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Abstract—In this paper, we present a mechanism for estimating
data quality of BANs composed of cardiac sensors. Currently
available cardiac monitoring sensors suffer from high level of
noise generated from loose physical contact of the sensor node
due to the highly mobile and pervasive environment of the BAN
(e.g., at-home remote health care applications). Therefore, there
is a need to estimate the data quality of individual cardiac
sensors as well as the data quality of the overall BAN while
particularly considering the resource scarceness of BAN-scale
mobile systems. The proposed method successfully estimates
the data quality of a BAN without employing computationally
expensive machine learning techniques. It also provides a number
of resource management options that enable efficient data quality
estimation. We present experimental results of four participants
with three off-the-shelf cardiac sensors to form a BAN. We also
present simulation results to examine if the proposed mechanism
can successfully detect health hazardous events such as heart
arrhythmia.
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I. INTRODUCTION

Body area networks (BANs), or personal area networks

(PANs), involve many applications that collect and process

data from wearable and non-invasive sensors at different parts

of the body. Among these currently available sensors, cardiac-

monitoring sensors are the most common and widely used

sensors. For example, in the survey on wearable sensor-based

systems for health monitoring in [17], 90% (36 / 40) of the

introduced commercial and research-based systems involve

cardiac monitoring sensors. Cardiac sensors provide efficient

bedside metric to assess the user’s physical condition and thus,

they are widely used in various fields such as medicine, sports

and entertainment.

However, current wearable cardiac sensors have major prob-

lems that they often suffer from high level of noise in their

data. This noise can be generated from (i) channel noise

produced by human body [11], [19], (ii) noise caused by

environments [5], and (iii) loose physical contact of the sensor

node to the human body [13]. Among these various types of

noise, the noise created by the loose contact of the sensor node

has the greatest impact on the data quality. Motion artifacts

of the user can cause physical vibration or detachment of the

sensor nodes from the human body and significantly degrade

the quality of sensor data, especially when the subject is highly
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Fig. 1. A motivating example that shows human movement may corrupt the
data from a wearable sensor. The data is obtained from one of our participants
wearing an ECG sensor node at wrist

mobile (e.g., at-home remote health care applications). Fig. 1

illustrates a motivating example that shows noise generated by

various motion artifacts. This signal was obtained from one of

our participants wearing an on-body ECG sensor (Alive Heart

Monitor [1]) at wrist. For example, walking involves relatively

dynamic movements in arms and legs while relatively stable

movements in chest and abdominal area. As a consequence,

if the user has a single sensor at the wrist as in Fig. 1, the

data would be highly corrupted when the user is walking.

Therefore, multiple sensors are often mounted at different parts

of the body to provide higher data quality. However, having

multiple sensors on the body creates a challenging problem:

which sensor produces the clean signal and which does not?

In the field of medicine, it requires an extra manpower to

review the data and filter out corrupted or dirty portion of the

collected data [20], but this is not feasible in continuous and

pervasive systems that we consider.

This paper introduces a mechanism for data quality esti-

mation of a BAN composed of cardiac sensors. It provides

a number of parameters that allow efficient utilization the

scarce resources of mobile systems. The proposed mechanism

considers a BAN structure that all cardiac sensors transmit

data to a single aggregator, and it runs in real-time with short

latency for real-time applications such as remote health care

or medical monitoring.

The remainder of this paper is organized as follows. In Sec-

tion II, related works are discussed. The proposed mechanism

is introduced in Section III. The experimental results and the

conclusion is provided in Section IV and V, respectively.



II. BACKGROUND AND RELATED WORKS

Many studies have been performed on automatic classifica-

tion of various cardiac signals. For example, in [8], various

supervised and unsupervised methods for ECG classification

are introduced. In [6], an ECG classification method based on a

fuzzy clustering neural network is proposed. In [15], a method

using a feature selection algorithm is investigated. However, all

the aforementioned works involve computationally expensive

machine learning algorithms. The textures and features used

for the classification of a cardiac cycle vary dynamically

according to the location of the sensor and the physical

condition of the user. It implies that there exists no universal

template for the classification, and the learning process must

be frequently updated. Therefore these algorithms are not

applicable to systems with scarce resources.

