Math Review

Professor Ameet Talwalkar

Outline

(1) Overview

(2) Review on Probability

(3) Review on Statistics

4 An integrative example

How to grasp machine learning well

Three pillars to machine learning

- Statistics
- Linear Algebra
- Optimization

Resources to study them

- Suggested Reading:
- Chapter 2 of MLAPA book
- Linear Algebra Review and Reference by Zico Kolter and Chuong Do (http://www.cs.cmu.edu/~zkolter/course/15-884/ linalg-review.pdf)
- Convex Optimation Review by Zico Kolter and Honglak Lee (http://www.cs.cmu.edu/~./15381/slides/cvxopt.pdf)
- Wikipedia (some information might not be 100% accurate, though)

Outline

(1) Overview
(2) Review on Probability
(3) Review on Statistics
4) An integrative example

Probability: basic definitions

Sample Space: a set of all possible outcomes or realizations of some random trial.
Example: Toss a coin twice; the sample space is
$\Omega=\{H H, H T, T H, T T\}$.
Event: A subset of sample space
Example: the event that at least one toss is a head is $A=\{H H, H T, T H\}$.

Probability: We assign a real number $P(A)$ to each event A, called the probability of A.

Probability Axioms: The probability P must satisfy three axioms:
(1) $P(A) \geq 0$ for every A;
(2) $P(\Omega)=1$;
(3) If A_{1}, A_{2}, \ldots are disjoint, then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

Random Variables

Definition: A random variable is a function that maps from the sample space to the reals $(X: \Omega \rightarrow R)$, i.e., it assigns a real number $X(\omega)$ to each outcome ω.

Example: X returns 1 if a coin is heads and 0 if a coin is tails. Y returns the number of heads after 3 flips of a fair coin.

Random variables can take on many values, and we are often interested in the distribution over the values of a random variable, e.g., $\mathrm{P}(Y=0)$

Common Distributions

Discrete variable	Probability function	Mean	Variance
Uniform $X \sim U[1, \ldots, N]$	$1 / N$	$\frac{N+1}{2}$	
Binomial $X \sim \operatorname{Bin}(n, p)$	$\binom{n}{x} p^{x}(1-p)^{(n-x)}$	np	
Geometric $X \sim \operatorname{Geom}(p)$	$(1-p)^{x-1} p$	$1 / p$	
Poisson $X \sim \operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda^{x}} \lambda^{x}}{x!}$	λ	
Continuous variable	Probability density function	Mean	Variance
Uniform $X \sim U(a, b)$	$1 /(\mathrm{b}-\mathrm{a})$	$(\mathrm{a}+\mathrm{b}) / 2$	
Gaussian $X \sim N\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$	μ	
Gamma $X \sim \Gamma(\alpha, \beta)(x \geq 0)$	$\overline{\Gamma(\alpha) \beta^{a}} x^{a-1} e^{-x / \beta}$	$\alpha \beta$	
Exponential $X \sim \operatorname{exponen}(\beta)$	$\frac{1}{\beta} e^{-\frac{x}{\beta}}$	β	

Distribution Function

Definition: Suppose X is a random variable, x is a specific value that it can take,
Cumulative distribution function (CDF) is the function $F: R \rightarrow[0,1]$, where $F(x)=P(X \leq x)$.

If X is discrete \Rightarrow probability mass function: $f(x)=P(X=x)$.
If X is continuous \Rightarrow probability density function for X if there exists a function f such that $f(x) \geq 0$ for all $\mathrm{x}, \int_{-\infty}^{\infty} f(x) d x=1$ and for every $a \leq b$,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

If $F(x)$ is differentiable everywhere, $f(x)=F^{\prime}(x)$.

