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Homeworks

@ Homework 2: due now
@ Homework 3 available online
» Due on Monday, 2/13 (two days before the midterm)
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Outline

e Review — Generative vs Discriminative
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Generative vs Discriminative

Discriminative

@ Requires only specifying a model for the conditional distribution
p(y|x), and thus, maximizes the conditional likelihood
>, log p(yn|zn).

@ Models that try to learn mappings directly from feature space to the
labels are also discriminative, e.g., perceptron, SVMs (covered later)
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Generative vs Discriminative

Discriminative

@ Requires only specifying a model for the conditional distribution
p(y|x), and thus, maximizes the conditional likelihood

> 1og p(ynl@n).
@ Models that try to learn mappings directly from feature space to the
labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

@ Aims to model the joint probability p(x,y) and thus maximize the
Jjoint likelihood )", log p(@r, yn).
@ The generative models we cover do so by modeling p(z|y) and p(y)
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Generative approach

Model joint distribution of (x = (height, weight), y =sex)

red = female, blue=male

our data 20 xx
Sex Height Weight o
1 6 175 -
0 527 120
1 5'6” 140 10
1 62 240 -
0 5.7" 130 100

Intuition: we will model how heights vary (according to a Gaussian) in
each sub-population (male and female).
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Model of the joint distribution (1D)

red = female, blue=male

p(z,y) = p(y)p(z|y)
_(ﬂv—ug)2
Do \/%aoe 203 ify=0
_(m—pp)?
D \/%Ul e 2 ify=1

po + p1 = 1 are prior probabilities, and
p(z|y) is a class conditional distribution
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Model of the joint distribution (1D)

red = female, blue=male

p(z,y) = p(y)p(z|y)
_(ﬂv—ug)2
) p \/%aoe 203 ify=0
- _ (z—pp)?
D \/%01 e 2 ify=1

po + p1 = 1 are prior probabilities, and
p(z|y) is a class conditional distribution

What are the parameters to learn?
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QDA Parameter estimation

Log Likelihood of training data D = {(z,,,y,)}\_; with y, € {0,1}

lOgP(D) = Zlogp(xmyn)

1 _ (zn—ng)?
202
= D log LAV
0

n:yn=>0

1 _ (xn—gl)z
+ lo e
Z g | P1 —27“71

n:y'nzl
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QDA Parameter estimation

Log Likelihood of training data D = {(z,,,y,)}\_; with y, € {0,1}

lOgP(D) = Zlogp(xmyn)

1 _ (zn—ng)?
202
= D log LAV
0

n:yn=>0
> ( = ~lenoia?
+ log | p1 e 2
el 2moq

Max log likelihood (p§, pi, 115, 115, 03, 0F) = arg maxlog P(D)
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QDA Parameter estimation

Log Likelihood of training data D = {(z,,,y,)}\_; with y, € {0,1}

lOgP(D) = Zlogp(xmyn)

1 _ (zn—ng)?
202
= D log LAV
0

n:yn:O

1 _(zn—gnz
+ log [ p1 e %
n:y;I & V2moq

Max log likelihood (p§, p3, i, 117, 0, 07 ) = arg maxlog P(D)
Max likelihood (D = 2) (p§, pi, ps, 17, 3§, X7) = arg max log P(D)
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Decision boundary

Decision based on comparing conditional probabilities

p(y = 1]z) > p(y = 0|x)

which is equivalent to

p(zly = )p(y = 1) > p(z|y = 0)p(y = 0)
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Decision boundary

Decision based on comparing conditional probabilities
p(y =1lz) > p(y = 0x)

which is equivalent to

p(zly=1)p(y = 1) > p(zly = 0)p(y = 0)

Namely,
2 2
T — U1 xr — o
— # —log vV2mo; + logpr > —# — log V2mwog + log po
207 20
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Decision boundary

Decision based on comparing conditional probabilities
p(y =1lz) > p(y = 0x)

which is equivalent to

p(zly=1)p(y = 1) > p(zly = 0)p(y = 0)

Namely,
2 2
T — T —
— # —logV2mwo1 4+ logpy > —# — log V2mwog + log po
207 20
=ar’+br+c>0 <+ the QDA decision boundary not linear!
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QDA vs LDA vs NB

Max likelihood (D = 2) (p§, pi, g, 17, 35, X7) = arg max log P(D)

o = £ DA
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QDA vs LDA vs NB

Max likelihood (D = 2) (p§, pi, 15, 17, 3§, 27) = arg maxlog P(D)

@ QDA: Allows distinct, arbitrary covariance matrices for each class
@ LDA: Requires the same arbitrary covariance matrix across classes

@ GNB: Allows for distinct covariance matrices across each class, but
these covariance matrices must be diagonal

o GNB in HW2 Problem 1: Requires the same diagonal covariance
matrix across classes
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Generative versus discriminative: which one to use?

