Linear Regression (continued)

Professor Ameet Talwalkar

A (1) > 4

э

Outline

1 Administration

- 2 Review of last lecture
- 3 Linear regression
- 4 Nonlinear basis functions

3

< E

- HW2 will be returned in section on Friday
- HW3 due in class next Monday
- Midterm is next Wednesday (will review in more detail next class)

Outline

1 Administration

2 Review of last lecture

- Perceptron
- Linear regression introduction

3 Linear regression

4 Nonlinear basis functions

Perceptron Main idea

Consider a linear model for binary classification

 $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}$

We use this model to distinguish between two classes $\{-1, +1\}$.

One goal

$$\varepsilon = \sum_n \mathbb{I}[y_n \neq \mathsf{sign}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)]$$

i.e., to minimize errors on the training dataset.

Hard, but easy if we have only one training example

How can we change $oldsymbol{w}$ such that

$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$

Two cases

• If
$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
, do nothing.

• If
$$y_n
eq \mathsf{sign}(oldsymbol{w}^\mathrm{T} oldsymbol{x}_n)$$
, $oldsymbol{w}^\mathrm{NEW} \leftarrow oldsymbol{w}^\mathrm{OLD} + y_n oldsymbol{x}_n$

▶ Gauranteed to make progress, i.e., to get us closer to $y(w^Tx) > 0$

Hard, but easy if we have only one training example

How can we change $oldsymbol{w}$ such that

$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$

Two cases

• If
$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
, do nothing.

• If
$$y_n
eq \mathsf{sign}(oldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)$$
, $oldsymbol{w}^{\mathrm{NEW}} \leftarrow oldsymbol{w}^{\mathrm{OLD}} + y_noldsymbol{x}_n$

• Gauranteed to make progress, i.e., to get us closer to $y(\boldsymbol{w}^{\top}\boldsymbol{x}) > 0$

What does update do?

$$y_n[(\boldsymbol{w}+y_n\boldsymbol{x}_n)^{\mathrm{T}}\boldsymbol{x}_n] = y_n\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n + y_n^2\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{x}_n$$

Hard, but easy if we have only one training example

How can we change \boldsymbol{w} such that

$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$

Two cases

• If
$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
, do nothing.

• If
$$y_n
eq \mathsf{sign}(oldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)$$
, $oldsymbol{w}^{\mathrm{NEW}} \leftarrow oldsymbol{w}^{\mathrm{OLD}} + y_noldsymbol{x}_n$

▶ Gauranteed to make progress, i.e., to get us closer to $y(w^Tx) > 0$

What does update do?

$$y_n[(\boldsymbol{w}+y_n\boldsymbol{x}_n)^{\mathrm{T}}\boldsymbol{x}_n] = y_n\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n + y_n^2\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{x}_n$$

We are adding a positive number, so it's possible that $y_n(\boldsymbol{w}^{\text{NEWT}}\boldsymbol{x}_n) > 0$

Perceptron algorithm

Iteratively solving one case at a time

- REPEAT
- Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$ using the *current* \boldsymbol{w}
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

• UNTIL converged.

Properties

Perceptron algorithm

Iteratively solving one case at a time

- REPEAT
- Pick a data point $oldsymbol{x}_n$ (can be a fixed order of the training instances)
- Make a prediction $y = \operatorname{sign}({m w}^{\mathrm{T}}{m x}_n)$ using the current ${m w}$
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

• UNTIL converged.

Properties

- This is an online algorithm.
- If the training data is linearly separable, the algorithm stops in a finite number of steps (we proved this).
- The parameter vector is always a linear combination of training instances (requires initialization of w₀ = 0).

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting song year from audio features

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting song year from audio features
- Key difference from classification

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting song year from audio features

Key difference from classification

- We can measure 'closeness' of prediction and labels
 - Predicting shoe size: better to be off by one size than by 5 sizes
 - Predicting song year: better to be off by one year than by 20 years
- As opposed to 0-1 classification error, we will focus on squared difference, i.e., $(\hat{y}-y)^2$

1D example: predicting the sale price of a house

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Minimize squared errors

Our model

Sale price = price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^2
5500	2,600K	2,600K	0	0
•••	•••			
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

3

A 🕨 🔸

Minimize squared errors

Our model

$$\label{eq:sale_source} \begin{split} \textsc{Sale price} &= \texttt{price_per_sqft} \times \texttt{square_footage} + \texttt{fixed_expense} + \\ \texttt{unexplainable_stuff} \end{split}$$

Training data

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^2
5500	2,600K	2,600K	0	0
•••	•••			
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., unexplainable_stuff is minimized.