Expectation

Expected Values

- Discrete random variable $\mathrm{X}, E[g(X)]=\sum_{x \in \mathcal{X}} g(x) f(x)$;
- Continuous random variable $\mathrm{X}, E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x)$

Mean and Variance $\mu=E[X]$ is the mean; $\operatorname{var}[X]=E\left[(X-\mu)^{2}\right]$ is the variance.
We also have $\operatorname{var}[X]=E\left[X^{2}\right]-\mu^{2}$.

Multivariate Distributions

Definition:

$$
F_{X, Y}(x, y):=P(X \leq x, Y \leq y)
$$

and

$$
f_{X, Y}(x, y):=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

Marginal Distribution of X (Discrete case):

$$
f_{X}(x)=P(X=x)=\sum_{y} P(X=x, Y=y)=\sum_{y} f_{X, Y}(x, y)
$$

or $f_{X}(x)=\int_{y} f_{X, Y}(x, y) d y$ for continuous variable.

Conditional Probability and Bayes Rule

Conditional probability of X given $Y=y$ is

$$
f_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Bayes Rule:

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Independence

Independent Variables X and Y are independent if and only if:

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

or $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all values x and y.
IID variables: Independent and identically distributed (IID) random variables are drawn from the same distribution and are all mutually independent.
Linearity of Expectation: Even if X_{1}, \ldots, X_{n} are not independent,

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

Outline

(1) Overview
(2) Review on Probability
(3) Review on Statistics

4 An integrative example

Statistics

Suppose X_{1}, \ldots, X_{n} are random variables:
Sample Mean:

$$
\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

Sample Variance:

$$
S_{N-1}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

If X_{i} are iid:

$$
\begin{aligned}
E[\bar{X}] & =E\left[X_{i}\right]=\mu, \\
\operatorname{Var}(\bar{X}) & =\sigma^{2} / N, \\
E\left[S_{N-1}^{2}\right] & =\sigma^{2}
\end{aligned}
$$

Point Estimation

Definition The point estimator $\hat{\theta}_{N}$ is a function of samples X_{1}, \ldots, X_{N} that approximates a parameter θ of the distribution of X_{i}.

Sample Bias: The bias of an estimator is

$$
\operatorname{bias}\left(\hat{\theta}_{N}\right)=E_{\theta}\left[\hat{\theta}_{N}\right]-\theta
$$

An estimator is unbiased estimator if $E_{\theta}\left[\hat{\theta}_{N}\right]=\theta$

Example

Suppose we have observed N realizations of the random variable X :

$$
x_{1}, x_{2}, \cdots, x_{N}
$$

Then,

- Sample mean $\bar{X}=\frac{1}{N} \sum_{n} x_{n}$ is an unbiased estimator of X 's mean.
- Sample variance $S_{N-1}^{2}=\frac{1}{N-1} \sum_{n}\left(x_{n}-\bar{X}\right)^{2}$ is an unbiased estimator of X 's variance
- Sample variance $S_{N}^{2}=\frac{1}{N} \sum_{n}\left(x_{n}-\bar{X}\right)^{2}$ is not an unbiased estimator of X 's variance

Outline

(1) Overview
(2) Review on Probability
(3) Review on Statistics

4 An integrative example

Outline

Maximum likelihood estimation

Optimization

Convexity

Maximum likelihood estimation

(MLE)

Intuitive example

Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of heads (or tails) of my next flip?

Model
Each flip is a Bernoulli random variable \mathbf{X}
\mathbf{X} can take only two values: I (heads), 0 (tails)

$$
p(X=1)=\theta
$$

$$
p(X=0)=1-\theta
$$

Parameter to be identified from data

Principles of MLE

5 (independent) trials
Observations

$$
X_{1}=1 \quad X_{2}=0 \quad X_{3}=1 \quad X_{4}=1 \quad X_{5}=0
$$

Likelihood of all the $\mathbf{5}$ observations

$$
\begin{aligned}
& \theta \times(1-\theta) \times \theta \times \theta \times(1-\theta) \\
& \longmapsto \mathcal{L}=\theta^{3}(1-\theta)^{2}
\end{aligned}
$$

Intuition
choose θ such that L is maximized

Maximizing the likelihood

Solution

$$
\mathcal{L}=\theta^{3}(1-\theta)^{2}
$$

$$
\theta^{M L E}=\frac{3}{3+2}
$$

(Detailed derivation later)
Intuition
Probability of head is the percentage of heads in the total flips.