There is no fixed rule
@ It depends on how well your modeling assumption fits the data

@ When data follows the generative assumption, generative models will
likely yield a model that better fits the data

@ But, discriminative models are less sensitive to incorrect modelling
assumptions (and often require less parameters to train)
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Outline

© Review — Multiclass classification
@ Use binary classifiers as building blocks
@ Multinomial logistic regression

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 1, 2017 12 / 42



Setup

Predict multiple classes/outcomes: C;,Cy,...,Cxk
@ Weather prediction: sunny, cloudy, raining, etc

@ Optical character recognition: 10 digits + 26 characters (lower and
upper cases) + special characters, etc

Studied methods
@ Nearest neighbor classifier
o Naive Bayes
@ Gaussian discriminant analysis
o

Logistic regression
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From multiclass to binary classification

“one versus the rest”
@ Train a binary classifier or each class Cy:

@ Relabel training data with label Cy, into POSITIVE (or ‘1")
@ Relabel all the rest data into NEGATIVE (or ‘0)

@ Train K total binary classifiers

o Aggregate predictions at test time
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From multiclass to binary classification

“one versus the rest”
@ Train a binary classifier or each class Cy:

© Relabel training data with label Cj, into POSITIVE (or ‘1')
@ Relabel all the rest data into NEGATIVE (or ‘0")

@ Train K total binary classifiers
o Aggregate predictions at test time
“one versus one”

@ Train a binary classifier for each pair of classes C} and Cj

© Relabel training data with label Cy, into POSITIVE (or ‘1')
@ Relabel training data with label C/ into NEGATIVE (or ‘0")
© Disregard all other data

e Train K (K — 1)/2 total binary classifiers

o Tally ‘votes’ from each classifier at test time
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Contrast these two approaches

Pros of each approach
@ one versus the rest: only needs to train K classifiers.
» Makes a big difference if you have a lot of classes to go through.

@ one versus one: only needs to train a smaller subset of data (only
those labeled with those two classes would be involved).

» Makes a big difference if you have a lot of data to go through.
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Contrast these two approaches

Pros of each approach
@ one versus the rest: only needs to train K classifiers.
» Makes a big difference if you have a lot of classes to go through.

@ one versus one: only needs to train a smaller subset of data (only
those labeled with those two classes would be involved).

» Makes a big difference if you have a lot of data to go through.

Bad about both of them
Combining classifiers’ outputs seem to be a bit tricky.

Is there a more natural approach to generalize logistic regression?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 1, 2017 15 / 42



First try

Can we just define the following conditional model for each class?

p(y = Cilx) = a[wgw]
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First try

Can we just define the following conditional model for each class?

p(y = Cilx) = J[wgw]

This would not work because:

S ply = Cilz) = 3 ofewfa] # 1
k

k

as each summand can be any number (independently) between 0 and 1.

But we are close! We can learn the K linear models jointly to ensure this
property holds!
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Definition of multinomial logistic regression
Model

For each class C, we have a parameter vector wj and model the posterior
probability as

T
ewk x

= < This is called softmax function
w,;, T
k€

p(Crlx) =
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Definition of multinomial logistic regression
Model

For each class C, we have a parameter vector wj and model the posterior
probability as

ew'kfz
— < This is called softmax function

y Wi T

p(Crlx) =

Decision boundary: assign « with the label that is the maximum of
posterior

arg max, P(Cy|x) — arg max, w]
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Definition of multinomial logistic regression
Model

For each class C, we have a parameter vector wj and model the posterior
probability as

T
w; T
e

p(Clz) = s < This is called softmax function
ke F

Decision boundary: assign x with the label that is the maximum of
posterior
arg max;, P(Cy|x) — arg max, wj
Properties:
@ Preserves relative ordering of ‘scores’ 'w,;r:z: for each class
@ Maps scores to values between 0 and 1 that also sum to 1