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
 - $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$: weights, parameters, or parameter vector
 - ▶ w₀ is called *bias*
 - We also sometimes call $ilde{m{w}} = [w_0 \; w_1 \; w_2 \; \cdots \; w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
 - $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_D]^{\mathrm{T}}$: weights, parameters, or parameter vector
 - ▶ w₀ is called *bias*
 - We also sometimes call $ilde{m{w}} = [w_0 \; w_1 \; w_2 \; \cdots \; w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too
- Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
 - $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$: weights, parameters, or parameter vector
 - ▶ w₀ is called *bias*
 - We also sometimes call $ilde{m{w}} = [w_0 \; w_1 \; w_2 \; \cdots \; w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too
- Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

Least Mean Squares (LMS) Objective: Minimize squared difference on training data (or residual sum of squares)

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
 - $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$: weights, parameters, or parameter vector
 - ▶ w₀ is called *bias*
 - \blacktriangleright We also sometimes call $ilde{m{w}} = [w_0 \; w_1 \; w_2 \; \cdots \; w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too
- Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

Least Mean Squares (LMS) Objective: Minimize squared difference on training data (or residual sum of squares)

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$

1D Solution: Identify stationary points by taking derivative with respect to parameters and setting to zero, yielding 'normal equations'

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0,\sigma^2)$ is a Gaussian random variable

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0,\sigma^2)$ is a Gaussian random variable

• Likelihood of one training sample (x_n, y_n)

$$p(y_n|x_n) = N(w_0 + w_1 x_n, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2}}$$

Maximum likelihood estimation

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

3

-

• • • • • • • • • • • •

Maximum likelihood estimation

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over
$$s = \sigma^2$$

$$\begin{aligned} \frac{\partial \log P(\mathcal{D})}{\partial s} &= -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0\\ &\to \sigma^{*2} = s^* = \frac{1}{\mathsf{N}} \sum_n [y_n - (w_0 + w_1 x_n)]^2 \end{aligned}$$

< 4 →

How does this probabilistic interpretation help us?

___ ▶

How does this probabilistic interpretation help us?

- It gives a solid footing to our intuition: minimizing $\mathsf{RSS}(\tilde{w})$ is a sensible thing based on reasonable modeling assumptions
- Estimating σ^* tells us how much noise there could be in our predictions. For example, it allows us to place confidence intervals around our predictions.

Outline

1 Administration

2 Review of last lecture

3 Linear regression

- Multivariate solution in matrix form
- Computational and numerical optimization
- Ridge regression

4 Nonlinear basis functions

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$

3

< (T) > <

-

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathsf{T}}$$

47 ▶

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n) (y_n - \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}})$$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n)(y_n - \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}})$$
$$= \sum_{n} \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - 2y_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const.}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathsf{T}}$$

which leads to

$$\begin{split} RSS(\tilde{\boldsymbol{w}}) &= \sum_{n} (y_{n} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n})(y_{n} - \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}) \\ &= \sum_{n} \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - 2y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const.} \\ &= \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \text{const.} \end{split}$$

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} & & \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

 $9 \times 1 + 3 \times 3 + 5 \times 2 = 28$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 28 \\ \end{bmatrix}$$

 $9 \times 1 + 3 \times 3 + 5 \times 2 = 28$

Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 28 \\ \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 28 & 18 \\ 1 & 2 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Each entry of output matrix is result of inner product of inputs matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 28 & 18 \\ 11 & 9 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} & & \\ & \\ & \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$
$$\begin{bmatrix} 9 & 18 \\ 4 & 8 \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$
$$\begin{bmatrix} 9 & 18 \\ 4 & 8 \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$
$$\begin{bmatrix} 9 & 18 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 9 & -15 \\ 3 & -5 \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} & & \\ & \\ & \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 9 & -15 \\ 3 & -5 \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} & & \\ \end{bmatrix}$$
$$\begin{bmatrix} 9 & 18 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 9 & -15 \\ 3 & -5 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 4 & 6 \end{bmatrix}$$

