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Abstract 
The goal of this paper is to extend the synthesis of real 
time digital signal processing (DSP) algorithms towards the 
domain of high throughput applications. A novel architec- 
tural style specifically suited for this application domain 
is presented. Furthermore, a synopsis of a novel synthe- 
sis script typically oriented towards this architecture is de- 
scribed (architecture-driven synthesis). The emphasis in 
the script is on the design of the data-paths which are 
dedicated to the application, and special attention is paid 
to the memory synthesis problem. In this paper only the 
data-path related tasks, namely data-path partitioning and 
data-path definition, are discussed. The new methodology 
is demonstrated using an image processing application. 

1 Introduction 
This paper is focusing on the synthesis of high through- 
put DSP applications which can be found in the telecom- 
munication, medium-end image and video processing do- 
main. These applications are characterixed by signal 
flow graphs which exhibit a large amount of repetitiuity 
(due to FOR, WHILE-loops), recursion (occurring when- 
ever a new time-loop iteration depends on the result 
of the previous iteration), multi-dimensional signals, and 
non-linear operations (such as absolute value and maxi- 
mum/minimum calculations). Furthermore, the total num- 
ber of operations to be performed per second is large 
(> 100Moperations/second).  

A first class of high-level synthesis systems is mainly 
tuned towards a highly multiplexed architectural style [l, 21, 
which is based on predefined highly programmable data- 
paths (such as ALUs). The target applications are low 
sample rate, complex decision making algorithms contain- 
ing a large number of operations. For these applications, 
scheduling/assignment is one of the most important syn- 
thesis tasks. Heuristics have been developed to cope with 
scheduling large signal flow graphs (100 - 5 * lo5 opera- 
tions) assuming a large (100 - lo”)  number of clock cycles 
available. A limitation of this architectural style and the 
corresponding synthesis techniques is that recursive bottle- 
necks, require too many cycles to execute. This limits the 
maximal achievable sample frequency. 
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On the other hand, for high throughput applications, 
pipeline scheduling techniques have been proposed in [4, 5 ,  
61. Typically, the target architecture consist of a large (5 .. 
20) number of predefined functional units (FUs). A FU is 
defined as an unit that can only perform a few (< 5 )  number 
of operation types. These approaches solve the high perfor- 
mance requirements by pipelining the time loop. As a result 
of pipelined scheduling, the DSP algorithm is partitioned 
into sequences of operations in such a way that they can be 
executed concurrently. Because the existing approaches, do 
not take the repetitiuity in the algorithm into account, the 
interconnection and register cost between the diflerent FUs 
is large. Furthermore, these approaches cannot handle in 
an efficient way recursive algorithms. The reason is that 
the architectural style and the software algorithms only al- 
low limited chaining of operations. 
Another interesting approach to the synthesis problem of 
high throughput DSP applications is the HYPER sys- 
tem [7]. The designer can define flexible data-paths onto 
which all the operations of the algorithm are scheduled. 
Emphasis in this environment is on transformations and 
scheduling. 

The basis of this paper is the lowly multiplezed co- 
operating data-path architectural style [a], which is fully ori- 
ented towards the domain of high performance applications. 
The fundamental principle of this style in terms of data- 
paths is to base their composition on the repetitiuity, and 
the signal pow dependencies of the signal flow graph rep- 
resenting the DSP algorithm. These dedicated data-paths 
are necessary in order to cope with the high throughput 
requirements of the applications, taking recursion and the 
non-linear operations of the algorithm into account. Since 
the ratio of the maximal achievable clock frequency and 
the sample frequency is low, ranging between 1 and 10, 
the allocated hardware resources are shared only for a lim- 
ited number of clock cycles. This explains the term “lowly 
multiplexed”. Figure 1 gives an example of a processor ar- 
chitecture composed out of distributed memories, dedicated 
data-paths and a controller. It shows the typical internal 
structure of a dedicated data-path composed out of ABBs. 
An abstract building block (ABB) is an abstract type of 
primitive operator at the RT-level for which one or more 
hardware representations exist in a hardware library. An 
example is the ABB adder, which can be realized as either 
a ripple-carry, a carry-bypass or a lookahead adder. Note 
in figure 1 the different ABBs which are chained together. 
Due t o  the dedicated composition and interconnection of 
the ABBs, crztical parts of the algorithm can be evaluated 
zn le33 cycles than is possible on a predefined, highly pro- 
grammable data-path such as a arithmetic logic unit. Fur- 
thermore, the critical path of the dedicated data-path is 
only slightly larger than the delay of a single ABB, since 
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Figure 1: Processor architecture and a dedicated data-path. 

