Clustering

Professor Ameet Talwalkar

Outline

(1) Administration

(2) Review of last lecture

(3) Clustering

Schedule and Final

Upcoming Schedule

- Today: Last day of class
- Next Monday (3/13): No class - I will hold office hours in my office (BH 4531F)
- Next Wednesday (3/15): Final Exam, HW6 due

Final Exam

- Cumulative but with more emphasis on new material
- 8 short questions (recall that midterm had 6 short and 3 long questions)
- Should be much shorter than midterm, but of equal difficulty
- Focus on major concepts (e.g., MLE, primal and dual formulations of SVM, gradient descent, etc.)

Outline

(1) Administration

(2) Review of last lecture
(3) Clustering

Neural Networks - Basic Idea

Learning nonlinear basis functions and classifiers

- Hidden layers are nonlinear mappings from input features to new representation
- Output layers use the new representations for classification and regression

Learning parameters

- Backpropogation $=$ efficient algorithm for (stochastic) gradient descent
- Can write down explicit updates via chain rule of calculus

Single Node

"bias unit"

$$
\mathbf{x}=\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \boldsymbol{\theta}=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]
$$

$\begin{aligned} \rightarrow h_{\boldsymbol{\theta}}(\mathbf{x}) & =g\left(\boldsymbol{\theta}^{\boldsymbol{\top}} \mathbf{x}\right) \\ & =\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} \mathbf{x}}}\end{aligned}$

$$
=\frac{1}{1+e^{-\theta^{\mathrm{T}_{\mathrm{x}}}}}
$$

Sigmoid (logistic) activation function: $g(z)=\frac{1}{1+e^{-z}}$

Neural Network

Layer 1
(Input Layer)

Layer 2
(Hidden Layer) (Output Layer)

Layer 3

Vectorization

$$
\begin{aligned}
a_{1}^{(2)} & =g\left(\Theta_{10}^{(1)} x_{0}+\Theta_{11}^{(1)} x_{1}+\Theta_{12}^{(1)} x_{2}+\Theta_{13}^{(1)} x_{3}\right)=g\left(z_{1}^{(2)}\right) \\
a_{2}^{(2)} & =g\left(\Theta_{20}^{(1)} x_{0}+\Theta_{21}^{(1)} x_{1}+\Theta_{22}^{(1)} x_{2}+\Theta_{23}^{(1)} x_{3}\right)=g\left(z_{2}^{(2)}\right) \\
a_{3}^{(2)} & =g\left(\Theta_{30}^{(1)} x_{0}+\Theta_{31}^{(1)} x_{1}+\Theta_{32}^{(1)} x_{2}+\Theta_{33}^{(1)} x_{3}\right)=g\left(z_{3}^{(2)}\right) \\
h_{\Theta}(\mathbf{x}) & =g\left(\Theta_{10}^{(2)} a_{0}^{(2)}+\Theta_{11}^{(2)} a_{1}^{(2)}+\Theta_{12}^{(2)} a_{2}^{(2)}+\Theta_{13}^{(2)} a_{3}^{(2)}\right)=g\left(z_{1}^{(3)}\right)
\end{aligned}
$$

Feed-Forward Steps:

$$
\begin{aligned}
& \mathbf{z}^{(2)}=\Theta^{(1)} \mathbf{x} \\
& \mathbf{a}^{(2)}=g\left(\mathbf{z}^{(2)}\right)
\end{aligned}
$$

Add $a_{0}^{(2)}=1$

$$
\mathbf{z}^{(3)}=\Theta^{(2)} \mathbf{a}^{(2)}
$$

$$
h_{\Theta}(\mathbf{x})=\mathbf{a}^{(3)}=g\left(\mathbf{z}^{(3)}\right)
$$

Learning in NN: Backpropagation

- Similar to the perceptron learning algorithm, we cycle through our examples
- If the output of the network is correct, no changes are made
- If there is an error, weights are adjusted to reduce the error
- We are just performing (stochastic) gradient descent!

