Perceptron and Linear Regresssion

Professor Ameet Talwalkar

Outline

Administration

- 2 Review Generative vs Discriminative
- 3 Review Multiclass classification

Perceptron

5 Linear regression

3

< 回 > < 三 > < 三 >

Homeworks

- Homework 2: due now
- Homework 3 available online
 - ▶ Due on Monday, 2/13 (two days before the midterm)

47 ▶

3

Outline

Administration

2 Review – Generative vs Discriminative

3 Review – Multiclass classification

Perceptron

5 Linear regression

3

< 回 > < 三 > < 三 >

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution p(y|x), and thus, maximizes the *conditional* likelihood $\sum_{n} \log p(y_n | \boldsymbol{x}_n)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution p(y|x), and thus, maximizes the *conditional* likelihood $\sum_{n} \log p(y_n | \boldsymbol{x}_n)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

- Aims to model the joint probability p(x, y) and thus maximize the *joint* likelihood $\sum_n \log p(x_n, y_n)$.
- The generative models we cover do so by modeling p(x|y) and p(y)

Generative approach

Model joint distribution of (x = (height, weight), y = sex)

Intuition: we will model how heights vary (according to a Gaussian) in each sub-population (male and female).

A 🕨 🔺

Model of the joint distribution (1D)

$$p(x,y) = p(y)p(x|y)$$

$$= \begin{cases} p_0 \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(x-\mu_0)^2}{2\sigma_0^2}} & \text{if } y = 0\\ p_1 \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1 \end{cases}$$

 $p_0 + p_1 = 1$ are *prior* probabilities, and p(x|y) is a *class conditional distribution*

Model of the joint distribution (1D)

$$p(x,y) = p(y)p(x|y)$$

$$= \begin{cases} p_0 \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(x-\mu_0)^2}{2\sigma_0^2}} & \text{if } y = 0\\ p_1 \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1 \end{cases}$$

280 ×× 260 240 220 200 180 160 140 120 100 80 L 65 70 75 80 height

red = female, blue=male

 $p_0 + p_1 = 1$ are *prior* probabilities, and p(x|y) is a *class conditional distribution*

What are the parameters to learn?

QDA Parameter estimation

Log Likelihood of training data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{0, 1\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$
$$= \sum_{n:y_n=0} \log \left(p_0 \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(x_n - \mu_0)^2}{2\sigma_0^2}} \right)$$
$$+ \sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

3

▲ @ ▶ ▲ ∃ ▶

QDA Parameter estimation

1

Log Likelihood of training data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{0, 1\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

= $\sum_{n:y_n=0} \log \left(p_0 \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(x_n - \mu_0)^2}{2\sigma_0^2}} \right)$
+ $\sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$

Max log likelihood $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \sigma_0^*, \sigma_1^*) = \arg \max \log P(\mathcal{D})$

QDA Parameter estimation

Log Likelihood of training data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{0, 1\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

=
$$\sum_{n:y_n=0} \log \left(p_0 \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(x_n - \mu_0)^2}{2\sigma_0^2}} \right)$$

+
$$\sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

Max log likelihood $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \sigma_0^*, \sigma_1^*) = \arg \max \log P(\mathcal{D})$ Max likelihood (D = 2) $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \Sigma_0^*, \Sigma_1^*) = \arg \max \log P(\mathcal{D})$

Decision boundary

Decision based on comparing conditional probabilities

$$p(y=1|x) \ge p(y=0|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \geq p(x|y=0)p(y=0)$$

Decision boundary

Decision based on comparing conditional probabilities

$$p(y=1|x) \ge p(y=0|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \geq p(x|y=0)p(y=0)$$

Namely,

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_0)^2}{2\sigma_0^2} - \log\sqrt{2\pi}\sigma_0 + \log p_0$$

Decision boundary

Decision based on comparing conditional probabilities

$$p(y=1|x) \ge p(y=0|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \geq p(x|y=0)p(y=0)$$

Namely,

$$\begin{aligned} &-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_0)^2}{2\sigma_0^2} - \log\sqrt{2\pi}\sigma_0 + \log p_0 \\ \Rightarrow ax^2 + bx + c \ge 0 \qquad \leftarrow \text{the QDA decision boundary not } \frac{\textit{linear}!}{2\sigma_0^2} \end{aligned}$$