@ Reduces to binary logistic regression when K = 2
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Parameter estimation

Discriminative approach: maximize conditional likelihood

log P(D) = ) log P(yu|zn)
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Parameter estimation

Discriminative approach: maximize conditional likelihood

log P(D) = ) log P(yu|zn)

We will change Yy, to Yn = [Yn1 Yn2 “** Ynk]', a K-dimensional vector
using 1-of-K encoding, e.g., if y, = 2, then, y, =[0100 --- 0]T.
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Parameter estimation

Discriminative approach: maximize conditional likelihood

logP(D) = Zlog P(ynlwn)

We will change y,, to Y = [Un1 Yn2 - ynK]T, a K-dimensional vector
using 1-of-K encoding, e.g., if y, = 2, then, y, =[0100 --- 0]T.

K
=Y log P(ynlz,) = Y log [[ P(Crlzn)™ => > ynrlog P(Cilxn)
n k=1

n n k

Optimization requires numerical procedures, analogous to those used for
binary logistic regression
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Outline

@ Perceptron

@ [ntuition

@ Algorithm

o & = E DA
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Main idea

Consider a linear model for binary classification
wle

We use this model to distinguish between two classes {—1, +1}.

One goal
e = Ty # sign(w",)

i.e., to minimize errors on the training dataset.
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Hard, but easy if we have only one training example

How can we change w such that
yn = sign(wrx,)

Two cases
o If y, = sign(w™x,), do nothing.
o If y, # sign(wrx,),

wNEW - wOLD + ynmn
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Why would it work?
If v, # sign(w'a,,), then

Yn (wTa’n

) <0

o & = E DA
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Why would it work?

If v, # sign(w'x,,), then

yn('wT:Bn) <0

What would happen if we change to new w™*V = w + y,x,?

T T

Ynl(w + yna’n)Tmn] = YnW Ty + y’r21,mn Ln
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Why would it work?

If v, # sign(w'x,,), then
yn(wre,) < 0
What would happen if we change to new w™*V = w + y,x,?

T

T 2
Ty + YnZp Ln

Ynl(w + ynmn)Tmn] =Ynw
We are adding a positive number, so it is possible that

yn(wNEWTa:n) >0

i.e., we are more likely to classify correctly
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Perceptron

Iteratively solving one case at a time

o REPEAT

e Pick a data point @, (can be a fixed order of the training instances)
e Make a prediction y = sign(w'x,,) using the current w

o If y = y,, do nothing. Else,

W <— W+ YpTy

@ UNTIL converged.
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Perceptron

Iteratively solving one case at a time

o REPEAT

e Pick a data point @, (can be a fixed order of the training instances)
e Make a prediction y = sign(w'x,,) using the current w

o If y = y,, do nothing. Else,

W <— W+ YpTy

@ UNTIL converged.
Properties
@ This is an online algorithm.

o If the training data is linearly separable, the algorithm stops in a finite
number of steps.

@ The parameter vector is always a linear combination of training
instances (requires initialization of wy = 0)
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Convergence under linear separability

o Let x1,...,z7 € RP be a sequence of T points processed until
convergence
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Convergence under linear separability

o Let x1,...,z7 € RP be a sequence of T points processed until
convergence

e Assume ||x;|| < r for all t € [1,T], for some r > 0
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Convergence under linear separability

o Let x1,...,z7 € RP be a sequence of T points processed until
convergence
@ Assume ||x;|| < r for all ¢t € [1,T], for some r > 0

o Assume that there exist p > 0 and v € R” s.t. for all t € [1,T],

ye(v - xy)

p<
o]l
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Convergence under linear separability

o Let x1,...,z7 € RP be a sequence of T points processed until
convergence

@ Assume ||x;|| < r for all ¢t € [1,T], for some r > 0

o Assume that there exist p > 0 and v € R” s.t. for all t € [1,T],

ye(v - xy)

p<
o]l

Then, the number of updates M made by the Perceptron algorithm when
processing 1, ..., T is bounded by