Recently, several approaches for estimating data quality

for BANs has been studied and proposed. In [9] and [4],

similar methods that detect the corruption of body sensor data

are proposed. The methods investigate different features of

medical signals such as amplitude, or temporal behavior to

detect any changes made between the data transmitted from

the sensor and the data received by the aggregator. These

two approaches may work for channel noise or intrusion,

but are not applicable when the noise is generated from the

sensor node. In [7], a method to detect corrupted sensor

data among multiple cardiac sensors in a BAN is proposed.

However, authors assume that the blood pressure waveform

is the bedside ground truth measurement that always provides

uncorrupted signal. Thus, this cannot be applied to the model

that we consider where none of the sensors is invulnerable.

III. PROPOSED MECHANISM

This section discusses the proposed mechanism that esti-

mates the data quality of a BAN of cardiac sensors while

particularly considering the resource scarceness. First, the

proposed method filters out most of the normal events and

recognizes any abnormal events (e.g., motion artifact noise or

health hazardous events) at individual sensors. We define this

step as the local data quality estimation. The second step is

referred to as global estimation that aggregates information

about the local data quality from all sensors and fuses the

information in order to estimate the data quality of the overall

BAN.

A. Local Data Quality Estimation

The objective of the local estimation is to detect any

abnormal events in data generated from a single cardiac sensor.

This mechanism is based on a well known fact that amplitude

of cardiac signal and interpulse interval (IPI) variability are

effective bedside measurements to detect any abnormal events

[4], [8], [9]. The overview of the local estimation is illustrated

in Fig. 2. First, the raw cardiac signal goes through a cardiac-

cycle-locating process to partition the signal into cardiac

cycles. This process starts with a sequence of cascaded linear

digital filters that performs the pre-processing on the raw

cardiac signal before the peak detection process. The three

Fig. 2. The overview of the local data quality estimation
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Fig. 3. (a) Raw cardiac (ECG) signal (b) The IPI time series with its trend
(c) The high-pass filtered IPI time series (IPI variation)

filters include (i) an integer coefficient band-pass filter, (ii) a

derivative filter combined with an amplitude squaring process,

and (iii) a moving-window integrator [16]. The band-pass filter

rejects unnecessary noise and the derivative filter provides

the slope information of the filtered signal. The amplitude

squaring process makes all data points positive and emphasizes

the high amplitudes to make the peak detection easier. The

moving-window integrator provides various waveform feature

information in addition to the slope information. Then, the

filtered signal goes through a peak detection logic similar to

[18], which locates cardiac cycles.

Using the information about the location of cardiac cycles,

we extract the time length of each cardiac cycle (i.e., IPI)