More generally,

Model (ie, assuming how data is distributed)

$$
X \sim P(X ; \theta)
$$

Training data (observations)

$$
\mathcal{D}=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}
$$

Maximum likelihood estimate
log-likelihood

$$
\begin{aligned}
\mathcal{L}(\mathcal{D})=\prod_{i=1}^{N} P\left(x_{i} ; \theta\right) \quad \theta^{M L E} & =\arg \max _{\theta} \mathcal{L}(\mathcal{D}) \\
& =\arg \max _{\theta} \sum_{i=1}^{N} \log P\left(x_{i} ; \theta\right)
\end{aligned}
$$

Ex: estimate parameters of Gaussian distribution

Model with unknown parameters

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Observations

$$
\mathcal{D}=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}
$$

Log-likelihood

$$
\ell(\mu, \sigma)=\sum_{n=1}^{N}\left\{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\}
$$

Solution

We will solve the following later

$$
\underset{\mu, \sigma}{\arg \max } \ell(\mu, \sigma)=\sum_{n=1}^{N}\left\{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\}
$$

But the solution is given in the below

$$
\mu=\bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \quad \sigma^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2}
$$

Caveats for complicated models

No closed-form solution
Use numerical optimization
many easy-to-use, robust packages are available
Stuck in local optimum (more on this later)
Restart optimization with random initialization
Computational tractability
Can be difficult to compute likelihood $\mathcal{L}(\mathcal{D})$ exactly
Need to approximate

Optimization

Given an objective function

$$
f(x)
$$

how do we find its minimum

$$
\min f(x)
$$

difference between global and local optimal

optionally, under constraints
such that $g(x)=0$

Unconstrained optimization

Fermat's Theorem

Local optima occurs at stationary points, namely, where gradients vanish

Simple example

What is the minimum of

$$
f(x)=x^{2}
$$

Gradient is

$$
f^{\prime}(x)=2 x
$$

Set the gradient to zero

$$
f^{\prime}(x)=0 \rightarrow x=0
$$

Namely, $\mathbf{x}=\mathbf{0}$ is locally optimum (minimum and global, actually)

Remember the MLE of tossing coin?

5 (independent) trials
Observation

$$
X_{1}=1 \quad X_{2}=0 \quad X_{3}=1 \quad X_{4}=1 \quad X_{5}=0
$$

Likelihood of all the $\mathbf{5}$ observations

$$
\theta \times(1-\theta) \times \theta \times \theta \times(1-\theta)
$$

$$
\leadsto \mathcal{L}=\theta^{3}(1-\theta)^{2}
$$

Maximizing the likelihood

the objective function is

$$
L(\theta)=\theta^{3}(1-\theta)^{2}
$$

The gradient is

$$
L^{\prime}(\theta)=3 \theta^{2}(1-\theta)^{2}-2 \theta^{3}(1-\theta)
$$

Set gradient to zero

$$
L^{\prime}(\theta)=0 \rightarrow \theta=\frac{3}{3+2}
$$

Wait a second

The gradient also vanishes if $\theta=0$

$$
L^{\prime}(\theta)=3 \theta^{2}(1-\theta)^{2}-2 \theta^{3}(1-\theta)
$$

Obviously, $\boldsymbol{\theta}=\mathbf{0}$ does not maximize $\mathbf{L}(\boldsymbol{\theta})$
Stationary points are only necessary for (local) optimum

Multivariate optimization

Log-likelihood for Gaussian distribution

$$
\underset{\mu, \sigma}{\arg \max } \ell(\mu, \sigma)=\sum_{n=1}^{N}\left\{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\}
$$