Table 1: Cornpatison of the results of traditional approaches 
and our C-III approach. 

the propagation delay has to be accounted only once [9]. Fi- 
nally, because of the local connections inside the data-path, 
global interconnections between the different data-paths are 
reduced significantly. Such a customized data-path is re- 
ferred to as an application specific unit (ASU). 

Since in the lowly multiplexed data-path architecture 
[lo], the internal composition of the data-paths is not pre- 
defined, they have to be defined “on the fly” during synthe- 
sis. As a consequence, one of the main high-level synthe- 
sis requirements is the definition and optimization of these 
data-paths ( A S  Us)  starting from a high-level description of 
the complete algorithm. Furthermore, because of the high 
data rates and the multi-dimensional signals, memory man- 
agement is an important design task. 

1 illustrates the considerable savings in terms 
of multiplexers and registers obtained with our approach 
compared to the results of [5 ,  61 for the 16 tap symmetri- 
cal FIR filter [4] ’. Figure 2 shows our architecture based 
on dedicated data-paths. In order to arrive to this efficient 
solution, first the data-paths are defined and then the op- 
erations are scheduled on these data-paths. By optimizing 
the data-paths [9], the final clock frequency can be made 
the same as in [5 ,  61. 

Table 

2 The Cathedral-I11 design script 
The synthesis process is divided into 2 main tasks : be- 
havioural synthesis, and structural synthesis. Figure 3 gives 
a global overview of the CATHEDRAL-III script. 

2.1 Behavioural synthesis process 
The input of this task is a description of the behaviour of 
the algorithm. For our purposes the applicative language 
SILAGE [11] is used. Behavioural synthesis produces an 
architecture netlist while iterating over the following steps. 

’ FcIr a definition c i f  HSF see seclirrn 3. L 

Figure 2: Cathedral-III architecture for the 16 tap symmet- 
rical filter. 

1. High-level memory management : 
The main tasks are : (i) the determination of the num- 
ber and type of back-ground memory units, (ii) the selec- 
tion of the relative address locations in one of the allocated 
memories to store the signals. A back-ground memory is 
a large memory (RAM, FIFO) required for storing large 
multi-dimensional signals such as speech frames or parts of 
images. The objectives are three-fold : (i) providing SUB- 
cient memories and memory ports so that the communica- 
tion with the memory does not limit the performance re- 
quirement, (ii) reduce the total amount of memory, and (iii) 
reduce the complexity of the addressing units. Since mrm- 
ories constitute more than 50% of the total size of chip, i t  
is important first to  look at the memory organization. As a 
result, additional constraints occur which have to be taken 
into account during the following data-path synthesis step. 
2. High-leuel data-path mapping tasks : 
This main task involves different subtasks related with the 
definition and generation of the customized data-paths. 

Before the data-paths are generated, the signal p o w  
graph description is optimized. The optimizations consid- 
ered here affect the composition and the performance of the 
resulting data-paths. A specific DSP transformation is the 
combination of retiming and tree-height reduction. 

Based on the ratio of the estimation of the clock fre- 
quency fr and the given sample frequency fll, the signal 
flow graph is partitioned into clusters (groups of 1..20 op- 
erations) which are grcuped into one or more sets, and for 
each set a dedicated data-path is defined which can execute 
each of the clusters of the set in one cycle. The first task 
is referred to as ASU-partitioning (section 3.1), and the 
second as ASU-definition (section 3.2). 

Each cluster in the signal flow graph is assigned to an 
ASU instance, and is substituted by 1 superoperation. The 
resulting graph is a graph of superoperations. After schedul- 
ing this graph, the total number of clock cycles #cycles is 
derived. 