M <r?/p?
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

VoD er Yee

Mp <
o]l
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

v- x
Mp < M < H Z Y&y (Cauchy-Schwarz inequality)
tel

- ]l
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

v - x
Mp < M < H Z Yty (Cauchy-Schwarz inequality)
tel

- ]l

= H D (wipr —wy)

tel

’ (definition of updates)
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

v - x
Mp < M < H Z Yty (Cauchy-Schwarz inequality)
tel

- ]l

= H Z(thrl — wt) ’ (definition of updates)
tel
= [lwrl (telescoping sum, wo = 0)
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

(Cauchy-Schwarz inequality)

v - Yt Tt
Mp<z’ﬁ+1 < H E Yr Lt
tel

[[v]]
= H Z(th — wy) ’ (definition of updates)
tel
= [Jwr1| (telescoping sum, wo = 0)
= Z w12 — |Jwe|? (telescoping sum, wo = 0)
tel
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ye(v-at)
[v]]

@ Recall that p < Tl Wikl = Wy + yrxy, and wy =0
o Let I be the subset of the T rounds with an update, i.e., |[I| = M

Mp <

v - YT
U Der Y | S e
tel

]l

H Z(thrl - wt)

tel

= [lwr+1]

D w2 — [lwe |2

tel

D llwe + gwe|? — [Jwe?
tel

(Cauchy-Schwarz inequality)

(definition of updates)

(telescoping sum, wo = 0)

(telescoping sum, wo = 0)

(definition of updates)
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

(Cauchy-Schwarz inequality)

v - Yt Tt
Mp<z’ﬁ+1 < H E Yr Lt
tel

[[v]]

= H Z(th — wy) ’ (definition of updates)
tel

= [Jwr1| (telescoping sum, wo = 0)

= Z lwepi|]? — Jwe]|? (telescoping sum, wo = 0)
tel

= Z llwe + yexe||? — ||we||? (definition of updates)
tel

Z2ytwt x| |2
—_——

tel <0
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

(Cauchy-Schwarz inequality)

v - Yt Tt
Mp<z’ﬁ+1 < H E Yr Lt
tel

[[v]]

= H Z(th — wy) ’ (definition of updates)
tel

= [Jwr1| (telescoping sum, wo = 0)

= Z lwepi|]? — Jwe]|? (telescoping sum, wo = 0)
tel

= Z llwe + yexe||? — ||we||? (definition of updates)
tel

Z2ytwt x| |2
—_——

tel <0

> llzell?

tel

IN
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@ Recall that p < % wir1 = wy + Yy, and wy =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

(Cauchy-Schwarz inequality)

v - Yt Tt
Mp<z’ﬁ+1 < H E Yr Lt
tel

[[v]]

= H Z(th — wy) ’ (definition of updates)
tel

= [Jwr1| (telescoping sum, wo = 0)

= Z lwepi|]? — Jwe]|? (telescoping sum, wo = 0)
tel

= Z llwe + yexe||? — ||we||? (definition of updates)
tel

Z2ytwt x| |2
—_——

tel <0

D llzell? < VMr2
tel

IN
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@ Recall that p < % Wir1 = Wy + Yy, and wg =0

o Let I be the subset of the T rounds with an update, i.e., |[I| = M

(Cauchy-Schwarz inequality)

v - Yt Tt
Mp<2t;l < H E Yr Lt
tel

[[v]]

= H Z(th — wy) ’ (definition of updates)
tel

= [Jwr1| (telescoping sum, wo = 0)

= Z lwepi|]? — Jwe]|? (telescoping sum, wo = 0)
tel

= Z llwe + yexe||? — ||we||? (definition of updates)
tel

= Z2ytwt x| |2
—_——

tel <0

x2 < VM2 Therefore, Mp < VMr2 — M <
2
tel

IN
s
N
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Outline

© Linear regression
@ Motivation
@ Algorithm
@ Univariate solution
@ Probabilistic interpretation
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Regression

Predicting a continuous outcome variable
@ Predicting shoe size from height, weight and gender

@ Predicting a company’s future stock price using its profit and other
financial info

e Predicting annual rainfall based on local flaura / fauna

@ Predicting song year from audio features
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Regression

Predicting a continuous outcome variable
@ Predicting shoe size from height, weight and gender

@ Predicting a company's future stock price using its profit and other
financial info

e Predicting annual rainfall based on local flaura / fauna
@ Predicting song year from audio features

Key difference from classification
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Regression

Predicting a continuous outcome variable
@ Predicting shoe size from height, weight and gender

@ Predicting a company's future stock price using its profit and other
financial info

e Predicting annual rainfall based on local flaura / fauna
@ Predicting song year from audio features

Key difference from classification

@ We can measure 'closeness’ of prediction and labels, leading to
different ways to evaluate prediction errors.

