
Lecture 17

Edited from slides for Operating
System Concepts by Silberschatz,
Galvin, Gagne

Page Replacement Algorithms

Last Lecture:
FIFO
Optimal Page Replacement
LRU
LRU Approximation

Additional-Reference-Bits Algorithm
Second-Chance Algorithm

This Lecture:
Counting-Based Page Replacement

Counting Algorithms

Keep a counter of the number of references that have been
made to each page

LFU (Least Frequently Used) Algorithm: replaces page
with smallest count

MFU (Most Frequently Used) Algorithm: based on the
argument that the page with the smallest count was probably
just brought in and has yet to be used

Problem

You have devised a new page replacement algorithm that you
think may be optimal.
However, in some cases, Belady’s anomaly occurs.

Is the new algorithm optimal? Explain.

Allocation of Frames

Each process needs minimum number of pages

Example: IBM 370 – 6 pages to handle SS MOVE instruction:
instruction is 6 bytes, might span 2 pages
2 pages to handle from
2 pages to handle to

Two major allocation schemes
fixed allocation (equal vs. proportional)
priority allocation

Fixed Allocation: Equal

Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

Fixed Allocation: Proportional

Proportional allocation – Allocate according to the size of process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

=
=
=
=
=

2

1

2

1

127
10
64

a
a
s
s
m

Fixed Allocation: Proportional

Proportional allocation – Allocate according to the size of process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

1

≈×=

≈×=

=
=
=

a

a

s
s
m

Priority Allocation

Use a proportional allocation scheme using priorities rather than
size

If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lower
priority number

Global vs. Local Allocation

Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another
Local replacement – each process selects from only its
own set of allocated frames

Thrashing

Thrashing ≡ process is busy swapping pages, instead of execution
High page-fault rate =>low CPU utilization => OS thinks that it
needs to increase the degree of multiprogramming => another
process added to the system

Demand Paging and Thrashing

Prevent Thrashing by providing enough frames to process

Locality model
Process migrates from one locality to another
Localities may overlap

Why does thrashing occur?
Σ size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-set model

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
If actual rate too low, process loses frame
If actual rate too high, process gains frame

Working Sets and Page Fault Rates

Other Issues -- Prepaging

Prepaging
To reduce the large number of page faults that occurs at process
startup
Prepage all or some of the pages a process will need, before
they are referenced
But if prepaged pages are unused, I/O and memory was wasted
Assume s pages are prepaged and α of the pages is used

Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?
α near zero ⇒ prepaging loses

Other Issues – Page Size

Page size selection must take into consideration:
fragmentation
table size
I/O overhead
locality

Other Issues – Program Structure

Program structure
Int[128,128] data;
Each row is stored in one page (row major)
Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

Other Issues – I/O interlock

I/O Interlock – Pages must
sometimes be locked into memory

Consider I/O - Pages that are used
for copying a file from a device
must be locked from being selected
for eviction by a page replacement
algorithm

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk
Increase the degree of multiprogramming

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk
Increase the degree of multiprogramming
Decrease the degree of multiprogramming

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk
Increase the degree of multiprogramming
Decrease the degree of multiprogramming
Install more main memory

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk
Increase the degree of multiprogramming
Decrease the degree of multiprogramming
Install more main memory
Install a faster hard disk

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk
Increase the degree of multiprogramming
Decrease the degree of multiprogramming
Install more main memory
Install a faster hard disk
Add prepaging to the page-fetch algorithms

Problem

Demand-paging system with following time-measured utilizations
CPU 20%
Paging disk 97.7%
Other I/O devices 5%

Comment on improved CPU utilization given if you
Install a faster CPU
Install a bigger paging disk
Increase the degree of multiprogramming
Decrease the degree of multiprogramming
Install more main memory
Install a faster hard disk
Add prepaging to the page-fetch algorithms
Increase the page size

See you next time

	Lecture 17
	Page Replacement Algorithms
	Counting Algorithms
	Problem
	Allocation of Frames
	Fixed Allocation: Equal
	Fixed Allocation: Proportional
	Fixed Allocation: Proportional
	Priority Allocation
	Global vs. Local Allocation
	Thrashing
	Demand Paging and Thrashing
	Locality In A Memory-Reference Pattern
	Working-set model
	Page-Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Other Issues -- Prepaging
	Other Issues – Page Size
	Other Issues – Program Structure
	Other Issues – I/O interlock
	Problem
	Problem
	Problem
	Problem
	Problem
	Problem
	Problem
	Problem
	See you next time