The next step involves optimization of the data-paths 
[9] given the clock frequency estimate. If the throughput 
requirement fc cannot be satisfied, iterations ouer the high- 
leuel data-path mappzng tasks are required : other clusters 
arc defined which are grouped in an alternative way, the 
data-paths are pipelined (multi-cycle operations) which can 
affect the schedule. 
3. Low-leuel memory management : 
Low-level memory management involves the allocation of 
fore-ground memory and the selection of memory locations 
for temporarily storing signals. Examples are individual 
registers and register files. 
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Figure 3: Global CATHEDRAL-III design script. 

4. Low-level data-path mapping tasks : 
Low-level mapping mainly involves the detailed scheduling, 
and the detailed interconnect generation. 

2.2 Structural synthesis process 
Structural synthesis involves the detailed netlist generation 
of the data-paths and the controllers. These netlists are 
the input for layout generation programs such as  data-path 
assemblers and general cell place and route systems. 

3 ASU-partitioning and definition. 
3.1 ASU-partitioning. 
Before a particular strategy for partitioning a signal flow 
graph is described, the following 4 definitions are given. 

Deflnition 1 A cluster cl; is a connected subgraph g;(v, e) 
of the complete signal flow graph G ( V , E )  with vertices v 
corresponding to arithmetic/logic/relational operations and 
edges e corresponding to signals. 

Deflnition 2 A set S = {cl,, ... ,elk} is a collection of 
k clusters for  which a dedicated data-path has to be con- 
structed that can execute the clusters each in only one cycle. 

Each cluster has a multiplicity mi corresponding to the 
number of times a cluster will be executed during the execu- 
tion of the algorithm. The multiplicities mi are calculated 
from the parameters of the loops surrounding the cluster 
cli (excluding the infinite time loop). 
Assume the algorithm has a maximal hardware sharing fac- 
tor HSF,,,, defined as the ratio of the interval available to 
execute the algorithm for one set of input data periodically, 
T,- = l / fJ ,  and the clock period T, = l /fc.  This means that 
the hardware resources allocated for the algorithm can only 
be shared HSF,,, times. 

Deflnition 3 The size of a set S = {cl,) ..., clk} with mul- 
tiplicities {ml ,  ..., mk} is defined as z:=L mi = HSF,,~.  

Deflnition 4 The cardinality of a set S = {cll, ..., clk} is 
defined as the number of clusters in the set .  

In the context of the generation of application specific 
data-paths, the goal of partitioning is twofold : 
(i) divide the complete signal flow graph G(V, E) describ- 
ing the algorithm into clusters gi(v,e) such that Vv e V : 
3!g;(v,e) : v E v .  
(ii) determine the number of sets Si and the clusters that 
belong to the same set Si such that the total area of the 
ASUs is minimized. 
The result of the partitioning phase consists of different sets 
S; determining the exact number of data-path instances al- 
located in the architecture netlist. Each set corresponds to 
the specification of a dedicated data-path. For most of the 
applications targeted in this work, the cardinality of a set 
Si is relatively small < 10. Furthermore, the number of 
operations in a cluster is typically smaller than 20. 

Partitioning the signal flow graph as a preprocessing 
step for ASU definition consists of the following 2 steps. 

3.1.1 

The definition of clusters in a graph is mainly guided by 
the available hierarchy and repetitivity present in the high 
throughput DSP algorithm [IO]. 

4 The full body or part of the body of a repetitive def- 
inition such as a FOR - loop or a WHILE - loop. 
Since such a body is executed a large number of 
times, it is worthwhile to evaluate this body as fast 
as required. 

4 The full body or part of the body of a function defi- 
nition (hierarchy). 

The result is a DSP algorithm which is partitioned into 
several clusters such that each operation in the DSP algo- 
rithm is contained in f and only f cluster. 