Output matrix is **sum of outer products** between corresponding rows and columns of input matrices

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 28 & 18 \\ 11 & 9 \end{bmatrix}$$
$$\begin{bmatrix} 9 & 18 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 9 & -15 \\ 3 & -5 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 4 & 6 \end{bmatrix}$$

$RSS(\tilde{\boldsymbol{w}})$ in new notations

From previous slide

$$RSS(\tilde{\boldsymbol{w}}) = \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \text{const.}$$

3

< 回 ト < 三 ト < 三 ト

$RSS(\tilde{oldsymbol{w}})$ in new notations From previous slide

$$RSS(\tilde{\boldsymbol{w}}) = \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \text{const.}$$

Design matrix and target vector

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}$$

A 🖓

$RSS(\tilde{oldsymbol{w}})$ in new notations From previous slide

$$RSS(\tilde{\boldsymbol{w}}) = \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \text{const.}$$

Design matrix and target vector

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathsf{N}} \end{pmatrix}$$

A 🖓

$RSS(\tilde{oldsymbol{w}})$ in new notations From previous slide

$$RSS(\tilde{\boldsymbol{w}}) = \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \text{const.}$$

Design matrix and target vector

$$ilde{oldsymbol{X}} = \left(egin{array}{c} ilde{oldsymbol{x}}_1^{\mathrm{T}} \ ilde{oldsymbol{x}}_2^{\mathrm{T}} \ dots \ ilde{oldsymbol{x}}_N^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ \ dots \$$

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = ||\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}||_2^2 = \left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - 2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\} + \text{const}$$

A 🕨

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = ||\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2} = \left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - 2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\} + \text{const}$$

3

< 17 ▶

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = ||\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2} = \left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - 2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\} + \text{const}$$

Gradients of Linear and Quadratic Functions

•
$$abla_{oldsymbol{x}} oldsymbol{b}^ op oldsymbol{x} = oldsymbol{b}$$

•
$$\nabla_{\boldsymbol{x}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} = 2 \boldsymbol{A} \boldsymbol{x}$$
 (symmetric \boldsymbol{A})

___ ▶

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = ||\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}||_2^2 = \left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - 2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\} + \text{const}$$

Gradients of Linear and Quadratic Functions

•
$$\nabla_{x} b^{\top} x = b$$

• $\nabla_{x} x^{\top} A x = 2Ax$ (symmetric A)

Normal equation

$$abla_{\tilde{\boldsymbol{w}}}RSS(\tilde{\boldsymbol{w}}) \propto \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{w} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = 0$$

3

▲ 同 ▶ → 三 ▶

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = ||\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}||_2^2 = \left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - 2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\} + \text{const}$$

Gradients of Linear and Quadratic Functions

•
$$\nabla_{x} b^{\top} x = b$$

• $\nabla_{x} x^{\top} A x = 2Ax$ (symmetric A)

Normal equation

$$abla_{\tilde{\boldsymbol{w}}}RSS(\tilde{\boldsymbol{w}}) \propto \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{w} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = 0$$

This leads to the least-mean-square (LMS) solution

$$\tilde{\boldsymbol{w}}^{LMS} = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

Mini-Summary

- Linear regression is the linear combination of features $f: x \to y$, with $f(x) = w_0 + \sum_d w_d x_d = w_0 + w^T x$
- If we minimize residual sum of squares as our learning objective, we get a closed-form solution of parameters
- Probabilistic interpretation: maximum likelihood if assuming residual is Gaussian distributed

Computational complexity

Bottleneck of computing the solution?

$$oldsymbol{w} = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}oldsymbol{y}$$

3

Computational complexity

Bottleneck of computing the solution?

$$oldsymbol{w} = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}oldsymbol{y}$$

Matrix multiply of $\tilde{X}^{\mathrm{T}}\tilde{X} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$ Inverting the matrix $\tilde{X}^{\mathrm{T}}\tilde{X}$

How many operations do we need?

