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Schedule and Final

Upcoming Schedule

Today: Last day of class

Next Monday (3/13): No class – I will hold office hours in my office
(BH 4531F)

Next Wednesday (3/15): Final Exam, HW6 due

Final Exam

Cumulative but with more emphasis on new material

8 short questions (recall that midterm had 6 short and 3 long
questions)

Should be much shorter than midterm, but of equal difficulty

Focus on major concepts (e.g., MLE, primal and dual formulations of
SVM, gradient descent, etc.)
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Neural Networks – Basic Idea

Learning nonlinear basis functions and classifiers

Hidden layers are nonlinear mappings from input features to new
representation

Output layers use the new representations for classification and
regression

Learning parameters

Backpropogation = efficient algorithm for (stochastic) gradient
descent

Can write down explicit updates via chain rule of calculus
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Feed@Forward'Steps:'
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Learning'in'NN:'Backpropaga1on'
•  Similar'to'the'perceptron'learning'algorithm,'we'cycle'
through'our'examples'
–  If'the'output'of'the'network'is'correct,'no'changes'are'made'
–  If'there'is'an'error,'weights'are'adjusted'to'reduce'the'error'

•  We'are'just'performing''(stochas1c)'gradient'descent!'
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Op1mizing'the'Neural'Network'
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Forward'Propaga1on'
•  Given'one'labeled'training'instance'(x, y):'
'
Forward'Propaga1on'
•  a(1)'= x'
•  z(2) = Θ(1)a(1) 

•  a(2)'= g(z(2))     [add'a0
(2)]'

•  z(3) = Θ(2)a(2) 

•  a(3)'= g(z(3))     [add'a0
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•  z(4) = Θ(3)a(3) 

•  a(4)'= hΘ(x) = g(z(4))'
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Backpropaga1on:'Gradient'Computa1on'
Let'δj

(l) ='“error”'of'node'j'in'layer'l 
 
(#layers'L'='4) 
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•  δ(3) = (Θ(3))Tδ(4) .* g’(z(3))  
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•  (No'δ(1)) 
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Training'a'Neural'Network'via'Gradient'
Descent'with'Backprop'

45'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥(l) randomly (NOT to 0!)
Loop // each iteration is called an epoch
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Summary of the course so far

Supervised learning has been our focus

Setup: given a training dataset {xn, yn}Nn=1, we learn a function h(x)
to predict x’s true value y (i.e., regression or classification)

Linear vs. nonlinear features
1 Linear: h(x) depends on wTx
2 Nonlinear: h(x) depends on wTφ(x), where φ is either explicit or

depends on a kernel function k(xm,xn) = φ(xm)Tφ(xn)

Loss function
1 Squared loss: least square for regression (minimizing residual sum of

errors)
2 Logistic loss: logistic regression
3 Exponential loss: AdaBoost
4 Margin-based loss: support vector machines

Principles of estimation
1 Point estimate: maximum likelihood, regularized likelihood
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cont’d

Optimization
1 Methods: gradient descent, Newton method
2 Convex optimization: global optimum vs. local optimum
3 Lagrange duality: primal and dual formulation

Learning theory
1 Difference between training error and generalization error
2 Overfitting, bias and variance tradeoff
3 Regularization: various regularized models
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Supervised versus Unsupervised Learning

Supervised Learning from labeled observations

Labels ‘teach’ algorithm to learn mapping from observations to labels

Classification, Regression

Unsupervised Learning from unlabeled observations

Learning algorithm must find latent structure from features alone

Can be goal in itself (discover hidden patterns, exploratory analysis)

Can be means to an end (preprocessing for supervised task)

Clustering (Today)
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Outline

1 Administration

2 Review of last lecture
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Clustering
Setup Given D = {xn}Nn=1 and K, we want to output:

{µk}Kk=1: prototypes of clusters

A(xn) ∈ {1, 2, . . . ,K}: the cluster membership

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Applications

Identify communities within social networks

Find topics in news stories

Group similiar sequences into gene families
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K-means example
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K-means clustering

Intuition Data points assigned to cluster k should be near prototype µk

Distortion measure (clustering objective function, cost function)

