Math Review

Professor Ameet Talwalkar

Outline

- Overview
- 2 Review on Probability
- Review on Statistics
- 4 An integrative example

How to grasp machine learning well

Three pillars to machine learning

- Statistics
- Linear Algebra
- Optimization

Resources to study them

- Suggested Reading:
 - Chapter 2 of MLAPA book
 - Linear Algebra Review and Reference by Zico Kolter and Chuong Do (http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf)
 - Convex Optimation Review by Zico Kolter and Honglak Lee (http://www.cs.cmu.edu/~./15381/slides/cvxopt.pdf)
- Wikipedia (some information might not be 100% accurate, though)

Outline

- Overview
- 2 Review on Probability
- Review on Statistics
- 4 An integrative example

Probability: basic definitions

Sample Space: a set of all possible outcomes or realizations of some random trial.

Example: Toss a coin twice; the sample space is $\Omega = \{HH, HT, TH, TT\}.$

Event: A subset of sample space Example: the event that at least one toss is a head is $A = \{HH, HT, TH\}$.

Probability: We assign a real number P(A) to each event A, called the probability of A.

Probability Axioms: The probability P must satisfy three axioms:

- **2** $P(\Omega) = 1$;
- If A_1, A_2, \ldots are disjoint, then $P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Random Variables

Definition: A random variable is a function that maps from the sample space to the reals $(X:\Omega\to R)$, i.e., it assigns a real number $X(\omega)$ to each outcome ω .

Example: X returns 1 if a coin is heads and 0 if a coin is tails. Y returns the number of heads after 3 flips of a fair coin.

Random variables can take on many values, and we are often interested in the distribution over the values of a random variable, e.g., P(Y=0)

Common Distributions

Discrete variable	Probability function	Mean	Variance
Uniform $X \sim U[1, \dots, N]$	1/N	$\frac{N+1}{2}$	
Binomial $X \sim Bin(n, p)$	$\binom{n}{x}p^x(1-p)^{(n-x)}$ $(1-p)^{x-1}p$	np	
Geometric $X \sim Geom(p)$	$(1-p)^{x-1}p$	1/p	
Poisson $X \sim Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	
Continuous variable	Probability density function	Mean	Variance
Uniform $X \sim U(a,b)$	1/ (b-a)	(a + b)/2	
Gaussian $X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$	μ	
Gamma $X \sim \Gamma(\alpha, \beta)$ $(x \ge 0)$	$\frac{\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{1}{2\sigma^2}(x-\mu)^2)}{\frac{1}{\Gamma(\alpha)\beta^a}x^{a-1}e^{-x/\beta}}$	lphaeta	
Exponential $X \sim exponen(\beta)$	$\frac{1}{\beta}e^{-\frac{x}{\beta}}$	β	

Distribution Function

Definition: Suppose X is a random variable, x is a specific value that it can take,

Cumulative distribution function (CDF) is the function $F: R \to [0, 1]$, where $F(x) = P(X \le x)$.

If X is discrete \Rightarrow probability mass function: f(x) = P(X = x). If X is continuous \Rightarrow probability density function for X if there exists a function f such that $f(x) \geq 0$ for all x, $\int_{-\infty}^{\infty} f(x) dx = 1$ and for every $a \leq b$,

$$P(a \le X \le b) = \int_a^b f(x)dx.$$

If F(x) is differentiable everywhere, f(x) = F'(x).

Expectation

Expected Values

- Discrete random variable X, $E[g(X)] = \sum_{x \in \mathcal{X}} g(x) f(x)$;
- Continuous random variable X, $E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x)$

Mean and Variance $\mu = E[X]$ is the mean; $var[X] = E[(X - \mu)^2]$ is the variance.

We also have $var[X] = E[X^2] - \mu^2$.

Multivariate Distributions

Definition:

$$F_{X,Y}(x,y) := P(X \le x, Y \le y),$$

and

$$f_{X,Y}(x,y) := \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y},$$

Marginal Distribution of X (Discrete case):

$$f_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y f_{X,Y}(x, y)$$

or $f_X(x) = \int_y f_{X,Y}(x,y) dy$ for continuous variable.