Optimizing the Neural Network

$$
\begin{aligned}
J(\Theta)= & -\frac{1}{n}\left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{i k} \log \left(h_{\Theta}\left(\mathbf{x}_{i}\right)\right)_{k}+\left(1-y_{i k}\right) \log \left(1-\left(h_{\Theta}\left(\mathbf{x}_{i}\right)\right)_{k}\right)\right] \\
& +\frac{\lambda}{2 n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}}\left(\Theta_{j i}^{(l)}\right)^{2}
\end{aligned}
$$

Unlike before, $J(\Theta)$ is not convex, so GD on a neural net yields a local optimum

Forward Propagation

- Given one labeled training instance (\mathbf{x}, y):

Forward Propagation

- $\mathbf{a}^{(1)}=\mathbf{x}$
- $\mathbf{z}^{(2)}=\Theta^{(1)} \mathbf{a}^{(1)}$
- $\mathbf{a}^{(2)}=g\left(\mathbf{z}^{(2)}\right) \quad\left[\operatorname{add} \mathrm{a}_{0}{ }^{(2)}\right]$

- $\mathbf{z}^{(3)}=\Theta^{(2)} \mathbf{a}^{(2)}$
- $\mathbf{a}^{(3)}=g\left(\mathbf{z}^{(3)}\right) \quad\left[\right.$ add $\left.\mathrm{a}_{0}{ }^{(3)}\right]$
- $\mathbf{z}^{(4)}=\Theta^{(3)} \mathbf{a}^{(3)}$
- $\mathbf{a}^{(4)}=\mathrm{h}_{\Theta}(\mathbf{x})=g\left(\mathbf{z}^{(4)}\right)$

Backpropagation: Gradient Computation

Let $\delta_{j}^{(l)}=$ "error" of node j in layer I
(\#layers L=4)

Backpropagation

$$
\begin{array}{|c|}
\hline \text { Element-wise } \\
\text { product .* }
\end{array}
$$

- $\boldsymbol{\delta}^{(4)}=\boldsymbol{a}^{(4)}-\mathbf{y}$
- $\boldsymbol{\delta}^{(3)}=\left(\Theta^{(3)}\right)^{\top} \boldsymbol{\delta}^{(4)} .{ }^{*} g^{\prime}\left(\mathbf{z}^{(3)}\right)$

$$
g^{\prime}\left(\mathbf{z}^{(3)}\right)=\mathbf{a}^{(3)} .^{*}\left(1-\mathbf{a}^{(3)}\right)
$$

- $\boldsymbol{\delta}^{(2)}=\left(\Theta^{(2)}\right)^{\top} \boldsymbol{\delta}^{(3)} .^{*} g^{\prime}\left(\mathbf{Z}^{(2)}\right)$
- $\left(\operatorname{No} \delta^{(1)}\right)$

$$
g^{\prime}\left(\mathbf{z}^{(2)}\right)=\mathbf{a}^{(2)} .^{*}\left(1-\mathbf{a}^{(2)}\right)
$$

Training a Neural Network via Gradient Descent with Backprop

Given: training set $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ Initialize all $\Theta^{(l)}$ randomly (NOT to 0 !)
Loop // each iteration is called an epoch
Set $\Delta_{i j}^{(l)}=0 \quad \forall l, i, j$
(Used to accumulate gradient)
For each training instance (\mathbf{x}_{i}, y_{i}):
Set $\mathbf{a}^{(1)}=\mathbf{x}_{i}$
Compute $\left\{\mathbf{a}^{(2)}, \ldots, \mathbf{a}^{(L)}\right\}$ via forward propagation
Compute $\boldsymbol{\delta}^{(L)}=\mathbf{a}^{(L)}-y_{i}$
Compute errors $\left\{\boldsymbol{\delta}^{(L-1)}, \ldots, \boldsymbol{\delta}^{(2)}\right\}$
Compute gradients $\Delta_{i j}^{(l)}=\Delta_{i j}^{(l)}+a_{j}^{(l)} \delta_{i}^{(l+1)}$
Compute avg regularized gradient $D_{i j}^{(l)}= \begin{cases}\frac{1}{n} \Delta_{i j}^{(l)}+\lambda \Theta_{i j}^{(l)} & \text { if } j \neq 0 \\ \frac{1}{n} \Delta_{i j}^{(l)} & \text { otherwise }\end{cases}$
Update weights via gradient step $\Theta_{i j}^{(l)}=\Theta_{i j}^{(l)}-\alpha D_{i j}^{(l)}$
Until weights converge or max \#epochs is reached