» Predicting shoe size: better to be off by one size than by 5 sizes
» Predicting song year: better to be off by one year than by 20 years

@ This will lead to different learning models and algorithms
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Ex: predicting the sale price of a house

Retrieve historical sales records
(This will be our training data)
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Features used to predict
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Correlation between square footage and sale price

25X 10
2,
° H
S 15 .
% ° .' ° ° o.. ®
S 1feg eloei%o. e o
R
05

Note: colors here do NOT represent different labels as in classification
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Roughly linear relationship
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Roughly linear relationship
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Sale price = price_per_sqft x square_footage + fixed_expense
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How to learn the unknown parameters?

training data (past sales record)

sqft | sale price

2000 | 800K
2100 | 907K
1100 | 312K

5500 | 2,600K
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Reduce prediction error

How to measure errors?

@ The classification error (hit or miss) is not appropriate for continuous
outcomes.

@ How should we evaluate quality of a prediction?
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Reduce prediction error

How to measure errors?

@ The classification error (hit or miss) is not appropriate for continuous

outcomes.

@ How should we evaluate quality of a prediction?

» absolute difference: | prediction - sale price|

» squared difference: (prediction - sale price)? [differentiable]

sqft | sale price | prediction | error | squared error
2000 | 810K 720K 90K | 8100

2100 | 907K 800K 107K | 1072

1100 | 312K 350K 38K | 387

5500 | 2,600K 2,600K 0 0
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Minimize squared errors

Our model
Sale price = price_per_sqft x square_footage + fixed_expense +
unexplainable_stuff
Training data

sqft | sale price | prediction | error | squared error

2000 | 810K 720K 90K | 8100

2100 | 907K 800K 107K | 107?

1100 | 312K 350K 38K | 382

5500 | 2,600K 2,600K 0 0

Total 8100 + 1072 + 38% + 0+ - - -
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Minimize squared errors

Our model

Sale price = price_per_sqft x square_footage + fixed_expense +
unexplainable_stuff

Training data

sqft | sale price | prediction | error | squared error

2000 | 810K 720K 90K | 8100

2100 | 907K 800K 107K | 1072

1100 | 312K 350K 38K | 387

5500 | 2,600K 2,600K 0 0

Total 8100 4 107* +38% 4+ 0+ - - -
Aim
Adjust price_per_sqft and fixed_expense such that the sum of the squared
error is minimized — i.e., the residual /remaining unexplainable_stuff is
minimized.
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Linear regression

Setup
o Input: = € RP (covariates, predictors, features, etc)

@ Output: y € R (responses, targets, outcomes, outputs, etc)
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Linear regression

Setup
o Input: = € RP (covariates, predictors, features, etc)
e Output: y € R (responses, targets, outcomes, outputs, etc)
e Model: f:x — y, with f(x) =wo+ >, wqrq = wo + wlz

> w=[w wy - wD]T: weights, parameters, or parameter vector
» wy is called bias
» We also sometimes call w = [wy w1 wy -+ wD]T parameters too
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Linear regression

Setup
o Input: = € RP (covariates, predictors, features, etc)
e Output: y € R (responses, targets, outcomes, outputs, etc)
e Model: f:x — y, with f(x) =wo+ >, wqrq = wo + wlz

> w=[w wy - wD]T: weights, parameters, or parameter vector
» wy is called bias
» We also sometimes call w = [wy w1 wy -+ wD]T parameters too

Training data: D = {(xn,yn),n =1,2,...,N}
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How do we learn parameters?