QDA vs LDA vs NB

Max likelihood (D = 2) ($p_0^*, p_1^*, \mu_0^*, \mu_1^*, \Sigma_0^*, \Sigma_1^*$) = arg max log P(D)

QDA vs LDA vs NB

Max likelihood (D = 2) ($p_0^*, p_1^*, \mu_0^*, \mu_1^*, \Sigma_0^*, \Sigma_1^*$) = arg max log P(D)

- QDA: Allows distinct, arbitrary covariance matrices for each class
- LDA: Requires the same arbitrary covariance matrix across classes
- GNB: Allows for distinct covariance matrices across each class, but these covariance matrices must be diagonal
- GNB in HW2 Problem 1: Requires the same diagonal covariance matrix across classes

Generative versus discriminative: which one to use?

There is no fixed rule

- It depends on how well your modeling assumption fits the data
- When data follows the generative assumption, generative models will likely yield a model that better fits the data
- But, discriminative models are less sensitive to incorrect modelling assumptions (and often require less parameters to train)

Outline

Administration

2 Review – Generative vs Discriminative

3 Review – Multiclass classification

- Use binary classifiers as building blocks
- Multinomial logistic regression

4 Perceptron

5 Linear regression

Setup

Predict multiple classes/outcomes: C_1, C_2, \ldots, C_K

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits + 26 characters (lower and upper cases) + special characters, etc

Studied methods

- Nearest neighbor classifier
- Naive Bayes
- Gaussian discriminant analysis
- Logistic regression

From multiclass to binary classification

"one versus the rest"

- Train a binary classifier or each class C_k :
 - **1** Relabel training data with label C_k , into POSITIVE (or '1')
 - Relabel all the rest data into NEGATIVE (or '0')
- Train K total binary classifiers
- Aggregate predictions at test time

From multiclass to binary classification

"one versus the rest"

- Train a binary classifier or each class C_k :
 - **1** Relabel training data with label C_k , into POSITIVE (or '1')
 - Relabel all the rest data into NEGATIVE (or '0')
- Train K total binary classifiers
- Aggregate predictions at test time

"one versus one"

- Train a binary classifier for each *pair* of classes C_k and $C_{k'}$
 - **(**) Relabel training data with label C_k , into POSITIVE (or '1')
 -) Relabel training data with label $C_{k'}$ into <code>NEGATIVE</code> (or '0')
 - 3 *Disregard* all other data
- Train K(K-1)/2 total binary classifiers
- Tally 'votes' from each classifier at test time

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
 - Makes a *big* difference if you have a lot of *classes* to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
 - Makes a *big* difference if you have a lot of *data* to go through.

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
 - Makes a *big* difference if you have a lot of *classes* to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
 - Makes a *big* difference if you have a lot of *data* to go through.

Bad about both of them

Combining classifiers' outputs seem to be a bit tricky.

Is there a more natural approach to generalize logistic regression?

First try

Can we just define the following conditional model for each class?

$$p(y = C_k | \boldsymbol{x}) = \sigma[\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}]$$

< (17) × <

First try

Can we just define the following conditional model for each class?

$$p(y = C_k | \boldsymbol{x}) = \sigma[\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}]$$

This would *not* work because:

$$\sum_{k} p(y = C_k | \boldsymbol{x}) = \sum_{k} \sigma[\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}] \neq 1$$

as each summand can be any number (independently) between 0 and 1.

But we are close! We can learn the K linear models jointly to ensure this property holds!

