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ABSTRACT 

In this work, we explore the feasibility of using only the 

Bluetooth received signal strength of a smart device to infer 

its user context. Devices that use Bluetooth wireless 

communication constantly transmit their wireless signal, 

especially in the case of smart watches that communicate via 

Bluetooth with their paired smart phones for their most basic 

functions. Adversaries or non-malicious applications can 

monitor Bluetooth signal strength to extrapolate the 

activities in which a user is engaged and the location of 

certain devices (e.g. cellphone in pocket or on a desk). We 

experimentally evaluate the accuracy with which a range of 

activities, including walking, typing, writing, and using a 

mouse, can be differentiated, simply by using the RSSI of a 

user-worn smart watch. 

CCS Concepts 

• Human-centered computing → Ubiquitous and mobile 

computing → Ubiquitous and mobile computing theory, 

concepts and paradigms → Mobile computing  

• Security and privacy → Security in 

hardware → Embedded systems security  
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1. INTRODUCTION 
Bluetooth is a popular short-range wireless communication 

technology. Its adoption enabled the replacement of physical 

cables for connecting mice, keyboards, and joysticks to 

personal computers. In the mobile paradigm, its ubiquity 

enabled personal area networks (PANs) and body area 

networks (BANs). For example, Bluetooth is the enabling 

technology for hands-free smart phone usage in cars, popular 

wireless audio/music speakers, and smart phone tethering.  

Bluetooth is also the predominant communication channel 

between smart watches and their paired smart phones. 

Therefore, with the growing adoption of smart watches, 

large swaths of the consumer population will be 

continuously emitting at least one Bluetooth signal. This is 

in addition to any signal from their smart phones and other 

wearable devices. 

 

Once a user enables Bluetooth on their device, a signal will 

broadcast continuously.  Other devices within range can be 

programmed to capture these signals.  Without pairing 

devices, we show that a great deal of information can still be 

gathered by the client device just by analyzing the signal of 

parent device. 

When two or more Bluetooth enabled devices come into 

proximity, they automatically establish a connection, by 

adopting a common clock and hopping sequence to form a 

piconet. After which, the two devices are considered paired, 

with one device serving as the master, and the other device 

the slave. 

To prevent the pairing of a Bluetooth device with a malicious 

entity, a comparison of six digit keys can be used or device-

level authentication can be carried out. For example, an 

iPhone’s smart phone camera is used to confirm the Apple 

Watch with which it is being paired. However, such pairing 

approaches and service-level encryption do not limit the 

transmission of the Bluetooth signal prior to the pairing 

attempt.  

A Bluetooth device can be placed into ‘nondiscoverable 

mode,’ but a brute-force search attack can still discover the 

device. [8] The only effective solution to prevent signal 

receipt by a client device is to disable the Bluetooth radio. 

This research identifies a user's activity by merely examining 

the Bluetooth signal strength from a smart device. Common 
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activities including walking, typing on a laptop, using a 

mouse, and using a smart phone are explored in our 

experimentation. The location of the receiver device, in our 

case a smart phone, is also varied to include the pocket and 

on an adjacent desk. Thus enabling the localization of 

devices, simply using RSSI.  

 

Bluetooth has been used to infer location, especially in retail 

settings (albeit by explicitly pairing devices as part of a 

proprietary app). Proximity sensing in a nursing context [6], 

indoor positioning using Bluetooth [4], and location-aware 

computing [5] have all been considered in the literature.  

 

This work goes beyond merely determining the person’s 

distance from the receiver, as is the case with the previous 

work, to classifying fine-grained user activity and the 

positioning of devices on the body.  

 

We do not require the person being monitored to be aware 

of or participate in the monitoring. Bluetooth receivers can 

be placed across retail and public spaces to determine 

consumers’ interaction with the products in the space and to 

capture user contextual information. A malicious agent can 

similarly determine this information with a masquerading 

app that does not interface with the smart watch, at all. 

 

The remainder of this paper is organized as follows. Section 

2 outlines the underlying sensing paradigm which uses 

received signal strength to determine beacon’s user activity. 

In section 3, we describe the approach and how retailors and 

other agents can exploit this information to their benefit. In 

section 4, we detail our experimental set-up involving 

monitoring a smart watch’s Bluetooth signal while the 

person is engaged in a variety of activities. In our 

experimentation, the Bluetooth signal from a Moto 360 

smart watch was captured using an Android smartphone. 