Deflning clusters in a graph 

3.1.2 Deflning sets 

In a second step, the goal is to group the clusters into one 
o r  more sets based on the compatibility of the clusters. 
Suppose C, is the area cost of a data-path able to execute 
cluster cZ,, and c a b  is the area cost of a dedicated data-path 
able to execute both clusters cl, and Clb. The compatibility 
of 2 clusters is defined as the overhead cost of merging the 2 
clusters on the same data-path : Cn,(a, b) = 2Cob - c, - c b  

[13]. If CA, = 0,  there is no area overhead as a result 
of merging 2 clusters on the same data-path. The costs 
C, and C,, are respectively computed as the sum of the 
area of the ABBs required to implement the operations of 
clusters cl, and clb. The cost C a b  is estimated using the 
algorithm proposed in section 3.2. A compatibility graph is 
constructed with vertices corresponding to all the clusters, 
and edges between each pair of vertices a and b with weight 
C,~r(a,  b). This graph is partitioned into different sets in 
such a way that the total weight of the edges which do 
not cross the partitions is minimized, given the constraint 
that the size of each partition (set) must be smaller than 
HSF,,,.,,.. The partitioning problem is formulated as a 0/1 

quadratic programming formulation. 

3.2 ASU-deflnition 
The result of the partitioning process consists of one or 
more sets S, each containing a number of clusters. The 
goal of ASU-definition is to define for  each set a dedicated 
data-path which can execute each cluster in the set  in one 
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Figure 4: Overview of the ASU generation process. 

cycle. The number of sets determines the total number 
of data-path instances. As a preprocessing step, high-level 
operations are expanded to primitive operations which are 
available in the operation-operator library. For example, 
the cluster S' = {cll} = {(y = abs(a - b))} becomes S' = 
s cl^} = {(tmp = a - b,cnd = a > b,out = cnd?tmplO - 
tmp)}. Furthermore, if a cluster contains conditional op- 
erations, it is expanded into several clusters. In the above 
example of the absolute value operation, 2 clusters are de- 
rived which are collected in the same set S = {cll,,,cll,,} : 
cli, = ( i m p  = a - b;cnd = a >= b;out = tmp), and 
cllh = (tmp = a - b;cnd = a >= b;out = 0 - tmp). The 
multiplicity of ell, = cllb = c l ~  /2. In this section, we will 
describe how a lowly programmable, customized data-path 
is generated given a set S. A CAD tool MOZART has been 
developed which consists of the following 3 phases [lo] : 

1. Derive for the set S, the initial hardware require- 
ments. This results in the specification of an initial 
specific unit ISU.  

2. Assign all the clusters cl; of the set S onto the defined 
initial specific unit ISU.  Since different assignments 
of the operations E cl; on the ISU are possible, this 
will result in a number of partial specific units PSUjj. 

3. Construct from all the partial specific units PSUij 
corresponding to the clusters c l ; ,  the final application 
specific unit ASU. 

3.2.1 Initial Speciflc Un i t  Selection 

The goal of this step is to define the initial composition of 
the data-path in terms of ABBs and their interconnection. 
The selection is derived from the most complex cluster for 
which a hard-wired data-path solution, ISU, is generated : 
a one-to-one mapping of operations to ABBs and signals 
to connections is performed. The complexity of a cluster is 
measured as the total area of the ABBs corresponding to 
the operations in the cluster. For example, figure 4 shows 
the initial specific unit derived from the most complex clus- 
ter cll. 

5.2.2 Par t i a l  Speciflc Un i t  Derivation 

The goal of this subtask is to generate all possible as- 
signments of the operations of the cluster to  the ABBs 
of the initial specific unit. This process is repeated 
for all clusters in the set S = {cll,cl2, ..., cl,,}. This re- 
sults in the following set of partial specific units P = 

{(psui I ,pSui2, ...,psu1k)~(PSW1 , ...,P3UZI), . a . } .  

Each partial specific unit psuij is specified in the following 
way : 

The i index refers to the cluster cl; for which different 
assignments on the ISU are generated. The j index 
refers to the different assignments which are possible. 

The assignment of every operation and signal in the 
cluster cli to respectively the ABBs and the terminals 
of the ABBs of the initial specific unit. From this, 
the corresponding operation modes of all the ABBs 
are derived. 

Since it is unlikely that all the clusters can be assigned 
on the same hard-wired data-path additional programma- 
bility (constructive) is added in one of the following ways : 

The functionality of the ABBs is dynamically es- 
tended. Consider for example the ABB "adder" 
whose functionality is extended to become a pro- 
grammable adder/subtractor . 
One input/one output ABBs are added to the ini- 
tial data-path. Consider for example a programmable 
shifter which is added to the initial data-path. 