Definition of multinomial logistic regression

Model

For each class C_k , we have a parameter vector ${m w}_k$ and model the posterior probability as

$$p(C_k | \boldsymbol{x}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text{This is called softmax function}$$

くほと くほと くほと

Definition of multinomial logistic regression

Model

For each class C_k , we have a parameter vector ${m w}_k$ and model the posterior probability as

$$p(C_k | \boldsymbol{x}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \mathsf{This is called } softmax \text{ function}$$

Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

 $\arg \max_k P(C_k | \boldsymbol{x}) \to \arg \max_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$

Definition of multinomial logistic regression

Model

For each class C_k , we have a parameter vector ${m w}_k$ and model the posterior probability as

$$p(C_k | \boldsymbol{x}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \mathsf{This is called } softmax \text{ function}$$

Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

$$\arg \max_k P(C_k | \boldsymbol{x}) \to \arg \max_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

Properties:

- Preserves relative ordering of 'scores' $oldsymbol{w}_k^ op oldsymbol{x}$ for each class
- $\bullet\,$ Maps scores to values between 0 and 1 that also sum to 1
- Reduces to binary logistic regression when ${\cal K}=2$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$\log P(\mathcal{D}) = \sum_{n} \log P(y_n | \boldsymbol{x}_n)$$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$\log P(\mathcal{D}) = \sum_{n} \log P(y_n | \boldsymbol{x}_n)$$

We will change y_n to $\boldsymbol{y}_n = [y_{n1} \ y_{n2} \ \cdots \ y_{nK}]^T$, a *K*-dimensional vector using 1-of-K encoding, e.g., if $y_n = 2$, then, $\boldsymbol{y}_n = [0 \ 1 \ 0 \ 0 \ \cdots \ 0]^T$.

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$\log P(\mathcal{D}) = \sum_{n} \log P(y_n | \boldsymbol{x}_n)$$

We will change y_n to $\boldsymbol{y}_n = [y_{n1} \ y_{n2} \ \cdots \ y_{nK}]^T$, a *K*-dimensional vector using 1-of-K encoding, e.g., if $y_n = 2$, then, $\boldsymbol{y}_n = [0 \ 1 \ 0 \ 0 \ \cdots \ 0]^T$.

$$\Rightarrow \sum_{n} \log P(y_n | \boldsymbol{x}_n) = \sum_{n} \log \prod_{k=1}^{K} P(C_k | \boldsymbol{x}_n)^{y_{nk}} = \sum_{n} \sum_{k} y_{nk} \log P(C_k | \boldsymbol{x}_n)$$

Optimization requires numerical procedures, analogous to those used for binary logistic regression

Outline

Administration

- Review Generative vs Discriminative
- 3 Review Multiclass classification

Perceptron

- Intuition
- Algorithm

5 Linear regression

Main idea

Consider a linear model for binary classification

 $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}$

We use this model to distinguish between two classes $\{-1, +1\}$.

One goal

$$\varepsilon = \sum_n \mathbb{I}[y_n \neq \mathsf{sign}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)]$$

i.e., to minimize errors on the training dataset.

Hard, but easy if we have only one training example

How can we change w such that

$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$

Two cases

• If
$$y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
, do nothing.

• If
$$y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
,

$$\boldsymbol{w}^{\text{NEW}} \leftarrow \boldsymbol{w}^{\text{OLD}} + y_n \boldsymbol{x}_n$$

Why would it work?

If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

∃ →

< (17) × <

3
Why would it work?

If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

What would happen if we change to new $\boldsymbol{w}^{\text{NEW}} = \boldsymbol{w} + y_n \boldsymbol{x}_n$?

$$y_n[(\boldsymbol{w}+y_n\boldsymbol{x}_n)^{\mathrm{T}}\boldsymbol{x}_n] = y_n\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n + y_n^2\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{x}_n$$

A 🕨

3

Why would it work?

If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

What would happen if we change to new $\boldsymbol{w}^{\text{NEW}} = \boldsymbol{w} + y_n \boldsymbol{x}_n$?

$$y_n[(\boldsymbol{w}+y_n\boldsymbol{x}_n)^{\mathrm{T}}\boldsymbol{x}_n] = y_n\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n + y_n^2\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{x}_n$$

We are adding a positive number, so it is possible that

$$y_n(\boldsymbol{w}^{\text{NEWT}}\boldsymbol{x}_n) > 0$$

i.e., we are more likely to classify correctly

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$ using the *current* \boldsymbol{w}
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

UNTIL converged.

3

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \operatorname{sign}({m w}^{\mathrm{T}}{m x}_n)$ using the current ${m w}$
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

• UNTIL converged.