The Bluetooth's received signal strength indicator is used to 

classify the user activity. In Section 4.3, we present the 

results of the various experiments we conducted, 

encompassing 3 study participants, 7 activities, and 3 

different device placements. We conclude the paper in 

Section 5. 

2. RECEIVED SIGNAL STRENGTH 

INDICATOR (RSSI) 
Received signal strength is the relative strength of the 

beacon’s received signal by the client device. RSSI values 

are read from the input power function register RSSI_VAI 

which has a dynamic range of 100dB [1].  Depending on the 

network chip, readings will be given in the range of 0 to -00 

or 0 to -127.  The larger the value, the closer to 0, the stronger 

the received signal is and the closer the beaconing device is 

to the receiver.  RSSI is measured in decibel-milliwatts 

(dBm).  

RSSI ranging technology is used to approximate the distance 

between the device and the beacon, without additional 

hardware. It infers the distance between nodes by analyzing 

the received signal strength which is the lowest cost distance 

measurement for wireless networks [1].  

RSSI raw values have an inherent inaccuracy, but are still 

used as a standard tool for distance measurements in range-

based localization [2].  Various filters, such as Gaussian and 

Kalman, have been commonly used to improve accuracy of 

readings within sensor networks.  We use the Savitzky-

Golay filter, which had been shown to perform better than 

other standard averaging filters [3]. 

3. APPROACH 
In this work, we explore the granularity and accuracy with 

which user activities can be determined by monitoring only 

the received signal strength indicator of a worn device. 

Specifically, we use the Bluetooth RSSI from a worn smart 

watch as detected by a neighboring device. The approach can 

easily be applied to a smart phone or other Bluetooth enabled 

device worn by the user. 

3.1 MONITORING IN PUBLIC AND 

RETAIL SPACES 
In public or retail spaces, by simply putting Bluetooth 

receivers across the space, the actions of the users in those 

contexts can be determined and monitored.  

Consider the following scenario. In a museum, the users 

walking through the space, talking on the phone, 

photographing art, and writing in journals can all be 

determined simply by monitoring the changes in their 

device’s Bluetooth signal strength.  

Similar parallels exist in retail spaces. The user can be price-

comparing on the smart phone, calling someone, searching 

for an item online. There is no requirement for the user to 

download and enable retailor apps, as is required by the 

currently available Bluetooth-based consumer monitoring 

systems. 

3.2 ATTACKS BY MALICIOUS AGENTS 
This approach can also be used by malicious agents trying to 

determine private user information. Although it is not fine-

grained enough to determine passwords, the approach can be 

used to determine when smart phone usage is taking place to 

initiate the start of more costly information gathering and 

data trasmission. 

 

Figure 1. Attack model where malware is located on the 

user’s smartphone with a paired smart watch. The 

malware polls the RSSI from the smart watch and relays 

the readings to a server off site for processing and 

storage. 



Proximity is not a requirement for the attack. The adversary 

can implant malware on the smartphone of the target. No 

malicious apps are needed on the smart watch. Permissions 

are required to access the phone’s network connection and 

Bluetooth. Both permission requests are relatively common 

in apps, as free apps use network connectivity to serve users 

ads for monetization. Bluetooth permissions can be 

disguised by the applications purpose. One example is a 

specialized fitness application that uses sensor readings in 

the smart watch to track fitness progression and caloric 

expenditure. Another common functionality is a message 

service from the phone to watch, which would clearly 

require Bluetooth permissions.  

Note, that Bluetooth connectivity with the smart watch is not 

a requirement. For example, Bluetooth can be for pairing the 

smart phone with the car speaker. With this permission in 

place, the app can monitor the smart watch, without even 

requiring an app for the wearable device. 

It is a safe assumption that the smart watch has Bluetooth 

enabled, as the value and utility of the smart watch is greatly 

diminished otherwise.  

The adversary can be anywhere. Data can be streamed and 

stored on a remote server for processing and collection. 

Since processing is happening on the server, power usage 

will be dominated by the network data transfer of the 

minimal RSSI readings. Figure 1 gives a high level diagram 

of the attack layout. 

3.3 DYNAMIC TIME WARPING (DTW) 
To carry out the activity classification, we use dynamic time 

warping (DTW). DTW is an algorithm that determines the 

optimal stretching and compressing of a signal to match 

another reference signal, resulting in a distance value 

between signals.  

Using a single reference signal for each activity, we compare 

test signals against all reference signals to obtain a set of 

distances. Then, we classify the test signal as the activity 

whose distance from the test signal is the least. 