Computational complexity

Bottleneck of computing the solution?

$$oldsymbol{w} = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}oldsymbol{y}$$

Matrix multiply of $\tilde{X}^{\mathrm{T}}\tilde{X} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$ Inverting the matrix $\tilde{X}^{\mathrm{T}}\tilde{X}$

How many operations do we need?

- $O(ND^2)$ for matrix multiplication
- $O(D^3)$ (e.g., using Gauss-Jordan elimination) or $O(D^{2.373})$ (recent theoretical advances) for matrix inversion
- Impractical for very large D or N

(Batch) Gradient descent

• Initialize \tilde{w} to $\tilde{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - Compute the gradient $\nabla RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}^{(t)} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - Compute the gradient $\nabla RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}^{(t)} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$
 - 2 Update the parameters $\tilde{w}^{(t+1)} = \tilde{w}^{(t)} \eta \nabla RSS(\tilde{w})$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - Compute the gradient $\nabla RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}^{(t)} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$
 - 2 Update the parameters $\tilde{w}^{(t+1)} = \tilde{w}^{(t)} - \eta \nabla RSS(\tilde{w})$
 - $3 t \leftarrow t+1$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - Compute the gradient ∇RSS(ũ) = X̃^TX̃ũ^(t) - X̃^Ty
 Update the parameters ũ^(t+1) = ũ^(t) - η∇RSS(ũ)
 t ← t + 1

What is the complexity of each iteration?

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

If gradient descent converges, it will converge to the same solution as using matrix inversion.

This is because $RSS(ilde{w})$ is a convex function in its parameters $ilde{w}$

If gradient descent converges, it will converge to the same solution as using matrix inversion.

This is because $RSS(ilde{m{w}})$ is a convex function in its parameters $ilde{m{w}}$

Hessian of RSS

$$\begin{split} RSS(\tilde{\boldsymbol{w}}) &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const} \\ &\Rightarrow \frac{\partial^2 RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}} \tilde{\boldsymbol{w}}^{\mathrm{T}}} = 2 \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \end{split}$$

4 1 1 1 4 1 1

If gradient descent converges, it will converge to the same solution as using matrix inversion.

This is because $RSS(\tilde{\boldsymbol{w}})$ is a convex function in its parameters $\tilde{\boldsymbol{w}}$

Hessian of RSS

$$RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const}$$
$$\Rightarrow \frac{\partial^{2} RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}} \tilde{\boldsymbol{w}}^{\mathrm{T}}} = 2 \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$$

 $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ is positive semidefinite, because for any v

$$\boldsymbol{v}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{v} = \| \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{v} \|_{2}^{2} \geq 0$$

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time
Initialize w̃ to some w̃⁽⁰⁾; set t = 0; choose η > 0

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to some $\tilde{w}^{(0)}$; set t = 0; choose $\eta > 0$
- Loop until convergence
 - **(**) random choose a training a sample x_t
 - Ompute its contribution to the gradient

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to some $\tilde{w}^{(0)}$; set t = 0; choose $\eta > 0$
- Loop until convergence
 - **(**) random choose a training a sample x_t
 - Ompute its contribution to the gradient

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

3 Update the parameters $\tilde{\boldsymbol{w}}^{(t+1)} = \tilde{\boldsymbol{w}}^{(t)} - \eta \boldsymbol{g}_t$
Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to some $\tilde{w}^{(0)}$; set t = 0; choose $\eta > 0$
- Loop until convergence
 - **(**) random choose a training a sample x_t
 - Ompute its contribution to the gradient

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

3 Update the parameters $\tilde{w}^{(t+1)} = \tilde{w}^{(t)} - \eta g_t$ 4 $t \leftarrow t + 1$

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to some $\tilde{w}^{(0)}$; set t = 0; choose $\eta > 0$
- Loop until convergence
 - **(**) random choose a training a sample x_t
 - Ompute its contribution to the gradient

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

Update the parameters

 $\tilde{w}^{(t+1)} = \tilde{w}^{(t)} - \eta g_t$ $t \leftarrow t+1$

How does the complexity per iteration compare with gradient descent?

