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Announcements

HW2 will be returned in section on Friday

HW3 due in class next Monday

Midterm is next Wednesday (will review in more detail next class)
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Perceptron Main idea

Consider a linear model for binary classification

wTx

We use this model to distinguish between two classes {−1,+1}.

One goal

ε =
∑

n

I[yn 6= sign(wTxn)]

i.e., to minimize errors on the training dataset.
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Hard, but easy if we have only one training example

How can we change w such that

yn = sign(wTxn)

Two cases

If yn = sign(wTxn), do nothing.

If yn 6= sign(wTxn), w
new ← wold + ynxn

I Gauranteed to make progress, i.e., to get us closer to y(w>x) > 0

What does update do?

yn[(w + ynxn)
Txn] = ynw

Txn + y2nx
T
nxn

We are adding a positive number, so it’s possible that yn(w
newTxn) > 0
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Perceptron algorithm

Iteratively solving one case at a time

REPEAT

Pick a data point xn (can be a fixed order of the training instances)

Make a prediction y = sign(wTxn) using the current w

If y = yn, do nothing. Else,

w ← w + ynxn

UNTIL converged.

Properties

This is an online algorithm.

If the training data is linearly separable, the algorithm stops in a finite
number of steps (we proved this).

The parameter vector is always a linear combination of training
instances (requires initialization of w0 = 0).
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Regression

Predicting a continuous outcome variable

Predicting shoe size from height, weight and gender

Predicting song year from audio features

Key difference from classification

We can measure ’closeness’ of prediction and labels
I Predicting shoe size: better to be off by one size than by 5 sizes
I Predicting song year: better to be off by one year than by 20 years

As opposed to 0-1 classification error, we will focus on squared
difference, i.e., (ŷ − y)2
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1D example: predicting the sale price of a house

Sale price ≈ price per sqft × square footage + fixed expense
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Minimize squared errors

Our model
Sale price = price per sqft × square footage + fixed expense +
unexplainable stuff
Training data

sqft sale price prediction error squared error

2000 810K 720K 90K 8100

2100 907K 800K 107K 1072

1100 312K 350K 38K 382

5500 2,600K 2,600K 0 0

· · · · · ·
Total 8100 + 1072 + 382 + 0 + · · ·

Aim
Adjust price per sqft and fixed expense such that the sum of the squared
error is minimized — i.e., unexplainable stuff is minimized.
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Linear regression

Setup

Input: x ∈ RD (covariates, predictors, features, etc)

Output: y ∈ R (responses, targets, outcomes, outputs, etc)

Model: f : x→ y, with f(x) = w0 +
∑

dwdxd = w0 +w
Tx

I w = [w1 w2 · · · wD]
T: weights, parameters, or parameter vector

I w0 is called bias
I We also sometimes call w̃ = [w0 w1 w2 · · · wD]

T parameters too

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}
Least Mean Squares (LMS) Objective: Minimize squared difference on
training data (or residual sum of squares)

RSS(w̃) =
∑

n

[yn − f(xn)]
2 =

∑

n

[yn − (w0 +
∑

d

wdxnd)]
2

1D Solution: Identify stationary points by taking derivative with respect
to parameters and setting to zero, yielding ‘normal equations’
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Probabilistic interpretation

Noisy observation model

Y = w0 + w1X + η

where η ∼ N(0, σ2) is a Gaussian random variable

Likelihood of one training sample (xn, yn)

p(yn|xn) = N(w0 + w1xn, σ
2) =

1√
2πσ

e−
[yn−(w0+w1xn)]2

2σ2
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Maximum likelihood estimation

Maximize over w0 and w1

max logP (D)⇔ min
∑

n

[yn − (w0 + w1xn)]
2← That is RSS(w̃)!

Maximize over s = σ2

∂ logP (D)
∂s

= −1

2

{
− 1

s2

∑

n

[yn − (w0 + w1xn)]
2 + N

1

s

}
= 0

→ σ∗2 = s∗ =
1

N

∑

n

[yn − (w0 + w1xn)]
2
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How does this probabilistic interpretation help us?

