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Homeworks

Homework 2: due now

Homework 3 available online
I Due on Monday, 2/13 (two days before the midterm)
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Generative vs Discriminative

Discriminative

Requires only specifying a model for the conditional distribution
p(y|x), and thus, maximizes the conditional likelihood∑

n log p(yn|xn).

Models that try to learn mappings directly from feature space to the
labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

Aims to model the joint probability p(x, y) and thus maximize the
joint likelihood

∑
n log p(xn, yn).

The generative models we cover do so by modeling p(x|y) and p(y)
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Generative approach

Model joint distribution of (x = (height, weight), y =sex)

our data

Sex Height Weight
1 6′ 175
0 5′2” 120
1 5′6” 140
1 6′2” 240
0 5.7” 130
· · · · · · · · · 55 60 65 70 75 80

80

100

120

140

160

180

200

220

240

260

280

height
w

ei
gh

t

red = female, blue=male

Intuition: we will model how heights vary (according to a Gaussian) in
each sub-population (male and female).
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Model of the joint distribution (1D)

p(x, y) = p(y)p(x|y)

=


p0

1√
2πσ0

e
− (x−µ0)

2

2σ20 if y = 0

p1
1√
2πσ1

e
− (x−µ1)

2

2σ21 if y = 1

p0 + p1 = 1 are prior probabilities, and
p(x|y) is a class conditional distribution

55 60 65 70 75 80
80

100

120

140

160

180

200

220

240

260

280

height

w
ei

gh
t

red = female, blue=male

What are the parameters to learn?
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QDA Parameter estimation

Log Likelihood of training data D = {(xn, yn)}Nn=1 with yn ∈ {0, 1}

logP (D) =
∑
n

log p(xn, yn)

=
∑

n:yn=0

log

(
p0

1√
2πσ0

e
− (xn−µ0)

2

2σ20

)

+
∑

n:yn=1

log

(
p1

1√
2πσ1

e
− (xn−µ1)

2

2σ21

)

Max log likelihood (p∗0, p
∗
1, µ
∗
0, µ
∗
1, σ
∗
0, σ
∗
1) = arg max logP (D)

Max likelihood (D = 2) (p∗0, p
∗
1,µ

∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = arg max logP (D)
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Decision boundary

Decision based on comparing conditional probabilities

p(y = 1|x) ≥ p(y = 0|x)

which is equivalent to

p(x|y = 1)p(y = 1) ≥ p(x|y = 0)p(y = 0)

Namely,

− (x− µ1)2

2σ21
− log

√
2πσ1 + log p1 ≥ −

(x− µ0)2

2σ20
− log

√
2πσ0 + log p0

⇒ ax2 + bx+ c ≥ 0 ← the QDA decision boundary not linear!
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QDA vs LDA vs NB

Max likelihood (D = 2) (p∗0, p
∗
1,µ

∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = arg max logP (D)

QDA: Allows distinct, arbitrary covariance matrices for each class

LDA: Requires the same arbitrary covariance matrix across classes

GNB: Allows for distinct covariance matrices across each class, but
these covariance matrices must be diagonal

GNB in HW2 Problem 1: Requires the same diagonal covariance
matrix across classes
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Generative versus discriminative: which one to use?

There is no fixed rule

It depends on how well your modeling assumption fits the data

When data follows the generative assumption, generative models will
likely yield a model that better fits the data

But, discriminative models are less sensitive to incorrect modelling
assumptions (and often require less parameters to train)
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Outline

1 Administration

2 Review – Generative vs Discriminative

3 Review – Multiclass classification
Use binary classifiers as building blocks
Multinomial logistic regression

4 Perceptron

5 Linear regression
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Setup

Predict multiple classes/outcomes: C1, C2, . . . , CK

Weather prediction: sunny, cloudy, raining, etc

Optical character recognition: 10 digits + 26 characters (lower and
upper cases) + special characters, etc

Studied methods

Nearest neighbor classifier

Naive Bayes

Gaussian discriminant analysis

Logistic regression
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From multiclass to binary classification

“one versus the rest”

Train a binary classifier or each class Ck:
1 Relabel training data with label Ck, into positive (or ‘1’)
2 Relabel all the rest data into negative (or ‘0’)

