequency Of
1 5 M H z is assumed, the H S F = 1 5 M H z / 5 0 H z = 3 * 10".
Given the 3*X05 clock cycles available, for the body of the
most inner n-loop only 0.13 clock cycle is available. Because
the number of clock cycles is smaller than 1 , the inner loops
m and n are unrolled (see figure 6). After this unrolling, 1
cycle is available to execute the body of the inner j - loop.

4.1 Behavioural synthesis process
1. High-level memory management :

Since only 1 cycle is available to evaluate the body
of the j-loop, all 9 pixels must be present at the same
time. During the back-ground memory allocation
phase, 2 line buffers are allocated. Figure 6 shows
the overall memory organization, and the resulting
pseudo SILAGE description for the body of the in-
ner j - loop .

2 . High-level data-path mapping tasks :
1) Transformations of the signal flow graph.
After transforming the body, instead of 9 maz /min
functions, only 4 are required. As a direct conse-
quence also the critical path reduces from 9 compar-
isons to only 4 comparisons. Figure 7 shows the de-
scription of the body after the transformations. The
delay operator Q is referring to a value computed at
the previous time index. For example in figure 6,
inh = in i@l and ing = inh@l = ini@2.
2) Pmtitioning.
During partitioning, the optimized body of the inner
j loop is divided into 4 clusters. These 4 clusters
contain only arithmetic and logic operations. Each
cluster either corresponds to the maximum or mini-

Figure 6: Memory organization of the max/min unit.

fl .%., :Line A.,A. buffer 4 ...A.A fi . ~ ~ i n [i] [i] = m a x (~ p , r n a x ~ ~ 2) ~)

.......A...A..% *..,,....A., .

Figure 7 : Transformed description of the max/min unit.

mum calculation of 3 values. Since 2 of the 4 clus-
ters are mutually exclusive with the 2 other clusters,
and since only 1 cycle is available, the 4 clusters are
grouped into 2 sets SI and S2 (see figure 8). For each
set, a dedicated data-path (ASU) will be generated
that depending on the value of the input mar either
calculates the maximum or minimum of 3 values.
3) Expansion of high-level constructs.
During this step, the maximum and minimum func-
tions are expanded into primitive operations. The
expansion of the operations in the first set SI are
depicted below :

(a) Cluster 1
tmp = i f (i n 1 > in2)- > inlllin2;
m a z l = i f (t m p > in3)- > tmp(Iin3

t m p = i f (i n 1 > in2)- > in2llinX;
m i d = i f (t m p > in3)- > in3Iltmp

(b) Cluster 2

' 4) Definition of the lowly programmable data-paths.
Starting from the 2 expanded clusters, the data-path
definition tool MOZART automatically generates a
dedicated lowly programmable data-path. The re-
sult is a structural description of the ASU shown in
figure 9.
5) Scheduling of the signal flow graph.
Scheduling in this case is trivial since only 1 clock
cycle is available for calculating the inner J loop. The
total number of cycles required equals 512'-.
6) Performance optimization of the ASUs.
The generated data-path is optimized w.r.t. the per-
formance constraint : fc = 50Hz * 512' = 1 3 f i f H z .

Paper 35.2
601

Figure 8: Obtained clusters f o r the maz/min unit.

Instead of slow carry-ripple subtractors, faster carry-
bypass subtractors are automatically selected by the
data-path optimization tool HANDEL [9].

3 . Low-level memory and data-path mapping tasks :
Detailed scheduling and fore-ground memory allo-
cation and selection result in the final architecture
shown in figure 9.