It gives a solid footing to our intuition: minimizing RSS(w̃) is a
sensible thing based on reasonable modeling assumptions

Estimating σ∗ tells us how much noise there could be in our
predictions. For example, it allows us to place confidence intervals
around our predictions.
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LMS when x is D-dimensional
RSS(w̃) in matrix form

RSS(w̃) =
∑

n

[yn − (w0 +
∑

d

wdxnd)]
2

=
∑

n

[yn − w̃Tx̃n]
2

where we have redefined some variables (by augmenting)

x̃← [1 x1 x2 . . . xD]
T, w̃ ← [w0 w1 w2 . . . wD]

T

which leads to

RSS(w̃) =
∑

n

(yn − w̃Tx̃n)(yn − x̃T
n w̃)

=
∑

n

w̃Tx̃nx̃
T
n w̃ − 2ynx̃

T
n w̃ + const.

=

{
w̃T

(∑

n

x̃nx̃
T
n

)
w̃ − 2

(∑

n

ynx̃
T
n

)
w̃

}
+ const.
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RSS(w̃) in new notations
From previous slide

RSS(w̃) =

{
w̃T

(∑

n

x̃nx̃
T
n

)
w̃ − 2

(∑

n

ynx̃
T
n

)
w̃

}
+ const.

Design matrix and target vector

X̃ =




x̃T
1

x̃T
2
...
x̃T
N


 ∈ RN×(D+1), y =




y1
y2
...
yN




Compact expression

RSS(w̃) = ||X̃w̃ − y||22 =
{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+ const
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w̃

}
+ const
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Solution in matrix form

Compact expression

RSS(w̃) = ||X̃w̃ − y||22 =
{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+ const

Gradients of Linear and Quadratic Functions

∇xb
>x = b

∇xx
>Ax = 2Ax (symmetric A)

Normal equation

∇w̃RSS(w̃) ∝ X̃TX̃w − X̃Ty = 0

This leads to the least-mean-square (LMS) solution

w̃LMS =
(
X̃TX̃

)−1
X̃Ty
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Mini-Summary

Linear regression is the linear combination of features
f : x→ y, with f(x) = w0 +

∑
dwdxd = w0 +w

Tx

If we minimize residual sum of squares as our learning objective, we
get a closed-form solution of parameters

Probabilistic interpretation: maximum likelihood if assuming residual
is Gaussian distributed
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Computational complexity

Bottleneck of computing the solution?

w =
(
X̃TX̃

)−1
X̃y

Matrix multiply of X̃TX̃ ∈ R(D+1)×(D+1)

Inverting the matrix X̃TX̃

How many operations do we need?

O(ND2) for matrix multiplication

O(D3) (e.g., using Gauss-Jordan elimination) or O(D2.373) (recent
theoretical advances) for matrix inversion

Impractical for very large D or N
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Alternative method: an example of using numerical
optimization

(Batch) Gradient descent

Initialize w̃ to w̃(0) (e.g., randomly); set t = 0; choose η > 0

Loop until convergence
1 Compute the gradient
∇RSS(w̃) = X̃TX̃w̃(t) − X̃Ty

2 Update the parameters
w̃(t+1) = w̃(t) − η∇RSS(w̃)

3 t← t+ 1

What is the complexity of each iteration?
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Why would this work?

If gradient descent converges, it will converge to the same solution
as using matrix inversion.

This is because RSS(w̃) is a convex function in its parameters w̃

Hessian of RSS

RSS(w̃) = w̃TX̃TX̃w̃ − 2
(
X̃Ty

)T
w̃ + const

⇒ ∂2RSS(w̃)

∂w̃w̃T
= 2X̃TX̃

X̃TX̃ is positive semidefinite, because for any v

vTX̃TX̃v = ‖X̃Tv‖22 ≥ 0
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Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

Initialize w̃ to some w̃(0); set t = 0; choose η > 0

Loop until convergence
1 random choose a training a sample xt

2 Compute its contribution to the gradient

gt = (x̃T
t w̃

(t) − yt)x̃t

3 Update the parameters
w̃(t+1) = w̃(t) − ηgt

4 t← t+ 1

How does the complexity per iteration compare with gradient descent?