Train K total binary classifiers

Aggregate predictions at test time

“one versus one”

Train a binary classifier for each pair of classes Ck and Ck′
1 Relabel training data with label Ck, into positive (or ‘1’)
2 Relabel training data with label Ck′ into negative (or ‘0’)
3 Disregard all other data

Train K(K − 1)/2 total binary classifiers

Tally ‘votes’ from each classifier at test time
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Contrast these two approaches

Pros of each approach

one versus the rest: only needs to train K classifiers.
I Makes a big difference if you have a lot of classes to go through.

one versus one: only needs to train a smaller subset of data (only
those labeled with those two classes would be involved).

I Makes a big difference if you have a lot of data to go through.

Bad about both of them
Combining classifiers’ outputs seem to be a bit tricky.

Is there a more natural approach to generalize logistic regression?
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First try

Can we just define the following conditional model for each class?

p(y = Ck|x) = σ[wT
k x]

This would not work because:∑
k

p(y = Ck|x) =
∑
k

σ[wT
k x] 6= 1

as each summand can be any number (independently) between 0 and 1.

But we are close! We can learn the K linear models jointly to ensure this
property holds!
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Definition of multinomial logistic regression

Model

For each class Ck, we have a parameter vector wk and model the posterior
probability as

p(Ck|x) =
ew

T
k x∑

k′ e
wT
k′x

← This is called softmax function

Decision boundary: assign x with the label that is the maximum of
posterior

arg maxk P (Ck|x)→ arg maxkw
T
k x

Properties:

Preserves relative ordering of ‘scores’ w>k x for each class

Maps scores to values between 0 and 1 that also sum to 1

Reduces to binary logistic regression when K = 2
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Parameter estimation

Discriminative approach: maximize conditional likelihood

logP (D) =
∑
n

logP (yn|xn)

We will change yn to yn = [yn1 yn2 · · · ynK ]T, a K-dimensional vector
using 1-of-K encoding, e.g., if yn = 2, then, yn = [0 1 0 0 · · · 0]T.

⇒
∑
n

logP (yn|xn) =
∑
n

log
K∏
k=1

P (Ck|xn)ynk =
∑
n

∑
k

ynk logP (Ck|xn)

Optimization requires numerical procedures, analogous to those used for
binary logistic regression
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2 Review – Generative vs Discriminative
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4 Perceptron
Intuition
Algorithm

5 Linear regression
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Main idea

Consider a linear model for binary classification

wTx

We use this model to distinguish between two classes {−1,+1}.

One goal

ε =
∑
n

I[yn 6= sign(wTxn)]

i.e., to minimize errors on the training dataset.
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Hard, but easy if we have only one training example

How can we change w such that

yn = sign(wTxn)

Two cases

If yn = sign(wTxn), do nothing.

If yn 6= sign(wTxn),

wnew ← wold + ynxn
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Why would it work?

If yn 6= sign(wTxn), then

yn(wTxn) < 0

What would happen if we change to new wnew = w + ynxn?

yn[(w + ynxn)Txn] = ynw
Txn + y2nx

T
nxn

We are adding a positive number, so it is possible that

yn(wnewTxn) > 0

i.e., we are more likely to classify correctly
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Perceptron

Iteratively solving one case at a time

REPEAT

Pick a data point xn (can be a fixed order of the training instances)

Make a prediction y = sign(wTxn) using the current w

If y = yn, do nothing. Else,

w ← w + ynxn

UNTIL converged.

Properties

This is an online algorithm.

If the training data is linearly separable, the algorithm stops in a finite
number of steps.