4. EXPERIMENTATION 

4.1 EXPERIMENTAL SET-UP 
A series of experiments to evaluate the effectiveness of the 

approach was carried out on three different users. All the 

users wore a Moto360 Android smart watch on their right 

hand and the RSSI values were recorded with a Nexus 

6PAndroid smart phone. The smart phone acted as a 

receiver. The placement of the receiver, i.e. the smart phone, 

was varied. It was either placed on the table or in the right 

pocket of the user. 

A custom Android application was developed to control and 

aid in the testing process. The app established a TCP 

connection to a local server. Each sample was started, 

stopped, and named from the application interface. The 

application polled the RSSI values between the smartphone 

and smart watch every second and sent these values to the 

server. The data was stored in a CSV format text file on the 

server 

Various activities with variations for receiver locations were 

tested.  Twenty 2-minute samples of each activity were 

collected, for a single user, resulting in 40 minutes of test 

data per activity. Additionally, for 3 different study 

participants 5 2-minute samples for 9 different activity/set-

up combinations were collected. 

The Savitzky-Golay filter was used to plot and analyze the 

RSSI data. This filter was chosen as it increases signal-to-

noise ratio without greatly distorting the signal [7].  

Dynamic time warping was used to identify if each activity’s 

signal shared a similarity with other signals of the same 

activity. A moving mean, with a window size of 7, were used 

in the comparison. 

4.2 ACTIVITIES 
Seven different activities were considered in the testing. 

They included activities a user may commonly engage in and 

those that can involve sensitive data. The phone was placed 

in the pocket or on the table next to the user during tests to 

replicate typical usage. 

4.2.1 Walking 
Walking was done at a normal pace and continuous for two 

minutes.  The user was required to not stop during the 2 

minutes and use the natural motion of swinging each arm 

with the motion of the opposite leg.  The smartphone was 

placed in the right pocket with the smart watch on the right 

wrist.   

4.2.2 Typing Pocket/Table 
Typing is separated into two tests of twenty samples each 

using a different setup. The first test was collected with the 

phone in the right pocket.  The second typing dataset with 

the phone on the table far side of the computer, Figure 2.  

 

Figure 2. The alternative typing setup consisted of the 

phone being placed to the left of the computer.  This is 

the same position that the phone was placed during the 

Bluetooth mouse testing. 



4.2.3 Bluetooth Mouse 
The smartphone was placed next to the laptop on the left side 

of the desk as it was in the typing tests, see Figure 2. An 

Apple Magicmouse 2, connected via Bluetooth to a 

Macbookpro laptop, was used in the right hand during each 

testing sample.  The smart watch was worn on the right wrist 

positioned just above the mouse. 

4.2.4 Smart Phone 
The smartphone held in the right hand closest to the smart 

watch.  The right hand simulated gestures and maneuvered 

through various screens on the phone.   

4.2.5 Using a Tablet on Lap/Desk 
During the first test, an iPad 1 was positioned on the users 

lap.  The user performed any activity they chose while they 

were using the iPad.  The only constraint put on the user was 

to swipe or touch the iPad with the right hand. During the 

second test, an iPad 1 was positioned on a table where the 

user sat and in front of the user.  The user was not limited to 

any activities while using the iPad, but was constrained to 

swipe or touch with their right hand.  

4.2.6 Picking up Item 
During this test, a user was asked to repeatedly pick up an 

imaginary item and put it in their pocket.  The user would 

take a brief 2 seconds once the motion of putting the item in 

the pocket was finished, and repeat the process of picking up 

the item off the floor.  The spot where the imaginary item on 

the floor was located was directly in front of the user’s foot.   

4.2.7 Writing on Paper 
A user was asked to write anything they would like on a 

piece of paper using a pencil.  The user was not restricted to 

what they could write or draw.  The user was asked to write 

or draw using their right hand.  The smartphone was placed 

just to the left of the piece of paper, similar to the typing 

activity.  

4.3 RESULTS AND ANALYSIS 
The comparison of the RSSI across activities and multiple 

runs of activities makes evident that the RSSI is distinct 

across activities, while still fairly consistent across different 

runs of the same activity.  

Figures 3, 4, and 5 graph the RSSI for 5 runs of walking, 

typing at a desk, using a mouse. 

Figure 3. RSSI (dBm) across 2-minute period for a single user 

walking across 5 different runs. 

 

Figure 4. RSSI (dBm) across 2-minute period for a single user 

typing at a desk across 5 different runs. 