Conditional Probability and Bayes Rule

Conditional probability of X given Y = y is

$$f_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Bayes Rule:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

Independence

Independent Variables X and Y are *independent* if and only if:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all values x and y.

IID variables: *Independent and identically distributed* (IID) random variables are drawn from the same distribution and are all mutually independent.

Linearity of Expectation: Even if X_1, \ldots, X_n are not independent,

$$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i].$$

Outline

- Overview
- 2 Review on Probability
- Review on Statistics
- 4 An integrative example

Statistics

Suppose X_1, \ldots, X_n are random variables:

Sample Mean:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Sample Variance:

$$S_{N-1}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2.$$

If X_i are iid:

$$E[\bar{X}] = E[X_i] = \mu,$$

$$Var(\bar{X}) = \sigma^2/N,$$

$$E[S_{N-1}^2] = \sigma^2$$

Point Estimation

Definition The point estimator $\hat{\theta}_N$ is a function of samples X_1, \ldots, X_N that approximates a parameter θ of the distribution of X_i .

Sample Bias: The bias of an estimator is

$$bias(\hat{\theta}_N) = E_{\theta}[\hat{\theta}_N] - \theta$$

An estimator is *unbiased estimator* if $E_{\theta}[\hat{\theta}_N] = \theta$

Example

Suppose we have observed N realizations of the random variable X:

$$x_1, x_2, \cdots, x_N$$

Then,

- Sample mean $\bar{X} = \frac{1}{N} \sum_n x_n$ is an unbiased estimator of X's mean.
- Sample variance $S_{N-1}^2 = \frac{1}{N-1} \sum_n (x_n \bar{X})^2$ is an unbiased estimator of X's variance
- Sample variance $S_N^2 = \frac{1}{N} \sum_n (x_n \bar{X})^2$ is *not* an unbiased estimator of X's variance

Outline

- Overview
- 2 Review on Probability
- Review on Statistics
- 4 An integrative example

Outline

Maximum likelihood estimation

Optimization

Convexity

Maximum likelihood estimation (MLE)

Intuitive example

Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of heads (or tails) of my next flip?

Model

Each flip is a Bernoulli random variable X

X can take only two values: I (heads), 0 (tails)

$$p(X=1) = \theta$$

$$p(X=0) = 1 - \theta$$

Parameter to be identified from data

Principles of MLE

5 (independent) trials

Observations

$$X_1 = 1$$

$$X_2 = 0$$

$$X_3 = 1$$

$$X_1 = 1$$
 $X_2 = 0$ $X_3 = 1$ $X_4 = 1$ $X_5 = 0$

$$X_5 = 0$$

Likelihood of all the 5 observations

$$\theta \times (1-\theta) \times \theta \times (1-\theta)$$

$$\leftarrow$$

$$heta imes (1- heta)$$

$$\mathcal{L} = \theta^3 (1 - \theta)^2$$

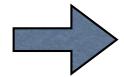
Intuition

choose θ such that L is maximized

Maximizing the likelihood

Solution

$$\mathcal{L} = \theta^3 (1 - \theta)^2$$



$$\theta^{MLE} = \frac{3}{3+2}$$

(Detailed derivation later)

Intuition

Probability of head is the percentage of heads in the total flips.

More generally,

Model (ie, assuming how data is distributed)

$$X \sim P(X;\theta)$$

Training data (observations)

$$\mathcal{D} = \{x_1, x_2, \cdots, x_N\}$$

Maximum likelihood estimate

log-likelihood

$$\mathcal{L}(\mathcal{D}) = \prod_{i=1}^{N} P(x_i; \theta) \qquad \theta^{MLE} = \arg \max_{\theta} \mathcal{L}(\mathcal{D})$$
$$= \arg \max_{\theta} \sum_{i=1}^{N} \log P(x_i; \theta)$$

Ex: estimate parameters of Gaussian distribution

Model with unknown parameters

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Observations

$$\mathcal{D} = \{x_1, x_2, \cdots, x_N\}$$

Log-likelihood

$$\ell(\mu, \sigma) = \sum_{n=1}^{N} \left\{ -\frac{(x_n - \mu)^2}{2\sigma^2} - \log\sqrt{2\pi}\sigma \right\}$$