J =

N∑

n=1

K∑

k=1

rnk‖xn − µk‖22

where rnk ∈ {0, 1} is an indicator variable

rnk = 1 if and only if A(xn) = k
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Algorithm

Minimize distortion Alternative optimization between {rnk} and {µk}
Step 0 Initialize {µk} to some values

Step 1 Fix {µk} and minimize over {rnk}, to get this assignment:

rnk =

{
1 if k = argminj ‖xn − µj‖22
0 otherwise

Step 2 Fix {rnk} and minimize over {µk} to get this update:

µk =

∑
n rnkxn∑
n rnk

Step 3 Return to Step 1 unless stopping criterion is met
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Remarks

Prototype µk is the mean of points assigned to cluster k, hence
‘K-means’

The procedure reduces J in both Step 1 and Step 2 and thus makes
improvements on each iteration

No guarantee we find the global solution

Quality of local optimum depends on initial values at Step 0

k-means++ is a principled approximation algorithm
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Probabilistic interpretation of clustering?

How can we model p(x) to reflect our intuition that points stay close to
their cluster centers?

(b)

0 0.5 1

0

0.5

1
Points seem to form 3 clusters

We cannot model p(x) with
simple and known distributions

E.g., the data is not a Guassian
b/c we have 3 distinct
concentrated regions
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Gaussian mixture models: intuition

(a)

0 0.5 1

0

0.5

1

Model each region with a
distinct distribution

Can use Gaussians — Gaussian
mixture models (GMMs)

We don’t know cluster
assignments (label), parameters
of Gaussians, or mixture
components!

Must learn from unlabeled data
D = {xn}Nn=1

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 16 / 26



Gaussian mixture models: intuition

(a)

0 0.5 1

0

0.5

1

Model each region with a
distinct distribution

Can use Gaussians — Gaussian
mixture models (GMMs)

We don’t know cluster
assignments (label), parameters
of Gaussians, or mixture
components!

Must learn from unlabeled data
D = {xn}Nn=1

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 16 / 26



Gaussian mixture models: formal definition

GMM has the following density function for x

p(x) =

K∑

k=1

ωkN(x|µk,Σk)

K: number of Gaussians — they are called mixture components

µk and Σk: mean and covariance matrix of k-th component

ωk: mixture weights (or priors) represent how much each component
contributes to final distribution. They satisfy 2 properties:

∀ k, ωk > 0, and
∑

k

ωk = 1

These properties ensure p(x) is in fact a probability density function

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 17 / 26



Gaussian mixture models: formal definition

GMM has the following density function for x

p(x) =

K∑

k=1

ωkN(x|µk,Σk)

K: number of Gaussians — they are called mixture components

µk and Σk: mean and covariance matrix of k-th component

ωk: mixture weights (or priors) represent how much each component
contributes to final distribution. They satisfy 2 properties:

∀ k, ωk > 0, and
∑

k

ωk = 1

These properties ensure p(x) is in fact a probability density function

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 17 / 26



Gaussian mixture models: formal definition

GMM has the following density function for x

p(x) =

K∑

k=1

ωkN(x|µk,Σk)

K: number of Gaussians — they are called mixture components

µk and Σk: mean and covariance matrix of k-th component

ωk: mixture weights (or priors) represent how much each component
contributes to final distribution. They satisfy 2 properties:

∀ k, ωk > 0, and
∑

k

ωk = 1

These properties ensure p(x) is in fact a probability density function

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 17 / 26



GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x, z) = p(z)p(x|z)

where z is a discrete random variable taking values between 1 and K.