Properties

- This is an online algorithm.
- If the training data is linearly separable, the algorithm stops in a finite number of steps.
- The parameter vector is always a linear combination of training instances (requires initialization of $w_0 = 0$)

• Let $\boldsymbol{x}_1, \dots, \boldsymbol{x}_T \in \mathbb{R}^D$ be a sequence of T points processed until convergence

- Let $\boldsymbol{x}_1, \dots, \boldsymbol{x}_T \in \mathbb{R}^D$ be a sequence of T points processed until convergence
- Assume $\|\boldsymbol{x}_t\| \leq r$ for all $t \in [1,T]$, for some r > 0

- Let $\boldsymbol{x}_1, \dots, \boldsymbol{x}_T \in \mathbb{R}^D$ be a sequence of T points processed until convergence
- Assume $\|\boldsymbol{x}_t\| \leq r$ for all $t \in [1,T]$, for some r > 0
- Assume that there exist $\rho > 0$ and $\boldsymbol{v} \in \mathbb{R}^D$ s.t. for all $t \in [1, T]$,

$$ho \leq rac{y_t(oldsymbol{v} \cdot oldsymbol{x}_t)}{\|oldsymbol{v}\|}$$

- Let $\boldsymbol{x}_1, \dots, \boldsymbol{x}_T \in \mathbb{R}^D$ be a sequence of T points processed until convergence
- Assume $\|\boldsymbol{x}_t\| \leq r$ for all $t \in [1,T]$, for some r > 0
- Assume that there exist $\rho > 0$ and $\boldsymbol{v} \in \mathbb{R}^D$ s.t. for all $t \in [1,T]$,

$$ho \leq rac{y_t(oldsymbol{v} \cdot oldsymbol{x}_t)}{\|oldsymbol{v}\|}$$

Then, the number of updates M made by the Perceptron algorithm when processing x_1, \ldots, x_T is bounded by

$$M \le r^2/\rho^2$$

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_t \boldsymbol{x}_t}{\|\boldsymbol{v}\|}$$

◆ 同 ▶ → 三 ▶

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M
ho \leq rac{oldsymbol{v} \cdot \sum_{t \in I} y_t oldsymbol{x}_t}{\|oldsymbol{v}\|} \leq \Big\| \sum_{t \in I} y_t oldsymbol{x}_t \Big\|$$

▲ □ → ▲ □ →

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_t \boldsymbol{x}_t}{\|\boldsymbol{v}\|} \leq \left\| \sum_{t \in I} y_t \boldsymbol{x}_t \right\|$$
$$= \left\| \sum_{t \in I} (\boldsymbol{w}_{t+1} - \boldsymbol{w}_t) \right\|$$

(definition of updates)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_t \boldsymbol{x}_t}{\|\boldsymbol{v}\|} \leq \left\| \sum_{t \in I} y_t \boldsymbol{x}_t \right\|$$
$$= \left\| \sum_{t \in I} (\boldsymbol{w}_{t+1} - \boldsymbol{w}_t) \right\|$$
$$= \|\boldsymbol{w}_{T+1}\|$$

(definition of updates)

(telescoping sum, $w_0 = 0$)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_t \boldsymbol{x}_t}{\|\boldsymbol{v}\|} \leq \left\| \sum_{t \in I} y_t \boldsymbol{x}_t \right\|$$
$$= \left\| \sum_{t \in I} (\boldsymbol{w}_{t+1} - \boldsymbol{w}_t) \right\|$$
$$= \|\boldsymbol{w}_{T+1}\|$$
$$= \sqrt{\sum_{t \in I} \|\boldsymbol{w}_{t+1}\|^2 - \|\boldsymbol{w}_t\|^2}$$

(definition of updates)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(telescoping sum, $w_0 = 0$)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_t \mathbf{x}_t}{\|\mathbf{v}\|} \leq \left\| \sum_{t \in I} y_t \mathbf{x}_t \right\|$$

= $\left\| \sum_{t \in I} (\mathbf{w}_{t+1} - \mathbf{w}_t) \right\|$
= $\|\mathbf{w}_{T+1}\|$
= $\sqrt{\sum_{t \in I} \|\mathbf{w}_{t+1}\|^2 - \|\mathbf{w}_t\|^2}$
= $\sqrt{\sum_{t \in I} \|\mathbf{w}_t + y_t \mathbf{x}_t\|^2 - \|\mathbf{w}_t\|^2}$