Multiplesers are inserted at the inputs of the data- 
path. 

The basic idea of the technique is to make a data-path pro- 
grammable by first trying to extend the functionality of cer- 
tain ABBs, and adding additional ABBs, instead of solely 
adding multiplexers. This approach resembles the way hu- 
man designers define a programmable data-path. The al- 
gorithm to generate these partial specific units is referred 
to as a the constructive matching algorithm. As shown in 
figure 4, the shaded ABBs in the partial specific unit psuij 
correspond to ABBs which have an operation of the cluster 
cli assigned to them. Note the shifters which have been 
added to the initial specific unit. 

3.2.3 Application Speciflc Un i t  Generation 

Only when for all clusters in the set S, all possible par- 
tial specific units are derived, the application specific unit 
can be generated. In a first step, all the possible combi- 
nations C of the partial specific units of all the clusters cli 
in the set S are enumerated. Assume we start from a set 
S = {cll , c / ~ , c ~ : I }  which results in the following partial spe- 
cific units : 
P = { ( P S U I ~  ) ,(PSUSI ,psuzz),(psuni , P S ? ~ Z ) }  (figure 4). 
The list of all possible combi- 
riations is C = {(PSUII ,PSU~I  ,psu:r~) ( P ~ ~ I ~ , P ~ ~ ~ I , P S U ~ Z ) ,  

Due to the constructive nature of the matching algorithm, 
all the partial specific units in one combination E C do not 
necessarily contain the same hardware resources. There- 
fore, for each combination cbl; E G, all the ABBs which 
have been additionally allocated during the previous phase, 
are added to the initial unit. This results in a potential 
application specific unit ASUk corresponding to the com- 
bination cbl;. For our example, figure 4 shows the shifters 
which have been allocated for both combinations. Finally, 
the area of all the ASU,: is estimated based on all the modes 
of the ABBs E ASUl;. The ASUl; with the smallest area is 
selected. The complexity of this last step is NP-complete, 
however heuristics are defined which prune the number of 
combinations. 

(Psul l ,Ps~22lPs~nI  1, (PSVIl rPS"ZZ,P3~32)). 
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func MaxMin ( i n  [I [I ,  max) maxminC1 [I = 
( i  : I .. 512) :: 
begin 

( j  : 1 .. 512) :: 
begin 

tmpCi1 Cjl C-51 = 0 ;  
(m : -1 .. 1) :: 
begin 

(n : -1 .. 1) :: 
begin 

tmpCil Cjl C3m+nl = 
i f  (max) 

-> max (tmpCi1 [jlC3m+n-il 
I I min (tmpCil [j]C3m+n-i] 

inCi-ml Cj-nl) 
inCi-ml Cj-nl) 

f i ;  
end : 

end ; 
maxmin Cil C jl = tmp Cil j 1 C41; 

end ; 
end : 

Figure 5 :  SILdGE description of the max/min unit. 

4 The ASIC synthesis process : an ex- 
ample. 

The example is a 3*3 maximum/minimum unit used in an 
image processing environment 1121. The maximal required 
processing time for 1 image is 20 ms, which results in a 
sample frequency of 5 0 H z .  The behavioural description 
is expressed in the applicative language SILAGE (see fig- 
ure 5 ) .  

The total number of operations to be performed per 
second is 512' * 3' I 50 = 117M. If a clock frequency Of 
1 5 M H z  is assumed, the H S F  = 1 5 M H z / 5 0 H z  = 3 * 10". 
Given the 3*X05 clock cycles available, for the body of the 
most inner n-loop only 0.13 clock cycle is available. Because 
the number of clock cycles is smaller than 1 ,  the inner loops 
m and n are unrolled (see figure 6). After this unrolling, 1 
cycle is available to execute the body of the inner j - loop.  

4.1 Behavioural synthesis process 
1. High-level memory management : 

Since only 1 cycle is available to evaluate the body 
of the j-loop, all 9 pixels must be present at the same 
time. During the back-ground memory allocation 
phase, 2 line buffers are allocated. Figure 6 shows 
the overall memory organization, and the resulting 
pseudo SILAGE description for the body of the in- 
ner j - loop . 