Summary of the course so far

Supervised learning has been our focus

- Setup: given a training dataset $\left\{\boldsymbol{x}_{n}, y_{n}\right\}_{n=1}^{N}$, we learn a function $h(\boldsymbol{x})$ to predict \boldsymbol{x} 's true value y (i.e., regression or classification)
- Linear vs. nonlinear features
(1) Linear: $h(\boldsymbol{x})$ depends on $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
(2) Nonlinear: $h(\boldsymbol{x})$ depends on $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$, where ϕ is either explicit or depends on a kernel function $k\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{n}\right)=\boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)$
- Loss function
(1) Squared loss: least square for regression (minimizing residual sum of errors)
(2) Logistic loss: logistic regression
(3) Exponential loss: AdaBoost
(9) Margin-based loss: support vector machines
- Principles of estimation
(1) Point estimate: maximum likelihood, regularized likelihood

cont'd

- Optimization
(1) Methods: gradient descent, Newton method
(2) Convex optimization: global optimum vs. local optimum
(3) Lagrange duality: primal and dual formulation
- Learning theory
(1) Difference between training error and generalization error
(2) Overfitting, bias and variance tradeoff
(3) Regularization: various regularized models

Supervised versus Unsupervised Learning

Supervised Learning from labeled observations

- Labels 'teach' algorithm to learn mapping from observations to labels
- Classification, Regression

Supervised versus Unsupervised Learning

Supervised Learning from labeled observations

- Labels 'teach' algorithm to learn mapping from observations to labels
- Classification, Regression

Unsupervised Learning from unlabeled observations

- Learning algorithm must find latent structure from features alone
- Can be goal in itself (discover hidden patterns, exploratory analysis)
- Can be means to an end (preprocessing for supervised task)
- Clustering (Today)

Outline

(1) Administration

(2) Review of last lecture
(3) Clustering

- K-means
- Gaussian mixture models

Clustering

Setup Given $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$ and K, we want to output:

Clustering

Setup Given $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$ and K, we want to output:

- $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$: prototypes of clusters
- $A\left(\boldsymbol{x}_{n}\right) \in\{1,2, \ldots, K\}$: the cluster membership

Toy Example Cluster data into two clusters.

Clustering

Setup Given $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$ and K, we want to output:

- $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$: prototypes of clusters
- $A\left(\boldsymbol{x}_{n}\right) \in\{1,2, \ldots, K\}$: the cluster membership

Toy Example Cluster data into two clusters.

Applications

- Identify communities within social networks
- Find topics in news stories
- Group similiar sequences into gene families

K-means example

K-means example

K-means example

K-means example

K-means example

K-means clustering

Intuition Data points assigned to cluster k should be near prototype $\boldsymbol{\mu}_{k}$

K-means clustering

Intuition Data points assigned to cluster k should be near prototype $\boldsymbol{\mu}_{k}$

Distortion measure (clustering objective function, cost function)

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

where $r_{n k} \in\{0,1\}$ is an indicator variable

$$
r_{n k}=1 \text { if and only if } A\left(\boldsymbol{x}_{n}\right)=k
$$

Algorithm

Minimize distortion Alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values

Algorithm

Minimize distortion Alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values
- Step 1 Fix $\left\{\boldsymbol{\mu}_{k}\right\}$ and minimize over $\left\{r_{n k}\right\}$, to get this assignment:

$$
r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Algorithm

Minimize distortion Alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values
- Step 1 Fix $\left\{\boldsymbol{\mu}_{k}\right\}$ and minimize over $\left\{r_{n k}\right\}$, to get this assignment:

$$
r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Step 2 Fix $\left\{r_{n k}\right\}$ and minimize over $\left\{\boldsymbol{\mu}_{k}\right\}$ to get this update:

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} r_{n k} \boldsymbol{x}_{n}}{\sum_{n} r_{n k}}
$$

- Step 3 Return to Step 1 unless stopping criterion is met

Remarks

- Prototype $\boldsymbol{\mu}_{k}$ is the mean of points assigned to cluster k, hence 'K-means'
- The procedure reduces J in both Step 1 and Step 2 and thus makes improvements on each iteration
- No guarantee we find the global solution
- Quality of local optimum depends on initial values at Step 0
- k-means++ is a principled approximation algorithm

Probabilistic interpretation of clustering?