5 Conclusions.
A novel synthesis environment for high throughput DSP
algorithms has been presented. Although scheduling is an
important task in a high-level synthesis trajectory, it is only
a small part if the synthesis of industrial applications is en-
visioned. The emphasis is this paper was on the generation
of dedicated data-paths which are highly tuned to the sig-
nal flow of the DSP algorithm. The advantages of these
data-paths are that they are able to solve the computa-
tional critical parts in less cycles than is possible on highly
programmable data-paths. Furthermore, they are advanta-
geous in terms of interconnect. The different design tasks
in the CATHEDRAL-Illsynthesis script have been demon-
strated by means of a realistic example.
Besides these advantages, there are some limitations. First
of all, the techniques presented are typically oriented to-
wards high throughput applications. Furthermore, some
of the tasks are still manual to perform : high-level mem-
ory management, and the definition of the clusters in the
signal flow graph. Finally, the time complexity of the
ASU-definition algorithm is large especially when large sets
(> 10) in combination with superoperations containing a
large number of operations (> 10).
Acknowledgements
We thank the anonymous reviewers who critically reviewed
this paper, and provided us with valuable comments.

References
[I] H. De Man, J. Rabaey, P. Six, L. Claesen,

"CATHEDRAL-I1 : A Silicon compiler for Digital Sig-
nal Processing", IEEE Design and Test, Dec, 1986.

[2] B. Haroun, M. Elmasry, "SPAID : An Architectural
Synthesis Tool for DSP Custom Applications", IEEE
J. of Solid State Circuits, Vol 24, No.2, April, 1989.

[3] S. Devadas and A. R. Newton "Algorithms for Hard-
ware Allocation in Data Path Synthesis", IEEE Trans-
actions on the Computer Aided Design of Integrated
Circuits and Systems, pp. 768-781, vo1.8 No.7, July
1989.

Figure 9: Final architecture of the max/min unit.

[4] N. Park, A. Parker, "Sehwa : A Software Package
for Synthesis of Pipelines from Behavioural Specifi-
cations", IEEE Transactions on Computer Aided De-
sign, Vol. 7 , No. 3, March, 1988.

[5] N. Park, F. J. Kurdahi "Module Assignment and In-
terconnect Sharing in Register-Transfer Synthesis of
Pipelined Data Paths" Proc. IEEE International Con-
ference on Computer Aided Design, pp. 16-19, Santa
Clara, Calif., Nov. 1989.

[6] K.S. Hwang, A.E. Casavant, C.Chang, M.A. d'Abreu,
"Scheduling and Hardware Sharing in Pipelined Data-
paths", IEEE International Conference on Computer-
Aided Design, Santa Clara, California, Nov. 1989.

[7] C. Chu, M. Potkoqjak, M. Thaler, J. Rabaey, "HY-
PER : An interactive Synthesis Environment for High
Performance Real Time Applications", IEEE Intern.
Conference on Computer Design, Cambridge, 1989.

[8] F.Catthoor, H.De Man, "Application-specific architec-
tural methodologies for high-throughput digital sig-
nal and image processing", IEEE Trans. on Acoustics,
Speech and Signal Processing, pp. 339-349, Vol 38, No
2, Feb 1990.

[9] S. Note, F. Catthoor, G. Goossens, H. De Man, "Com-
bined hardware selection and pipelining in high perfor-
mance data-path design", IEEE International Confer-
ence on Computer Design, Sep 1990, Cambridge

[lo] S.Note, F.Catthoor, J.Van Meerbergen, H.De Man,
"Definition and Assignment of Complex Data-Paths
suited for High Throughput Applications", IEEE In-
ternational Conference on Computer-Aided Design,
Santa Clara, 6-9 November 1989.

[ll] P.N.Hilfinger, "A high-level language and silicon com-
piler for digital signal processing", IEEE Custom In-
tegrated Circuits Conf., Portland, May 1985.

[I21 P.A. Ruetz, "Architectures and Design Techniques for
Real Time Image Processing ICs", Phd. Thesis 1986.

[I31 W. Geurts, S. Note, F. Catthoor, H. De Man,
"Partitioning-based Allocation of Dedicated Data-
paths in the Architectural Synthesis for High Through-
put Applications", submitted to the VLSI Conf. 1991

Paper 35.2
602