and the average amplitude of each cardiac cycle. The time

series of IPI is further filtered out using a high-pass filter to

remove the trend as shown in Fig. 2. We define this high-

pass filtered IPI time series as IPI variation and denote it as

v[n] (in seconds) where n is the index of cardiac cycles. Fig. 3

provides illustrative examples of the raw cardiac signal, its IPI

time series with the trend, and the IPI variation of a 30 minute

ECG signal of MIT-BIH Arrhythmia Database from PhysioNet

[10]. The time series of average amplitude of cardiac cycles

is denoted as a[n].
We can interpret the data quality estimation as a binary

classification (i.e., normal or abnormal cycle) using two

continuous feature values (IPI and average amplitude), and

employ the famous Bayes decision rule using the likelihood

ratio. However, likelihood of the feature values given an

abnormal cardiac cycle is very difficult to define since its

distribution highly depends on different movements of the

user. Thus, the proposed mechanism focuses on discarding

most of normal cardiac cycles based on observing irregular



fluctuation in v[n] and a[n]. Irregular fluctuation is a term

that describes erratic movements in a time series that follow

no recognizable or regular pattern [5]. It is known that health

hazardous events carry irregular fluctuation in v[n] and/or

a[n] [14]. Moreover, our observation (Section IV-A) verifies

that motion artifact noise also carries irregular fluctuation

in v[n] and/or a[n]. Therefore, the pattern of normal cycles

is defined by the degree of variation in normal v[n] and

a[n] within a window size of N assuming that they have

Gaussian distributions. It is known that the distributions of

normal cardiac cycles are usually skewed rather than Gaussian

[12]. However, distribution models for IPI variation are usually

represented using very complicated models. More importantly,

the models may evolve over time. Since our objective is to

discard most of normal cardiac cycles rather than accurately

modeling the distribution, we employ Gaussian distribution in

our mechanism. Then, the pattern learning process involves

computing the mean and the standard deviation of normal

cycles for a window size of N . We define µv and σv as the

mean and standard deviation of v[n], and µa and σa as those

of a[n]. The computational complexity of the learning process

is bounded by O(N) as it takes N summations to compute

the mean and the standard deviation, and local memory is

required to store N numbers. Therefore, the size of the window

N provides design flexibility reflecting the available resources

(i.e., memory or battery power). Moreover, this simple learning

process can be frequently updated depending on the available

resources. In summary, the proposed mechanism determines

that the newest cardiac cycle of index n has high data quality

if the following condition is satisfied:

µv − δv · σv ≤ v[n] ≤ µv + δv · σv AND

µa − δa · σa ≤ a[n] ≤ µa + δa · σa. (1)

The above equation examines if the v[n] and a[n] of the new

cardiac cycle is within the range of δ standard deviation from

the mean of the past N normal data. The parameter δ must

be greater than zero, and the value must be carefully selected

because small δ may result in very low detection accuracy and

large δ may result in high false negative. The data quality is

defined as

Q[n] =

{

1, if (1) is satisfied

0, otherwise
. (2)

The output of the local estimation, which is transmitted to

the aggregator, is a two-tuple: 〈v[n], Q[n]〉. v[n] is used to

synchronize the Q[n] among various sensors.

In order to initiate the automization of the estimating

processes, the system needs N normal cycles to learn the

normal patterns. For instance, in the experiments in Section

IV-A, we asked the participants to sit on a chair without any

movements to acquire N = 20 normal cycles at the beginning.

Then, δv and δa are chosen such that all N normal cycles

satisfy (1) and multiply those values by 1.5 to allow sufficient

room. Moreover, µ and σ can be updated on-the-fly using the

cardiac cycles that are determined to be normal based on the

results of (2).

In summary, the local process estimates the data quality of

individual cardiac sensors with computationally efficient learn-

ing process. The local process provides resource management

options for mobile systems such as (i) the learning window

size N and (ii) the frequency of updating the learning process.

B. Global Data Quality Estimation

The data fusion process is performed at the aggregator side.

It collects the information about the estimated data quality

from each sensor node and analyzes the data to estimate

the data quality of the overall BAN. Suppose the aggregator

is associated with K sensor nodes. Let us denote the IPI

variation and the quality information of the kth sensor node

as vk[n] and Qk[n], respectively. The first step taken at the

aggregator side is to generate a new time series, tk[m]. In

order to compute tk[m], we synchronize the temporal domain

of all sensors using the minimum sampling rate of the sensors:

r∗ = min (rk) for 1 ≤ k ≤ K. The two equations used to

synchronize the time domain are defined as

v
′

k[n] = ⌈vk[n] · r
∗⌉ , and

v
′′

k [n] = v
′′

k [n− 1] + v
′

k[n],

assuming that v
′′

k [0] = 0. Note that v
′

k[n] is just a time series

of vk[n] multiplied to the minimum sample rate, and v′′k[n]
is the cumulated time series of v

′

k[n] in order to denote the

synchronized time index for each cardiac cycle. Then, tk[m]
is defined as

tk[m] = Qk[n] for v
′′

k [n− 1] < m ≤ v
′′

k [n].

The above equation creates a time series for the kth sensor

that shows the quality of a cardiac cycle for the length of

that cardiac cycle, where this length is synchronize among K

sensors. Note that the value of tk[m] is binary since the value

of Q[n] is binary, that is, tk[m] = 1 when the data quality is

high and tk[m] = 0 otherwise.

Next, we fuse the synchronized tk[m] to estimate the data

quality t[m] of the overall BAN using a majority voting

function that defines t[m] = 1 when the majority of tk[m] = 1.