 

Figure 5. RSSI (dBm) across 2-minute period for a single user 

using a mouse across 5 different runs. 

Figure 6 provide the median tendency of 20 samples of five 

different activities for a single user across multiple days.  

 

Figure 6. Central tendencies of activity’s RSSI. This 

graph is comprised of the median tendency of the 20 

samples for each activity tested. Each sample lasted two 

minutes totaling 40 minutes of test data per activity. The 

20 test samples were collected over multiple days. 

Table 1 provides the mean, median, and mode for different 

sets of experiments on a single user for a set of activities, for 

20 samples of data per activity and set-up. As demonstrated, 

there are clear distinctions among the RSSI across the 

various activities. 
 



Table 1. The mean, median, and mode RSSI for the various 

activities are shown across twenty sample for a single user. 

Activity Samples Mean Median Mode 

Tablet on table 20 -20.848 -22 -24 

Tablet on lap 20 -13.892 -14 -25 

Using Mouse 20 -13.536 -13 -15 

Walking 20 -6.907 -7 -8 

Typing, phone 

on desk 
20 -8.021 -9 -13 

Typing, phone 

in pocket 
20 -17.820 -17 -27 

Using phone 20 -1.036 0 0 

Picking up 

item 
20 -8.315 -8 -7 

Writing with a 

pencil 
20 -13.132 -13 -15 

 

In our experimentation, we had three study participants (2 

male, 1 female) carry out a series of activities, 5 times per 

activity, over a period of 2 minutes per activity. We used a 

20/80 train/test split.  

We took one recording as the reference signal for the DTW 

implementation, resulting in four test sample per activity. 

Then we repeated this train/test split two more times, 

arbitrarily selecting a different reference signal each time.  

The prediction matrix for the DTW-based classification is 

provided in Table 2. The table represents 4 and half hours of 

collected data. 

For the one female participant, activities including walking, 

picking up an item, talking on the phone, typing with phone 

in pocket, and using tablet on lap achieved a classification 

accuracy of 100%. The two male participants had greater 

error in all of their activity classifications.  

For all three participants, the classification of walking and 

using a tablet on the lap was above 75%, with random chance 

at 11%. Using a phone, was also over 63% accurate. Some 

activities with very similar signal profiles were confused for 

each other, thus affecting the total classification results.  

5. CONCLUSION 
We demonstrate that Bluetooth RSSI can be used to 

determine user activity, without requiring additional 

hardware and without requiring the user to do anything other 

than have the Bluetooth enabled. Our experimentation using 

a smart watch as the Bluetooth beacon demonstrates that 

some activities, including walking, using a tablet on the lap, 

and using a smart phone, can be classified with high 

accuracy. 
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Table 2. Prediction matrix for all 3 participants using dynamic time warping for 2-minute tests per activity. Three different reference 

signals were selected from the 5 runs of each activity, resulting in 3 different reference signal and 12 test signals per participant. The 

table represents a total of 270 minutes of data. 

Actual 

Activity 

Predicted Activity 

Walking 
Picking up 

item 

Using 

mouse 

Typing, 

phone on 

desk 

Typing, 

phone in 

pocket 

Using 

tablet on 

table 

Using 

tablet on 

lap 

Writing 
Using 

phone 

Walking 
77.8% 

(28) 
   8.3% (3) 8.3% (3)   5.6% (2) 

Picking up 

item 

36.1% 

(13) 

55.5% 

(20) 
   2.8% (1)   5.6% (2) 

Using 

mouse 
 13.9 (5) 25% (9) 22.2% (8) 2.8% (1)  2.8% (1) 11.1% (4) 22.2% (8) 

Typing, 

phone on 

desk 

  
66.7% 

(24) 
2.8% (1) 16.7% (6) 8.3% (3)   5.6% (2) 

Typing, 

phone in 

pocket 

16.7% (6)    
52.8% 

(19) 
11.1% (4)  8.3% (3) 11.1% (4) 

Using 

tablet on 

table 

19.4% (7) 8.3% (3) 5.6% (2)  13.9 (5) 16.7% (6) 2.8% (1) 
33.3% 

(12)  

Using 

tablet on 

lap 

13.9 (5) 2.8% (1)    

 

8.3% (3) 75% (27)   

Writing 11.1% (4) 8.3% (3) 19.4% (7) 2.8% (1) 5.6% (2) 8.3% (3)  
36.1% 

(13) 
8.3% (3) 

Using 

phone 
 

27.8% 

(10) 
   8.3% (3)   

63.9% 

(23) 

 