Minimize prediction error on training data
@ Use squared difference to measure error

@ Residual sum of squares

RSS(w) = Z[yn — f(zn)]? = Z[yn — (wo + deﬂfnd)]2

n n d
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A simple case: x is just one-dimensional (D=1)
Residual sum of squares

RSS(w) =Y [yn — f(@n)? =D _lyn — (wo + wizy)]?

n n
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A simple case: x is just one-dimensional (D=1)

Residual sum of squares

RSS(®) = [yn — f(@a)]> = [yn — (wo + wizn)]?

n n

Identify stationary points by taking derivative with respect to
parameters and setting to zero

ORSS(w
8—(—0: 22 — (wo + wiz,)] =0

ORSS(w
8w( =0= 22 — (wo + wixy)|xn =0
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8RSS(

o =0= ZZ[yn— (wo + wizy)] =0

ORSS(w)
8—w1 =0= -2 Z wo + wlxn)]l‘n =0

Simplify these expressions to get “Normal Equations”
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M =0= —2Z[yn — (wo + wix,)] =0

8’[00 n
ORSS(w)
o = 0= =2 [y — (wo + wiwn)wn =0

n

Simplify these expressions to get “Normal Equations”

Zyn =Nwo+w12xn
D @y =wo Y xn+wr Yy
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ORSS ()

oy =0= -2 Z[yn — (wo + wix,)] =0

ORSS ()

dw 0= -2 Z[yn — (wo + wixy)|xn =0

n

Simplify these expressions to get “Normal Equations”

ZynzNwo+w1an
> @nyn =wo » o +wr Yy

We have two equations and two unknowns! Do some algebra to get:

2 (@ = Z)(Yn —7)
> (i —x)?

where 2 =15 z,and j=1% y,.

wyp = and wy =Y — wW1T
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Why is minimizing RSS sensible?

Probabilistic interpretation

o Noisy observation model
Y =wy+wi X +n

where 1 ~ N(0,0?) is a Gaussian random variable
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Why is minimizing RSS sensible?

Probabilistic interpretation

o Noisy observation model
Y =wy+wi X +n

where 1 ~ N(0,0?) is a Gaussian random variable

@ Conditional likelihood of one training sample:

1 _ [yn—(wotwien)]?
[ 20

p(yn|xn) = N('U)O + w1y, 0'2) =
2ro
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Probabilistic interpretation (cont'd)

Log-likelihood of the training data D (assuming i.i.d)

N
log P(D) = log [ [ p(ynlzn) = > log p(yn|zn)

n=1
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Probabilistic interpretation (cont'd)

Log-likelihood of the training data D (assuming i.i.d)

N
log P(D) = log [ p(ynlza) = Zlogp Ynln)
n=1

_ Z { (wo + “’1"””)] ~log \/%a}

202
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Probabilistic interpretation (cont'd)

Log-likelihood of the training data D (assuming i.i.d)

N
log P(D) = log [ [ p(ynlzn) = Z 10g p(yn|7n)

_ Zn{ 1 (wo J; “’1’””)] ~log \/%a}
1

N
= ~552 [Yn — (wo + wlxn)]2 —3 loga2 — Nlog v27
n
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Probabilistic interpretation (cont'd)

Log-likelihood of the training data D (assuming i.i.d)

N
log P(D) = log [ [ p(ynlzn) = Z 10g p(yn|7n)

_ Zn{ | (wo J; wl"’“"")] ~log \/%a}
1

N
= ~552 [Yn — (wo + wlxn)]2 —3 loga2 — Nlog v27
n

1 1
=3 {; S yn — (wo + wiza)]2 + Nlogoﬂ} + const
n

What is the relationship between minimizing RSS and maximizing the
log-likelihood?
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Maximum likelihood estimation

Estimating o, wy and w; can be done in two steps

@ Maximize over wg and wq

max log P(D) < min Z[yn (wo + w1x,)]%¢ That is RSS(w)!
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Maximum likelihood estimation

Estimating o, wy and w; can be done in two steps

@ Maximize over wg and wq

max log P(D) < min Z[yn (wo + w1x,)]%¢ That is RSS(w)!

@ Maximize over s = o

dlogP(D) 1) 1 B 9 |
b 2{ Sl (o wr)? NS 4 =0
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Maximum likelihood estimation

Estimating o, wy and w; can be done in two steps

@ Maximize over wg and wq

max log P(D) < min Z[yn (wo + w1x,)]%¢ That is RSS(w)!

@ Maximize over s = o

dlogP(D) 1
0s 2

{—l [Yn —(fwo—i-wlxn)]Z—FNé} =0

— ¥ = =N Z[yn — (wo + wlavn)]2
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How does this probabilistic interpretation help us?

e It gives a solid footing to our intuition: minimizing RSS(w) is a
sensible thing based on reasonable modeling assumptions

@ Estimating ¢* tells us how much noise there could be in our
predictions. For example, it allows us to place confidence intervals
around our predictions.
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