2 .  High-level data-path mapping tasks : 
1 )  Transformations of the signal flow graph. 
After transforming the body, instead of 9 maz /min  
functions, only 4 are required. As a direct conse- 
quence also the critical path reduces from 9 compar- 
isons to only 4 comparisons. Figure 7 shows the de- 
scription of the body after the transformations. The 
delay operator Q is referring to a value computed at 
the previous time index. For example in figure 6, 
inh = in i@l  and ing = inh@l  = ini@2. 
2 )  Pmtitioning. 
During partitioning, the optimized body of the inner 
j loop is divided into 4 clusters. These 4 clusters 
contain only arithmetic and logic operations. Each 
cluster either corresponds to the maximum or mini- 

Figure 6: Memory organization of the max/min unit. 

fl .%., :Line A. . .. ..........,A. buffer . . . . ... 4 ...A. . . ... ..A fi . ~ ~ i n [ i ] [ i ] = m a x ( ~ p , r n a x ~ ~ 2 ) ~  ) 

.......A... ....A..% .... *..,,....A., . 

Figure 7 :  Transformed description of the max/min unit. 

mum calculation of 3 values. Since 2 of the 4 clus- 
ters are mutually exclusive with the 2 other clusters, 
and since only 1 cycle is available, the 4 clusters are 
grouped into 2 sets SI and S2 (see figure 8). For each 
set, a dedicated data-path (ASU) will be generated 
that depending on the value of the input mar either 
calculates the maximum or minimum of 3 values. 
3) Expansion of high-level constructs. 
During this step, the maximum and minimum func- 
tions are expanded into primitive operations. The 
expansion of the operations in the first set SI are 
depicted below : 

(a) Cluster 1 
tmp = i f ( i n 1  > in2)-  > inlllin2; 
m a z l  = i f ( t m p  > in3)- > tmp(Iin3 

t m p  = i f ( i n 1  > in2)-  > in2llinX; 
m i d  = i f ( t m p  > in3)-  > in3Iltmp 

(b) Cluster 2 

' 4) Definition of the lowly programmable data-paths. 
Starting from the 2 expanded clusters, the data-path 
definition tool MOZART automatically generates a 
dedicated lowly programmable data-path. The re- 
sult is a structural description of the ASU shown in 
figure 9. 
5 )  Scheduling of the signal flow graph. 
Scheduling in this case is trivial since only 1 clock 
cycle is available for calculating the inner J loop. The 
total number of cycles required equals 512'-. 
6)  Performance optimization of the ASUs. 
The generated data-path is optimized w.r.t. the per- 
formance constraint : fc = 50Hz * 512' = 1 3 f i f H z .  
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Figure 8: Obtained clusters f o r  the maz/min unit. 

Instead of slow carry-ripple subtractors, faster carry- 
bypass subtractors are automatically selected by the 
data-path optimization tool HANDEL [9]. 

3 .  Low-level memory and data-path mapping tasks : 
Detailed scheduling and fore-ground memory allo- 
cation and selection result in the final architecture 
shown in figure 9. 

5 Conclusions. 
A novel synthesis environment for high throughput DSP 
algorithms has been presented. Although scheduling is an 
important task in a high-level synthesis trajectory, it is only 
a small part if the synthesis of industrial applications is en- 
visioned. The emphasis is this paper was on the generation 
of dedicated data-paths which are highly tuned to the sig- 
nal flow of the DSP algorithm. The advantages of these 
data-paths are that they are able to solve the computa- 
tional critical parts in less cycles than is possible on highly 
programmable data-paths. Furthermore, they are advanta- 
geous in terms of interconnect. The different design tasks 
in the CATHEDRAL-Illsynthesis script have been demon- 
strated by means of a realistic example. 
Besides these advantages, there are some limitations. First 
of all, the techniques presented are typically oriented to- 
wards high throughput applications. Furthermore, some 
of the tasks are still manual to perform : high-level mem- 
ory management, and the definition of the clusters in the 
signal flow graph. Finally, the time complexity of the 
ASU-definition algorithm is large especially when large sets 
(> 10) in combination with superoperations containing a 
large number of operations (> 10). 
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