O(ND) for gradient descent versus O(D) for SGD
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Mini-summary

Batch gradient descent computes the exact gradient.

Stochastic gradient descent approximates the gradient with a single
data point; Its expectation equals the true gradient.

Mini-batch variant: trade-off between accuracy of estimating gradient
and computational cost

Similar ideas extend to other ML optimization problems.
I For large-scale problems, stochastic gradient descent often works well.
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What if X̃TX̃ is not invertible

Why might this happen?

Answer 1: N < D. Intuitively, not enough data to estimate all parameters.

Answer 2: Columns of X are not linearly independent, e.g., some
features are perfectly correlated. In this case, solution is not unique.
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Ridge regression

Intuition: what does a non-invertible X̃TX̃ mean? Consider the SVD of
this matrix:

X̃TX̃ = U




λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 · · · · · · · · · 0
0 · · · · · · λr 0
0 · · · · · · 0 0



U>

where λ1 ≥ λ2 ≥ · · ·λr > 0 and r < D.

Fix the problem by ensuring all singular values are non-zero

X̃TX̃ + λI = Udiag(λ1 + λ, λ2 + λ, · · · , λ)U>

where λ > 0 and I is the identity matrix
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Regularized least square (ridge regression)

Solution

w̃ =
(
X̃TX̃ + λI

)−1
X̃Ty

This is equivalent to adding an extra term to RSS(w̃)

RSS(w̃)︷ ︸︸ ︷
1

2

{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+

1

2
λ‖w̃‖22
︸ ︷︷ ︸

regularization

Benefits

Numerically more stable, invertible matrix

Prevent overfitting — more on this later
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How to choose λ?

λ is referred as hyperparameter

In contrast w is the parameter vector

Use validation set or cross-validation to find good choice of λ
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Outline

1 Administration

2 Review of last lecture

3 Linear regression

4 Nonlinear basis functions
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Is a linear modeling assumption always a good idea?
Example of nonlinear classification
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Nonlinear basis for classification

Transform the input/feature

φ(x) : x ∈ R2 → z = x1 · x2

Transformed training data: linearly separable!
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Another example
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How to transform the input/feature?

φ(x) : x ∈ R2 → z =




x21
x1 · x2
x22


 ∈ R3

Transformed training data: linearly separable
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General nonlinear basis functions

We can use a nonlinear mapping

φ(x) : x ∈ RD → z ∈ RM

where M is the dimensionality of the new feature/input z (or φ(x)).

M could be greater than, less than, or equal to D

With the new features, we can apply our learning techniques to minimize
our errors on the transformed training data

linear methods: prediction is based on wTφ(x)

other methods: nearest neighbors, decision trees, etc
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Regression with nonlinear basis

Residual sum squares

∑

n

[wTφ(xn)− yn]2

where w ∈ RM , the same dimensionality as the transformed features φ(x).

The LMS solution can be formulated with the new design matrix

Φ =




φ(x1)
T

φ(x2)
T

...
φ(xN )T


 ∈ RN×M , wlms =

(
ΦTΦ

)−1
ΦTy
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Example with regression
Polynomial basis functions

φ(x) =




1
x
x2

...
xM



⇒ f(x) = w0 +

M∑

m=1

wmx
m

Fitting samples from a sine function: underrfitting as f(x) is too simple

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1
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Adding high-order terms

M=3

x

t

M = 3

0 1

−1

0

1

M=9: overfitting

x

t

M = 9

0 1

−1

0

1

More complex features lead to better results on the training data, but
potentially worse results on new data, e.g., test data!
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Overfiting

Parameters for higher-order polynomials are very large

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 37 / 39



Overfitting can be quite disastrous

Fitting the housing price data with large M

Predicted price goes to zero (and is ultimately negative) if you buy a big
enough house!

This is called poor generalization/overfitting.
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Detecting overfitting

Plot model complexity versus objective function

X axis: model complexity, e.g., M

Y axis: error, e.g., RSS, RMS
(square root of RSS), 0-1 loss

M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

As a model increases in complexity:

Training error keeps improving

Test error may first improve but eventually will deteriorate
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