(definition of updates)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(definition of updates)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_t \mathbf{x}_t}{\|\mathbf{v}\|} \leq \left\| \sum_{t \in I} y_t \mathbf{x}_t \right\|$$
$$= \left\| \sum_{t \in I} (\mathbf{w}_{t+1} - \mathbf{w}_t) \right\|$$
$$= \|\mathbf{w}_{T+1}\|$$
$$= \sqrt{\sum_{t \in I} \|\mathbf{w}_{t+1}\|^2 - \|\mathbf{w}_t\|^2}$$
$$= \sqrt{\sum_{t \in I} \|\mathbf{w}_t + y_t \mathbf{x}_t\|^2 - \|\mathbf{w}_t\|^2}$$
$$= \sqrt{\sum_{t \in I} 2 \underbrace{y_t \mathbf{w}_t \cdot \mathbf{x}_t}_{\leq 0} + \|\mathbf{x}_t\|^2}$$

(definition of updates)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(definition of updates)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_t \mathbf{x}_t}{\|\mathbf{v}\|} \leq \left\| \sum_{t \in I} y_t \mathbf{x}_t \right\|$$
$$= \left\| \sum_{t \in I} (\mathbf{w}_{t+1} - \mathbf{w}_t) \right\|$$
$$= \|\mathbf{w}_{T+1}\|$$
$$= \sqrt{\sum_{t \in I} \|\mathbf{w}_{t+1}\|^2 - \|\mathbf{w}_t\|^2}$$
$$= \sqrt{\sum_{t \in I} \|\mathbf{w}_t + y_t \mathbf{x}_t\|^2 - \|\mathbf{w}_t\|^2}$$
$$= \sqrt{\sum_{t \in I} 2 \underbrace{y_t \mathbf{w}_t \cdot \mathbf{x}_t}_{\leq 0} + \|\mathbf{x}_t\|^2}$$
$$\leq \sqrt{\sum_{t \in I} \|\mathbf{x}_t\|^2}$$

(definition of updates)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(definition of updates)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$M\rho \leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_t \mathbf{x}_t}{\|\mathbf{v}\|} \leq \left\| \sum_{t \in I} y_t \mathbf{x}_t \right\|$$
$$= \left\| \sum_{t \in I} (\mathbf{w}_{t+1} - \mathbf{w}_t) \right\|$$
$$= \|\mathbf{w}_{T+1}\|$$
$$= \sqrt{\sum_{t \in I} \|\mathbf{w}_{t+1}\|^2 - \|\mathbf{w}_t\|^2}$$
$$= \sqrt{\sum_{t \in I} \|\mathbf{w}_t + y_t \mathbf{x}_t\|^2 - \|\mathbf{w}_t\|^2}$$
$$= \sqrt{\sum_{t \in I} 2 \underbrace{y_t \mathbf{w}_t \cdot \mathbf{x}_t}_{\leq 0} + \|\mathbf{x}_t\|^2}$$
$$\leq \sqrt{\sum_{t \in I} \|\mathbf{x}_t\|^2} \leq \sqrt{Mr^2}$$

(definition of updates)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(telescoping sum, $\boldsymbol{w}_0 = 0$)

(definition of updates)

- Recall that $ho \leq rac{y_t(m{v}\cdotm{x}_t)}{\|m{v}\|}$, $m{w}_{t+1} = m{w}_t + y_tm{x}_t$, and $m{w}_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., |I| = M