How can we model $p(\boldsymbol{x})$ to reflect our intuition that points stay close to their cluster centers?

Probabilistic interpretation of clustering?

How can we model $p(\boldsymbol{x})$ to reflect our intuition that points stay close to their cluster centers?

- Points seem to form 3 clusters

Probabilistic interpretation of clustering?

How can we model $p(\boldsymbol{x})$ to reflect our intuition that points stay close to their cluster centers?

- Points seem to form 3 clusters
- We cannot model $p(\boldsymbol{x})$ with simple and known distributions
- E.g., the data is not a Guassian
b/c we have 3 distinct concentrated regions

Gaussian mixture models: intuition

- Model each region with a distinct distribution
- Can use Gaussians - Gaussian mixture models (GMMs)

Gaussian mixture models: intuition

- Model each region with a distinct distribution
- Can use Gaussians - Gaussian mixture models (GMMs)
- We don't know cluster assignments (label), parameters of Gaussians, or mixture components!
- Must learn from unlabeled data $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$

Gaussian mixture models: formal definition

GMM has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : number of Gaussians - they are called mixture components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of k-th component

Gaussian mixture models: formal definition

GMM has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : number of Gaussians - they are called mixture components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of k-th component
- ω_{k} : mixture weights (or priors) represent how much each component contributes to final distribution. They satisfy 2 properties:

Gaussian mixture models: formal definition

GMM has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : number of Gaussians - they are called mixture components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of k-th component
- ω_{k} : mixture weights (or priors) represent how much each component contributes to final distribution. They satisfy 2 properties:

$$
\forall k, \omega_{k}>0, \quad \text { and } \quad \sum_{k} \omega_{k}=1
$$

These properties ensure $p(\boldsymbol{x})$ is in fact a probability density function

GMM as the marginal distribution of a joint distribution
Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K.

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K. Denote

$$
\omega_{k}=p(z=k)
$$

Now, assume the conditional distributions are Gaussian distributions

$$
p(\boldsymbol{x} \mid z=k)=N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K. Denote

$$
\omega_{k}=p(z=k)
$$

Now, assume the conditional distributions are Gaussian distributions

$$
p(\boldsymbol{x} \mid z=k)=N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Then, the marginal distribution of \boldsymbol{x} is

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Namely, the Gaussian mixture model

GMMs: example

The conditional distribution between \boldsymbol{x} and z (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

GMMs: example

The conditional distribution between \boldsymbol{x} and z (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

The marginal distribution is thus

$$
\begin{aligned}
p(\boldsymbol{x}) & =p(\text { red }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)+p(\text { blue }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
& +p(\text { green }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

Parameter estimation for Gaussian mixture models

The parameters in GMMs are

Parameter estimation for Gaussian mixture models

The parameters in GMMs are $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$
Let's first consider the simple/unrealistic case where we have labels z
Define $\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}$

- \mathcal{D}^{\prime} is the complete data
- \mathcal{D} the incomplete data

How can we learn our parameters?

Parameter estimation for Gaussian mixture models

The parameters in GMMs are $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$
Let's first consider the simple/unrealistic case where we have labels z
Define $\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}$

- \mathcal{D}^{\prime} is the complete data
- \mathcal{D} the incomplete data

How can we learn our parameters?
Given \mathcal{D}^{\prime}, the maximum likelihood estimation of the $\boldsymbol{\theta}$ is given by

$$
\boldsymbol{\theta}=\arg \max \log \mathcal{D}^{\prime}=\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)
$$

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by its values z_{n}.

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by its values z_{n}.

Let $\gamma_{n k} \in\{0,1\}$ be a binary variable that indicates whether $z_{n}=k$:

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by its values z_{n}.

Let $\gamma_{n k} \in\{0,1\}$ be a binary variable that indicates whether $z_{n}=k$:

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right)
$$

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by its values z_{n}.