The parameter vector is always a linear combination of training
instances (requires initialization of w0 = 0)
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Convergence under linear separability

Let x1, . . . ,xT ∈ RD be a sequence of T points processed until
convergence

Assume ‖xt‖ ≤ r for all t ∈ [1, T ], for some r > 0

Assume that there exist ρ > 0 and v ∈ RD s.t. for all t ∈ [1, T ],

ρ ≤ yt(v · xt)
‖v‖

Then, the number of updates M made by the Perceptron algorithm when
processing x1, . . . ,xT is bounded by

M ≤ r2/ρ2
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Recall that ρ ≤ yt(v·xt)
‖v‖ , wt+1 = wt + ytxt, and w0 = 0

Let I be the subset of the T rounds with an update, i.e., |I| = M

Mρ ≤
v ·
∑
t∈I ytxt

‖v‖

≤
∥∥∥∑
t∈I

ytxt

∥∥∥ (Cauchy-Schwarz inequality)

=
∥∥∥∑
t∈I

(wt+1 −wt)
∥∥∥ (definition of updates)

= ‖wT+1‖ (telescoping sum, w0 = 0)

=

√∑
t∈I

‖wt+1‖2 − ‖wt‖2 (telescoping sum, w0 = 0)

=

√∑
t∈I

‖wt + ytxt‖2 − ‖wt‖2 (definition of updates)

=

√√√√∑
t∈I

2 ytwt · xt︸ ︷︷ ︸
≤0

+‖xt‖2

≤
√∑

t∈I

‖xt‖2 ≤
√
Mr2 (Therefore, Mρ ≤

√
Mr2 →M ≤ r2

ρ2
)
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t∈I
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Mr2 →M ≤ r2

ρ2
)
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Outline

1 Administration

2 Review – Generative vs Discriminative

3 Review – Multiclass classification

4 Perceptron

5 Linear regression
Motivation
Algorithm
Univariate solution
Probabilistic interpretation
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Regression

Predicting a continuous outcome variable

Predicting shoe size from height, weight and gender

Predicting a company’s future stock price using its profit and other
financial info

Predicting annual rainfall based on local flaura / fauna

Predicting song year from audio features

Key difference from classification

We can measure ’closeness’ of prediction and labels, leading to
different ways to evaluate prediction errors.

I Predicting shoe size: better to be off by one size than by 5 sizes
I Predicting song year: better to be off by one year than by 20 years

This will lead to different learning models and algorithms
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Ex: predicting the sale price of a house

Retrieve historical sales records
(This will be our training data)
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Features used to predict
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Correlation between square footage and sale price

Note: colors here do NOT represent different labels as in classification
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Roughly linear relationship

Sale price ≈ price per sqft × square footage + fixed expense
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How to learn the unknown parameters?

training data (past sales record)

sqft sale price

2000 800K

2100 907K

1100 312K

5500 2,600K

· · · · · ·
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Reduce prediction error

How to measure errors?

The classification error (hit or miss) is not appropriate for continuous
outcomes.

How should we evaluate quality of a prediction?

I absolute difference: | prediction - sale price|
I squared difference: (prediction - sale price)2 [differentiable]

sqft sale price prediction error squared error

2000 810K 720K 90K 8100

2100 907K 800K 107K 1072

1100 312K 350K 38K 382

5500 2,600K 2,600K 0 0

· · · · · ·
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Minimize squared errors

Our model
Sale price = price per sqft × square footage + fixed expense +
unexplainable stuff
Training data

sqft sale price prediction error squared error

2000 810K 720K 90K 8100

2100 907K 800K 107K 1072

1100 312K 350K 38K 382

5500 2,600K 2,600K 0 0

· · · · · ·
Total 8100 + 1072 + 382 + 0 + · · ·

Aim
Adjust price per sqft and fixed expense such that the sum of the squared
error is minimized — i.e., the residual/remaining unexplainable stuff is
minimized.
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Linear regression

Setup

Input: x ∈ RD (covariates, predictors, features, etc)

Output: y ∈ R (responses, targets, outcomes, outputs, etc)

Model: f : x→ y, with f(x) = w0 +
∑

dwdxd = w0 +wTx
I w = [w1 w2 · · · wD]T: weights, parameters, or parameter vector
I w0 is called bias
I We also sometimes call w̃ = [w0 w1 w2 · · · wD]T parameters too

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 1, 2017 35 / 42



Linear regression

Setup

Input: x ∈ RD (covariates, predictors, features, etc)

Output: y ∈ R (responses, targets, outcomes, outputs, etc)

Model: f : x→ y, with f(x) = w0 +
∑

dwdxd = w0 +wTx
I w = [w1 w2 · · · wD]T: weights, parameters, or parameter vector
I w0 is called bias
I We also sometimes call w̃ = [w0 w1 w2 · · · wD]T parameters too

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 1, 2017 35 / 42



Linear regression

Setup

Input: x ∈ RD (covariates, predictors, features, etc)

Output: y ∈ R (responses, targets, outcomes, outputs, etc)

Model: f : x→ y, with f(x) = w0 +
∑

dwdxd = w0 +wTx
I w = [w1 w2 · · · wD]T: weights, parameters, or parameter vector
I w0 is called bias
I We also sometimes call w̃ = [w0 w1 w2 · · · wD]T parameters too

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 1, 2017 35 / 42



How do we learn parameters?