Denote
ωk = p(z = k)

Now, assume the conditional distributions are Gaussian distributions

p(x|z = k) = N(x|µk,Σk)

Then, the marginal distribution of x is

p(x) =

K∑

k=1

ωkN(x|µk,Σk)

Namely, the Gaussian mixture model
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GMMs: example

(a)

0 0.5 1

0

0.5

1

The conditional distribution between x and z
(representing color) are

p(x|z = red) = N(x|µ1,Σ1)

p(x|z = blue) = N(x|µ2,Σ2)

p(x|z = green) = N(x|µ3,Σ3)

(b)

0 0.5 1

0

0.5

1 The marginal distribution is thus

p(x) = p(red)N(x|µ1,Σ1) + p(blue)N(x|µ2,Σ2)

+ p(green)N(x|µ3,Σ3)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 19 / 26



GMMs: example

(a)

0 0.5 1

0

0.5

1

The conditional distribution between x and z
(representing color) are

p(x|z = red) = N(x|µ1,Σ1)

p(x|z = blue) = N(x|µ2,Σ2)

p(x|z = green) = N(x|µ3,Σ3)

(b)

0 0.5 1

0

0.5

1 The marginal distribution is thus

p(x) = p(red)N(x|µ1,Σ1) + p(blue)N(x|µ2,Σ2)

+ p(green)N(x|µ3,Σ3)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, 2017 19 / 26



Parameter estimation for Gaussian mixture models

The parameters in GMMs are

θ = {ωk,µk,Σk}Kk=1

Let’s first consider the simple/unrealistic case where we have labels z

Define D′ = {xn, zn}Nn=1

D′ is the complete data

D the incomplete data

How can we learn our parameters?

Given D′, the maximum likelihood estimation of the θ is given by

θ = argmax logD′ =
∑

n

log p(xn, zn)
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

∑

n

log p(xn, zn) =
∑

n

log p(zn)p(xn|zn) =
∑

k

∑

n:zn=k

log p(zn)p(xn|zn)

where we have grouped data by its values zn.

Let γnk ∈ {0, 1} be a binary variable that indicates whether zn = k:

∑

n

log p(xn, zn) =
∑

k

∑

n

γnk log p(z = k)p(xn|z = k)

=
∑

k

∑

n

γnk [logωk + logN(xn|µk,Σk)]
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Parameter estimation for GMMs: complete data
From our previous discussion, we have

∑

n

log p(xn, zn) =
∑

k

∑

n

γnk [logωk + logN(xn|µk,Σk)]

Regrouping, we have

∑

n

log p(xn, zn) =
∑

k

∑

n

γnk logωk +
∑

k

{∑

n

γnk logN(xn|µk,Σk)

}

The term inside the braces depends on k-th component’s parameters. It is now
easy to show that (left as an exercise) the MLE is:

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑

n

γnkxn

Σk =
1∑
n γnk

∑

n

γnk(xn − µk)(xn − µk)
T

What’s the intuition?
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Intuition

Since γnk is binary, the previous solution is nothing but

ωk: fraction of total data points whose zn is k
I note that

∑
k

∑
n γnk = N

µk: mean of all data points whose zn is k

Σk: covariance of all data points whose zn is k

This intuition will help us develop an algorithm for estimating θ when we
do not know zn (incomplete data)
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Parameter estimation for GMMs: incomplete data

When zn is not given, we can guess it via the posterior probability

p(zn = k|xn) =
p(xn|zn = k)p(zn = k)

p(xn)
=

p(xn|zn = k)p(zn = k)
∑K

k′=1 p(xn|zn = k′)p(zn = k′)

To compute the posterior probability, we need to know the parameters θ!

Let’s pretend we know the value of the parameters so we can compute the
posterior probability.

How is that going to help us?
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Estimation with soft γnk

We define γnk = p(zn = k|xn)

Recall that γnk was previously binary

Now it’s a “soft” assignment of xn to k-th component

Each xn is assigned to a component fractionally according to
p(zn = k|xn)

We now get the same expression for the MLE as before!

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑

n

γnkxn

Σk =
1∑
n γnk

∑

n

γnk(xn − µk)(xn − µk)
T

But remember, we’re ‘cheating’ by using θ to compute γnk!
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Iterative procedure

Alternate between estimating γnk and computing parameters

Step 0: initialize θ with some values (random or otherwise)

Step 1: compute γnk using the current θ

Step 2: update θ using the just computed γnk

Step 3: go back to Step 1

This is an example of the EM algorithm — a powerful procedure for model
estimation with hidden/latent variables

Connection with K-means?

GMMs provide probabilistic interpretation for K-means

K-means is “hard” GMM or GMMs is “soft” K-means

Posterior γnk provides a probabilistic assignment for xn to cluster k
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