Let $\gamma_{n k} \in\{0,1\}$ be a binary variable that indicates whether $z_{n}=k$:

$$
\begin{aligned}
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right) & =\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
\end{aligned}
$$

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Regrouping, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Regrouping, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

The term inside the braces depends on k-th component's parameters. It is now easy to show that (left as an exercise) the MLE is:

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{aligned}
$$

What's the intuition?

Intuition

Since $\gamma_{n k}$ is binary, the previous solution is nothing but

- ω_{k} : fraction of total data points whose z_{n} is k
- note that $\sum_{k} \sum_{n} \gamma_{n k}=N$
- $\boldsymbol{\mu}_{k}$: mean of all data points whose z_{n} is k
- Σ_{k} : covariance of all data points whose z_{n} is k

Intuition

Since $\gamma_{n k}$ is binary, the previous solution is nothing but

- ω_{k} : fraction of total data points whose z_{n} is k
- note that $\sum_{k} \sum_{n} \gamma_{n k}=N$
- $\boldsymbol{\mu}_{k}$: mean of all data points whose z_{n} is k
- $\boldsymbol{\Sigma}_{k}$: covariance of all data points whose z_{n} is k

This intuition will help us develop an algorithm for estimating $\boldsymbol{\theta}$ when we do not know z_{n} (incomplete data)

Parameter estimation for GMMs: incomplete data

When z_{n} is not given, we can guess it via the posterior probability

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)}=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{k^{\prime}=1}^{K} p\left(\boldsymbol{x}_{n} \mid z_{n}=k^{\prime}\right) p\left(z_{n}=k^{\prime}\right)}
$$

Parameter estimation for GMMs: incomplete data

When z_{n} is not given, we can guess it via the posterior probability

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)}=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{k^{\prime}=1}^{K} p\left(\boldsymbol{x}_{n} \mid z_{n}=k^{\prime}\right) p\left(z_{n}=k^{\prime}\right)}
$$

To compute the posterior probability, we need to know the parameters $\boldsymbol{\theta}$!
Let's pretend we know the value of the parameters so we can compute the posterior probability.

How is that going to help us?

Estimation with soft $\gamma_{n k}$

We define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

Estimation with soft $\gamma_{n k}$

We define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

- Recall that $\gamma_{n k}$ was previously binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component
- Each \boldsymbol{x}_{n} is assigned to a component fractionally according to $p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

Estimation with soft $\gamma_{n k}$

We define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

- Recall that $\gamma_{n k}$ was previously binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component
- Each \boldsymbol{x}_{n} is assigned to a component fractionally according to $p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

We now get the same expression for the MLE as before!

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{aligned}
$$

But remember, we're 'cheating' by using $\boldsymbol{\theta}$ to compute $\gamma_{n k}$!

Iterative procedure

Alternate between estimating $\gamma_{n k}$ and computing parameters

- Step 0: initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Step 1: compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- Step 2: update $\boldsymbol{\theta}$ using the just computed $\gamma_{n k}$
- Step 3: go back to Step 1

Iterative procedure

Alternate between estimating $\gamma_{n k}$ and computing parameters

- Step 0: initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Step 1: compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- Step 2: update $\boldsymbol{\theta}$ using the just computed $\gamma_{n k}$
- Step 3: go back to Step 1

This is an example of the EM algorithm - a powerful procedure for model estimation with hidden/latent variables

Iterative procedure

Alternate between estimating $\gamma_{n k}$ and computing parameters

- Step 0: initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Step 1: compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- Step 2: update $\boldsymbol{\theta}$ using the just computed $\gamma_{n k}$
- Step 3: go back to Step 1

This is an example of the EM algorithm - a powerful procedure for model estimation with hidden/latent variables

Connection with K-means?

Iterative procedure

Alternate between estimating $\gamma_{n k}$ and computing parameters

- Step 0: initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Step 1: compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- Step 2: update $\boldsymbol{\theta}$ using the just computed $\gamma_{n k}$
- Step 3: go back to Step 1

This is an example of the EM algorithm - a powerful procedure for model estimation with hidden/latent variables

Connection with K-means?

- GMMs provide probabilistic interpretation for K-means
- K-means is "hard" GMM or GMMs is "soft" K-means
- Posterior $\gamma_{n k}$ provides a probabilistic assignment for \boldsymbol{x}_{n} to cluster k