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to some $\tilde{w}^{(0)}$; set t = 0; choose $\eta > 0$
- Loop until convergence
 - **(**) random choose a training a sample x_t
 - Ompute its contribution to the gradient

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

Update the parameters

 $\tilde{w}^{(t+1)} = \tilde{w}^{(t)} - \eta g_t$ $t \leftarrow t+1$

How does the complexity per iteration compare with gradient descent?

• O(ND) for gradient descent versus O(D) for SGD

- Batch gradient descent computes the exact gradient.
- Stochastic gradient descent approximates the gradient with a single data point; Its expectation equals the true gradient.
- Mini-batch variant: trade-off between accuracy of estimating gradient and computational cost
- Similar ideas extend to other ML optimization problems.
 - ► For large-scale problems, stochastic gradient descent often works well.

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why might this happen?

A 🕨

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why might this happen?

Answer 1: N < D. Intuitively, not enough data to estimate all parameters.

Why might this happen?

Answer 1: N < D. Intuitively, not enough data to estimate all parameters.

Answer 2: Columns of X are not linearly independent, e.g., some features are perfectly correlated. In this case, solution is not unique.

Ridge regression

Intuition: what does a non-invertible $ilde{X}^{\mathrm{T}} ilde{X}$ mean? Consider the SVD of this matrix:

Ridge regression

Intuition: what does a non-invertible $ilde{X}^{\mathrm{T}} ilde{X}$ mean? Consider the SVD of this matrix:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \ddots & 0 \\ 0 & \cdots & \cdots & \lambda_r & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \boldsymbol{U}^{\top}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0$ and r < D.

Ridge regression

Intuition: what does a non-invertible $ilde{X}^{\mathrm{T}} ilde{X}$ mean? Consider the SVD of this matrix:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \lambda_r & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \boldsymbol{U}^{\top}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0$ and r < D.

Fix the problem by ensuring all singular values are non-zero

$$ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}+\lambda oldsymbol{I}=oldsymbol{U}\mathsf{diag}(\lambda_1+\lambda,\lambda_2+\lambda,\cdots,\lambda)oldsymbol{U}^{\mathrm{T}}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix

Regularized least square (ridge regression)

Solution

$$\tilde{\boldsymbol{w}} = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}
ight)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

3. 3

< 🗇 🕨

Regularized least square (ridge regression)

Solution

$$ilde{oldsymbol{w}} = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}} + \lambda oldsymbol{I}
ight)^{-1} ilde{oldsymbol{X}}^{\mathrm{T}} oldsymbol{y}$$

This is equivalent to adding an extra term to $RSS(ilde{m{w}})$

$$\overbrace{\frac{1}{2}\left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}-2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\}}^{RSS(\tilde{\boldsymbol{w}})}+\underbrace{\frac{1}{2}\lambda\|\tilde{\boldsymbol{w}}\|_{2}^{2}}_{\text{regularization}}$$

47 ▶

3

Regularized least square (ridge regression)

Solution

$$ilde{m{w}} = \left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{\mathrm{T}} m{y}$$

This is equivalent to adding an extra term to $RSS(ilde{m{w}})$

$$\overbrace{\frac{1}{2}\left\{\tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}-2\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}}\tilde{\boldsymbol{w}}\right\}}^{RSS(\tilde{\boldsymbol{w}})}+\underbrace{\frac{1}{2}\lambda\|\tilde{\boldsymbol{w}}\|_{2}^{2}}_{\text{regularization}}$$

Benefits

- Numerically more stable, invertible matrix
- Prevent overfitting more on this later

- λ is referred as hyperparameter
 - In contrast $oldsymbol{w}$ is the parameter vector
 - \bullet Use validation set or cross-validation to find good choice of λ

Outline

1 Administration

- 2 Review of last lecture
- 3 Linear regression
- 4 Nonlinear basis functions

3

< 🗇 🕨

Is a linear modeling assumption always a good idea? **Example of nonlinear classification**

Is a linear modeling assumption always a good idea? **Example of nonlinear classification**

Example of nonlinear regression

CS260 Machine Learning Algorithms

Nonlinear basis for classification

Transform the input/feature

$$\phi(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^2 \to z = x_1 \cdot x_2$$

47 ▶

Nonlinear basis for classification

Transform the input/feature

$$\phi(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^2 \to z = x_1 \cdot x_2$$

Transformed training data: linearly separable!