Minimize prediction error on training data

Use squared difference to measure error

Residual sum of squares

RSS(w̃) =
∑
n

[yn − f(xn)]2 =
∑
n

[yn − (w0 +
∑
d

wdxnd)]
2
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A simple case: x is just one-dimensional (D=1)

Residual sum of squares

RSS(w̃) =
∑
n

[yn − f(xn)]2 =
∑
n

[yn − (w0 + w1xn)]2

Identify stationary points by taking derivative with respect to
parameters and setting to zero

∂RSS(w̃)

∂w0
= 0⇒ −2

∑
n

[yn − (w0 + w1xn)] = 0

∂RSS(w̃)

∂w1
= 0⇒ −2

∑
n

[yn − (w0 + w1xn)]xn = 0
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∂RSS(w̃)

∂w0
= 0⇒ −2

∑
n

[yn − (w0 + w1xn)] = 0

∂RSS(w̃)

∂w1
= 0⇒ −2

∑
n

[yn − (w0 + w1xn)]xn = 0

Simplify these expressions to get “Normal Equations”

∑
yn = Nw0 + w1

∑
xn∑

xnyn = w0

∑
xn + w1

∑
x2n

We have two equations and two unknowns! Do some algebra to get:

w1 =

∑
(xn − x̄)(yn − ȳ)∑

(xi − x̄)2
and w0 = ȳ − w1x̄

where x̄ = 1
n

∑
n xn and ȳ = 1

n

∑
n yn.
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Why is minimizing RSS sensible?

Probabilistic interpretation

Noisy observation model

Y = w0 + w1X + η

where η ∼ N(0, σ2) is a Gaussian random variable

Conditional likelihood of one training sample:

p(yn|xn) = N(w0 + w1xn, σ
2) =

1√
2πσ

e−
[yn−(w0+w1xn)]2

2σ2
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Probabilistic interpretation (cont’d)

Log-likelihood of the training data D (assuming i.i.d)

logP (D) = log

N∏
n=1

p(yn|xn) =
∑
n

log p(yn|xn)

=
∑
n

{
− [yn − (w0 + w1xn)]2

2σ2
− log

√
2πσ

}
= − 1

2σ2

∑
n

[yn − (w0 + w1xn)]2 − N

2
log σ2 − N log

√
2π

= −1

2

{
1

σ2

∑
n

[yn − (w0 + w1xn)]2 + N log σ2

}
+ const

What is the relationship between minimizing RSS and maximizing the
log-likelihood?
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Maximum likelihood estimation

Estimating σ, w0 and w1 can be done in two steps

Maximize over w0 and w1

max logP (D)⇔ min
∑
n

[yn − (w0 + w1xn)]2← That is RSS(w̃)!

Maximize over s = σ2

∂ logP (D)

∂s
= −1

2

{
− 1

s2

∑
n

[yn − (w0 + w1xn)]2 + N
1

s

}
= 0

→ σ∗2 = s∗ =
1

N

∑
n

[yn − (w0 + w1xn)]2
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Maximize over s = σ2

∂ logP (D)

∂s
= −1

2

{
− 1

s2

∑
n

[yn − (w0 + w1xn)]2 + N
1

s

}
= 0

→ σ∗2 = s∗ =
1

N

∑
n

[yn − (w0 + w1xn)]2
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How does this probabilistic interpretation help us?

It gives a solid footing to our intuition: minimizing RSS(w̃) is a
sensible thing based on reasonable modeling assumptions

Estimating σ∗ tells us how much noise there could be in our
predictions. For example, it allows us to place confidence intervals
around our predictions.
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