Solution

We will solve the following later

$$\underset{\mu,\sigma}{\operatorname{arg\,max}} \ell(\mu,\sigma) = \sum_{n=1}^{N} \left\{ -\frac{(x_n - \mu)^2}{2\sigma^2} - \log\sqrt{2\pi}\sigma \right\}$$

But the solution is given in the below

$$\mu = \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2$$

Caveats for complicated models

No closed-form solution

Use numerical optimization

many easy-to-use, robust packages are available

Stuck in local optimum (more on this later)

Restart optimization with random initialization

Computational tractability

Can be difficult to compute likelihood $\mathcal{L}(\mathcal{D})$ exactly

Need to approximate

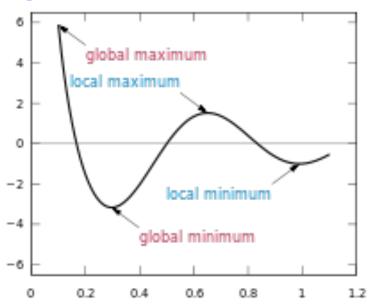
Optimization

Given an objective function

how do we find its minimum

$$\min f(x)$$

difference between global and local optimal



optionally, under constraints

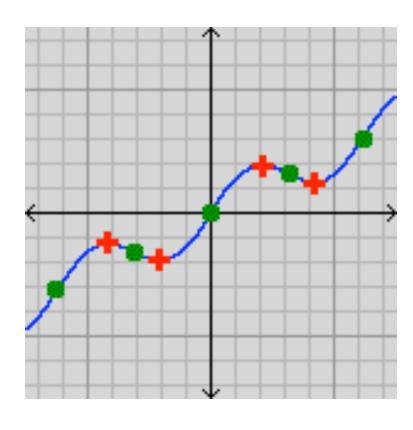
such that
$$g(x) = 0$$

Unconstrained optimization

Fermat's Theorem

Local optima occurs at stationary points, namely, where gradients vanish

$$f'(x) = 0$$



Simple example

What is the minimum of

$$f(x) = x^2$$

Gradient is

$$f'(x) = 2x$$

Set the gradient to zero

$$f'(x) = 0 \to x = 0$$

Namely, x = 0 is locally optimum (minimum and global, actually)

Remember the MLE of tossing coin?

5 (independent) trials

Observation

$$X_1 = 1$$

$$X_2 = 0$$

$$X_3 = 1$$

$$X_1 = 1$$
 $X_2 = 0$ $X_3 = 1$ $X_4 = 1$ $X_5 = 0$

$$X_5 = 0$$

Likelihood of all the 5 observations

$$\theta$$

$$(1-\theta)$$

$$\theta$$

$$\theta \times (1-\theta) \times \theta \times (1-\theta)$$

$$\mathcal{L} = \theta^3 (1 - \theta)^2$$

Maximizing the likelihood

the objective function is

$$L(\theta) = \theta^3 (1 - \theta)^2$$

The gradient is

$$L'(\theta) = 3\theta^{2}(1 - \theta)^{2} - 2\theta^{3}(1 - \theta)$$

Set gradient to zero

$$L'(\theta) = 0 \to \theta = \frac{3}{3+2}$$

Wait a second

The gradient also vanishes if $\theta = 0$

$$L'(\theta) = 3\theta^{2}(1-\theta)^{2} - 2\theta^{3}(1-\theta)$$

Obviously, $\theta = 0$ does not maximize $L(\theta)$

Stationary points are only necessary for (local) optimum

Multivariate optimization

Log-likelihood for Gaussian distribution

$$\underset{\mu,\sigma}{\operatorname{arg\,max}} \ell(\mu,\sigma) = \sum_{n=1}^{N} \left\{ -\frac{(x_n - \mu)^2}{2\sigma^2} - \log\sqrt{2\pi}\sigma \right\}$$

Partial derivatives

$$\frac{\partial \ell}{\partial \mu} = \sum_{n=0}^{N} -\frac{2(x_n - \mu)}{2\sigma^2}$$

$$\frac{\partial \ell}{\partial \sigma} = \sum_{n=0}^{N} \left\{ \frac{(x_n - \mu)^2}{\sigma^3} - \frac{1}{\sigma} \right\}$$

Stationary points defined by sets of equations

$$\frac{\partial \ell}{\partial \mu} = 0 \to \mu = \frac{1}{N} \sum_{n} x_n$$

$$\frac{\partial \ell}{\partial \sigma} = 0 \to \sigma^2 = \frac{1}{N} \sum_{n} (x_n - \mu)^2$$

We can use the first one to solve the mean

and the second one to compute the standard deviation

a loophole?