Then, t[m] estimates the data quality of the BAN consists of

multiple cardiac sensors. The index m such that t[m] = 1
indicates the time instance where the data quality of BAN

is high. On the other hand, m such that t[m] = 0 indicates

the time instance where none of the on-body sensors provides

clean cardiac signals.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results and simula-

tion results to show that the proposed mechanism can success-

fully estimate the data quality without using computationally

expensive classifier algorithms. In Section IV-A, we present

results of experiments conducted on four participants to show

that the proposed mechanism recognizes the noise created by

motion artifacts. Moreover, in Section IV-B, we perform a

simulation on multi-variable cardiac data in order address that

the proposed mechanism can recognize the noise created by

health hazardous events such as heart arrhythmia.



Fig. 4. (a) The experimental setup for participants. (b) The raw signal and t1[m] for Alive Heart Monitor located at the chest with annotation of the
performed actions in orange color (top), the raw signal and t2[m] for Nonin Pulse Oximeter located at the finger (middle), and the raw signal and t3[m] for
Vernier EKG Sensor located at the leg (bottom). The bottom graph also includes the fused data quality estimation t[m] in red color

A. Noise from Motion Artifacts

This section presents the results of experiments conducted

on four participants wearing three off-the-shelf cardiac sensors

(i.e., K = 3). Participants are recruited on the campus

of University of California Los Angeles, all males at ages

between 19 and 32. The cardiac sensors used in the experiment

include two ECG sensors and a pulse oximeter (SpO2): Alive

Heart Monitor [1], Vernier EKG Sensor [3], and Nonin Onyx

9560 [2]. The Alive Heart Monitor is placed on the chest, the

Vernier EKG sensor on the leg, and the Nonin Onyx 9560
on the left index finger as shown in Fig. 4 (a). All three

devices are connected to a single aggregator in the backpack

(i.e., portable laptop PC). Each participant is asked to repeat

a set of actions that simulates the average daily activity of

a person based on the American Time User Survey (ATUS)

2009 [21]. Participants performed the following actions in a

sequential order: walking, sitting down with no movement,

sitting down while moving upper limbs, bending down to pick

up an object, and standing up while moving upper limbs. For

example, walking can simulate general walking, or vacuuming.

Sitting down while moving upper limbs simulates eating, office

working, or watching TV. For each action in the set, we

asked the participants to perform the action for 10 seconds

and rest for another 10 seconds to clearly distinguish the

noise from normal signal, and repeat this combination of

action and rest three times. We manually annotated all cardiac

cycles to be either normal or abnormal (noise), and compared

the detection results (i.e., tk[m]) against this ground truth

annotation for each sensor data. We also fused the data from

three sensors using a majority voting function and evaluated

the detection results of the overall BAN (i.e., t[m]). Note

that the ground truth annotation for the overall BAN is also

generated by a majority voting mechanism among the ground

truth annotations of individual sensor data. The value of N

used in this experiment is 20, and the values of parameters

δv and δa computed for Alive Heart Monitor are 4.05 and

5.29, respectively. For Nonin Onyx, δv = 2.67 and δa = 2.54,

and for Vernier EKG Sensor, δv = 3.25 and δa = 4.13.

The learning process is performed at the beginning of the

experiment when the first 20 samples are collected. Then,

the learning process is updated once when the participants

are asked to rest for 20 seconds after the walking phase. The

experimental results of one of the participants P1 are provided

in Fig. 4 (b). Fig. 4 (b) illustrates data streams obtained from

chest (k = 1), finger (k = 2) and leg (k = 3) with the local

data quality estimation results tk[m]. The global data quality

estimation t[m] is provided in the bottom graph in red. In this

experiment, a total 531 cardiac cycles are evaluated.

The experimental results are evaluated using (i) the overall

detection rate (rd), (ii) false abnormal rate (rfa), and (iii) false

normal rate (rfn). Table I shows these results of the three

local estimations and the global estimation. We see that the

overall detection rate, false abnormal rate and false normal

rate are improved when the signals are fused together. Among

four participants, the average detection rate was 0.9056, the

average false abnormal rate was 0.0389, and the average false

normal rate was 0.2511. The false normal rate was relatively

high because the IPI and the average amplitude sometimes

fell into the inequality (1). However, the proposed mechanism

successfully detected the presence of abnormality due to an

action taken for 10 seconds with 100% accuracy.