Partial derivatives

$$
\begin{aligned}
\frac{\partial \ell}{\partial \mu} & =\sum_{n}^{N}-\frac{2\left(x_{n}-\mu\right)}{2 \sigma^{2}} \\
\frac{\partial \ell}{\partial \sigma} & =\sum_{n}^{N}\left\{\frac{\left(x_{n}-\mu\right)^{2}}{\sigma^{3}}-\frac{1}{\sigma}\right\}
\end{aligned}
$$

Stationary points defined by sets of equations

$$
\begin{aligned}
& \frac{\partial \ell}{\partial \mu}=0 \rightarrow \mu=\frac{1}{N} \sum_{n} x_{n} \\
& \frac{\partial \ell}{\partial \sigma}=0 \rightarrow \sigma^{2}=\frac{1}{N} \sum_{n}\left(x_{n}-\mu\right)^{2}
\end{aligned}
$$

We can use the first one to solve the mean
and the second one to compute the standard deviation

a loophole?

In both models, parameters are constrained
θ : should be non-negative and be less I
σ : should be non-negative
But the optimization did not enforce the constraint
yes, we are lucky

Constrained optimization

Equality Constraints

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & g(x)=0
\end{aligned}
$$

Method of Lagrange multipliers
Construct the following function (Lagrangian)

$$
L(x, \lambda)=f(x)+\lambda g(x)
$$

More difficult situations

Inequality constraints

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0
\end{aligned}
$$

generally are harder
We won't deal with these types of problems in its most general case

However, we will see some special instances.

Optimizing Convex functions

Definition

A function $f(x)$ is convex if
for

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b)
$$

Graphically,

Local vs. global optimal

For general objective
Consider rolling a ball on a hill functions $f(x)$

We get local optimum
For convex functions
the local optimum is the global optimum

depends on where you start
does not depend on where you start

Local vs. global optimal

In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex function over a convex set -- can be solved numerically very efficiently

This is advantageous especially if stationary points cannot be found analytically in closed-form

Convex: unique global optimum
nonconvex: local optimum

Examples

Convex functions

$$
\begin{aligned}
& f(x)=x \\
& f(x)=x^{2} \\
& f(x)=e^{x} \\
& f(x)=\frac{1}{x} \quad \text { when } \quad x \geq 0
\end{aligned}
$$

Examples

Nonconvex function

$$
\begin{aligned}
& f(x)=\cos (x) \\
& f(x)=e^{x}-x^{2} \\
& \text { Difference in convex } \\
& \text { functions is not convex }
\end{aligned}
$$

$$
f(x)=\log x<\log (\mathbf{x}) \text { is called concave as }
$$ its negation is convex

How to determine convexity?

$f(x)$ is convex if

$$
f^{\prime \prime}(x) \geq 0
$$

Examples

$$
\begin{aligned}
& (-\log (x))^{\prime \prime}=\frac{1}{x^{2}} \\
& \left(\log \left(1+e^{x}\right)\right)^{\prime \prime}=\left(\frac{e^{x}}{1+e^{x}}\right)^{\prime}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}
\end{aligned}
$$

Multivariate functions

Definition

$f(x)$ is convex if

$$
f(\lambda \boldsymbol{a}+(1-\lambda) \boldsymbol{b}) \leq \lambda f(\boldsymbol{a})+(1-\lambda) f(\boldsymbol{b})
$$

How to determine convexity in this case?
Second-order derivative becomes Hessian matrix

$$
\boldsymbol{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{D}} \\
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{D}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{D}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{D}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{D}^{2}}
\end{array}\right]
$$

Convexity for multivariate function

If the Hessian is positive semidefinite, then the function is convex

Ex: $\quad f(\boldsymbol{x})=\frac{x_{1}^{2}}{x_{2}}$

What does this function look like?