In both models, parameters are constrained

 θ : should be non-negative and be less I

σ: should be non-negative

But the optimization did not enforce the constraint

yes, we are lucky

Constrained optimization

Equality Constraints

$$\min \quad f(x)$$

s.t.
$$g(x) = 0$$

Method of Lagrange multipliers

Construct the following function (Lagrangian)

$$L(x,\lambda) = f(x) + \lambda g(x)$$

More difficult situations

Inequality constraints

$$\min \quad f(x)$$

s.t. $g(x) \le 0$

generally are harder

We won't deal with these types of problems in its most general case

However, we will see some special instances.

Optimizing Convex functions

Definition

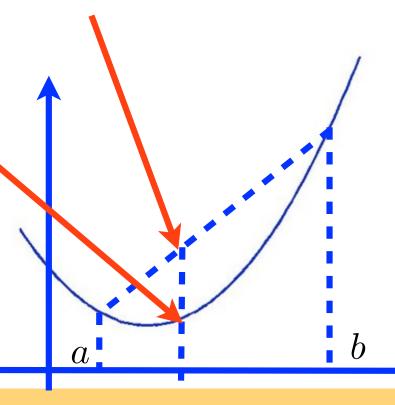
A function f(x) is convex if

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

for

$$0 \le \lambda \le 1$$

Graphically,



Local vs. global optimal

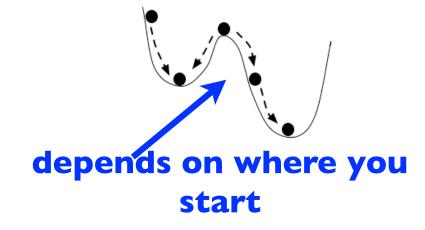
For general objective functions f(x)

We get local optimum

For convex functions

the local optimum is the global optimum

Consider rolling a ball on a hill



does not depend on where you start

Local vs. global optimal

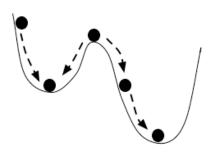
In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex function over a convex set -- can be solved numerically very efficiently

This is advantageous especially if stationary points cannot be found analytically in closed-form

Convex: unique global optimum

nonconvex: local optimum



Examples

Convex functions

$$f(x) = x$$

$$f(x) = x^2$$

$$f(x) = e^x$$

$$f(x) = \frac{1}{x}$$
 when $x \ge 0$

Examples

Nonconvex function

$$f(x) = \cos(x)$$

$$f(x) = e^x - x^2$$

Difference in convex functions is not convex

$$f(x) = \log x$$

log (x) is called concave as its negation is convex

How to determine convexity?

f(x) is convex if

$$f''(x) \ge 0$$

Examples

$$(-\log(x))'' = \frac{1}{x^2}$$

$$(\log(1+e^x))'' = \left(\frac{e^x}{1+e^x}\right)' = \frac{e^x}{(1+e^x)^2}$$

Multivariate functions

Definition

 $f(oldsymbol{x})$ is convex if

$$f(\lambda \boldsymbol{a} + (1 - \lambda)\boldsymbol{b}) \le \lambda f(\boldsymbol{a}) + (1 - \lambda)f(\boldsymbol{b})$$

How to determine convexity in this case?

Second-order derivative becomes Hessian matrix

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1^2} & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_D} \\ \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2 \partial x_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_D} & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2 \partial x_D} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} \end{bmatrix}$$

Convexity for multivariate function

If the Hessian is positive semidefinite, then the function is convex

Ex:
$$f(x) = \frac{x_1^2}{x_2}$$

$$\boldsymbol{H} = \begin{bmatrix} \frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\ -\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3} \end{bmatrix} = \frac{2}{x_2^3} \begin{bmatrix} x_2^2 & -x_1x_2 \\ -x_1x_2 & x_1^2 \end{bmatrix}$$

What does this function look like?