Another example

How to transform the input/feature?

___ ▶

Another example

How to transform the input/feature?

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^2 ooldsymbol{z}=\left[egin{array}{c} x_1^2\ x_1\cdot x_2\ x_2^2\end{array}
ight]\in\mathbb{R}^3$$

Another example

How to transform the input/feature?

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^2
ightarrowoldsymbol{z}=\left|egin{array}{c} x_1^2\ x_1\cdot x_2\ x_2^2\ x_2^2\end{array}
ight|\in\mathbb{R}^3$$

Transformed training data: linearly separable

Professor Ameet Talwalkar

General nonlinear basis functions

We can use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D}
ightarrowoldsymbol{z}\in\mathbb{R}^{M}$$

where M is the dimensionality of the new feature/input z (or $\phi(x)$).

• M could be greater than, less than, or equal to D

General nonlinear basis functions

We can use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D}
ightarrowoldsymbol{z}\in\mathbb{R}^{M}$$

where M is the dimensionality of the new feature/input z (or $\phi(x)$).

 $\bullet~M$ could be greater than, less than, or equal to D

With the new features, we can apply our learning techniques to minimize our errors on the transformed training data

- linear methods: prediction is based on $m{w}^{\mathrm{T}} m{\phi}(m{x})$
- other methods: nearest neighbors, decision trees, etc

Regression with nonlinear basis

Residual sum squares

$$\sum_n [oldsymbol{w}^{\mathrm{T}} oldsymbol{\phi}(oldsymbol{x}_n) - y_n]^2$$

where $\boldsymbol{w} \in \mathbb{R}^M$, the same dimensionality as the transformed features $\boldsymbol{\phi}(\boldsymbol{x})$.

< 回 > < 三 > < 三 >

Regression with nonlinear basis

Residual sum squares

$$\sum_n [oldsymbol{w}^{\mathrm{T}} oldsymbol{\phi}(oldsymbol{x}_n) - y_n]^2$$

where $oldsymbol{w} \in \mathbb{R}^M$, the same dimensionality as the transformed features $oldsymbol{\phi}(oldsymbol{x}).$

The LMS solution can be formulated with the new design matrix

$$oldsymbol{\Phi} = egin{pmatrix} oldsymbol{\phi}(oldsymbol{x}_1)^{\mathrm{T}} \ oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ dots \ oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ dots \ oldsymbol{\phi}(oldsymbol{x}_N)^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{N imes M}, \quad oldsymbol{w}^{ ext{LMS}} = ig(oldsymbol{\Phi}^{ ext{T}}oldsymbol{\Phi}^{ ext{T}}oldsymbol{\Phi}^{ ext{T}}oldsymbol{y}$$

Example with regression **Polynomial basis functions**

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

< (T) > <

э

Example with regression **Polynomial basis functions**

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Fitting samples from a sine function: *underrfitting* as f(x) is too simple

Professor Ameet Talwalkar

CS260 Machine Learning Algorithms

Adding high-order terms

M=3

3

A ►

Adding high-order terms

M=9: overfitting

More complex features lead to better results on the training data, but potentially worse results on new data, e.g., test data!

Overfiting

Parameters for higher-order polynomials are very large

	M = 0	M = 1	M=3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

(日) (周) (三) (三)

Overfitting can be quite disastrous

Fitting the housing price data with large ${\cal M}$

Predicted price goes to zero (and is ultimately negative) if you buy a big enough house!

This is called poor generalization/overfitting.

Detecting overfitting

Plot model complexity versus objective function

- X axis: model complexity, e.g., M
- Y axis: error, e.g., RSS, RMS (square root of RSS), 0-1 loss

As a model increases in complexity:

- Training error keeps improving
- Test error may first improve but eventually will deteriorate