B. Noise from Health Hazardous Events

Due to the limitation and safety issues in recruiting partic-

ipants with severe cardiac ailments who are likely to undergo

a health hazardous cardiac problem during the experiment, we

perform a simulation of the proposed mechanism on the exist-

ing public database in order to test the proposed mechanism on

hazardous health events. The database used in this simulation

is the MGH/MF Waveform Database from PhysioNet [10],

which includes three ECGs, an arterial pressure, a pulmonary

arterial pressure, and a central venous pressure signal. This

multi-dimensional cardiac data collected from various parts



TABLE I
THE EXPERIMENTAL RESULTS THAT SHOW THE OVERALL DETECTION

RATE, FALSE ABNORMAL RATE, AND FALSE NORMAL RATE FOR THE

THREE LOCAL DATA QUALITY ESTIMATION AND THE GLOBAL

ESTIMATION.

Chest Finger

rd rfa rfn rd rfa rfn

P1 0.8901 0.0650 0.3458 0.8441 0.1537 0.1602
P2 0.8561 0.1222 0.3472 0.7255 0.0156 0.3180
P3 0.8661 0.0367 0.2715 0.8375 0.0614 0.2646
P4 0.8371 0.0728 0.3105 0.8004 0.1145 0.2712

Avg. 0.8624 0.0742 0.3188 0.8019 0.0863 0.2535

Leg Global

rd rfa rfn rd rfa rfn

P1 0.8427 0.0217 0.2967 0.9170 0.0434 0.2400
P2 0.8029 0.2104 0.3403 0.9270 0.0375 0.2280
P3 0.8361 0.0437 0.5787 0.8974 0.0224 0.3020
P4 0.8221 0.0548 0.4813 0.9024 0.0523 0.2345

Avg. 0.8260 0.0827 0.4243 0.9056 0.0389 0.2511

of body can effectively imitate the signals from various on-

body sensor nodes. The original dataset contains total 250
sets of cardiac signals, each containing 12 to 86 minutes of

recording. We randomly chose 9 signal sets and performed

the simulation. These signals include cardiac events such as

premature ventricular contraction, supraventricular premature,

and ectopic beat, which are all manually annotated by clinical

professionals. Two interesting observations were made while

investigating these signals. First, unlike the experiments we

discussed in Section IV, all local signals had the same IPI

time series since none of the sensors is locally distorted due

to motion artifacts. Second, the average ratio of the number of

normal cardiac cycles to the total number of cardiac cycles is

99.1%. It implies that a dummy algorithm always predicting

the results to be normal cardiac cycles would achieve 99.1%
accuracy. Thus, we investigate detection rate for normal and

abnormal cycles separately. The value of N used in this

simulation is 300, and δv = 2.54 and δa = 2.02 for all

channels. The learning process is updated every 300 samples

of IPI. The results of the simulation is summarized in the Table

II.

In this simulation, a total 39760 cardiac cycles are extracted

from approximately 300 minutes long cardiac signals. The

total number of normal cardiac cycles and abnormal cardiac

cycles are 35659 and 234 respectively. In average, the detec-

tion rate for the abnormal cycles is 100% and the detection

rate for the normal cycles is 87.8%.

V. CONCLUSION

In this paper, we introduce a mechanism for estimating data

quality of a BSN composed of cardiac sensors. The proposed

method employs local and global estimation process in order to

estimate the data quality of individual sensors and to fuse the

information. We present experimental results based on three

off-the-shelf cardiac sensor devices in order to detect motion

artifact noise. We also present simulation results to detect

health hazardous events using the proposed mechanism.

TABLE II
THE SIMULATION RESULTS THAT SHOW THE DETECTION RATE OF NORMAL

AND HEALTH HAZARDOUS EVENTS USING THE PROPOSED MECHANISM

Dataset N
′

a Na rfn N
′

n Nn rfa

03 22 22 0 1431 1569 0.088
45 50 50 0 4512 5708 0.210
105 31 31 0 4234 4536 0.067
107 24 24 0 3179 4031 0.211
139 18 18 0 4322 5015 0.138
162 16 16 0 4220 4680 0.098
186 23 23 0 2107 2334 0.097
217 40 40 0 3985 4150 0.039
227 10 10 0 3320 3535 0.087

Overall 234 234 0 31310 35659 0.122
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