$$\begin{split} M\rho &\leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_t \mathbf{x}_t}{\|\mathbf{v}\|} \leq \left\| \sum_{t \in I} y_t \mathbf{x}_t \right\| & (\text{Cauchy-Schwarz inequality}) \\ &= \left\| \sum_{t \in I} (\mathbf{w}_{t+1} - \mathbf{w}_t) \right\| & (\text{definition of updates}) \\ &= \left\| \mathbf{w}_{T+1} \right\| & (\text{telescoping sum, } \mathbf{w}_0 = 0) \\ &= \sqrt{\sum_{t \in I} \|\mathbf{w}_{t+1}\|^2 - \|\mathbf{w}_t\|^2} & (\text{telescoping sum, } \mathbf{w}_0 = 0) \\ &= \sqrt{\sum_{t \in I} \|\mathbf{w}_t + y_t \mathbf{x}_t\|^2 - \|\mathbf{w}_t\|^2} & (\text{definition of updates}) \\ &= \sqrt{\sum_{t \in I} 2 \underbrace{y_t \mathbf{w}_t \cdot \mathbf{x}_t}_{\leq 0} + \|\mathbf{x}_t\|^2} & (\text{definition of updates}) \\ &\leq \sqrt{\sum_{t \in I} \|\mathbf{x}_t\|^2} \leq \sqrt{Mr^2} & (\text{Therefore, } M\rho \leq \sqrt{Mr^2} \rightarrow M \leq \frac{r^2}{\rho^2}) \end{split}$$

▲ □ → ▲ □ →

Outline

- 5 Linear regression
 - Motivation
 - Algorithm
 - Univariate solution
 - Probabilistic interpretation

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

- We can measure 'closeness' of prediction and labels, leading to different ways to evaluate prediction errors.
 - Predicting shoe size: better to be off by one size than by 5 sizes
 - Predicting song year: better to be off by one year than by 20 years
- This will lead to different learning models and algorithms

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Features used to predict

Five unit againtenet complex within 2 blocks of U/C carryon, Gate HG, Greet for mutuents more thrusen lases have parents againstrontly, Mott URS statuters is and emprove. In blocks of unit list is are advery fully isseed. Struted on a gate, come for, and access from an elementary school, this complex was nearby movematic, and the in-unit laundy how took, yew. Hi-III AC and 12 parking lages. It is list than a DPS Department of Public Steffyel and Campus Christer particular strates. This is a great income generating property, not to be mined.

Property Type Multi-Family Community Downtown Los Angeles MLSI 22176741 Style Two Level, Low Rise County Los Angeles

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

letails provided by i-Tech MLS and may not match the public record. Learn More

Interior Features		
Kitchen Information • Remodeled • Oven, Range	Laundry Information + Inside Laundry	Heating & Cooling + Wall Cooling Linit(s)
Multi-Unit Information		
Community Features Units in Comparison (Fatt): 5 Matis Family Information # Lisaids 5 # of Buildings: 1 - Onaire Pays Water - Tream Pays Becntotty, Tenant Pays Gas Unit I Information # of Desi: 2 # of Desi: 2 Units: End	Unit 2 Information • of Bost: 3 • of Bost: 3 • Information • Information • Notativy Amer. \$2,250 Unit 3 Information • Unit 4 Information • of Obstrin: 1 • Unit 4 Obstrin: 1 • Unit 4 Unit 4 Obstrin: 1	Monthly Rest: \$2,350 Unit 5 Information # of Beits 2 Unit for the second
Property / Lot Details		
Property Features • Automatic Gate, Card/Code Access Lot Information • Lot Size (Sci, Pc): 9,849 • Lot Size (Acces): 0.2215 • Lot Size Source Public Records	Automatic Gate, Lawn, Sidewalks Comer Lot, Near Public Transit Property Information Updated Remodeld Square Footage Source: Public Records	Tax Parcel Number: 5040017019
Parking / Garage, Exterior Features, Utilities & I	linanoing	
Parking Information # of Parking Spaces (Total): 12 • Parking Space • Gated Building Information • Total Floors 2	USBy Information • Green Certification Rating: 0.00 • Green Location: Transportation, Walkability • Green Walk Score: 0 • Green Year Certified: 0	Financial Information • Capitalization Rate (%): 6.25 • Actual Annual Gross Rent: \$128,331 • Gross Rent Multiplier: 11.29
Location Details, Misc. Information & Listing Inf	ormation	
Location Information Cross Streets: W 36th Pl	Expense Information Deprating: \$37,664	Listing Information Listing Terms: Cash, Cash To Existing La Buyer Financing: Cash

February 1, 2017 29 / 42

イロト イ団ト イヨト イヨト 三日

Correlation between square footage and sale price

Note: colors here do NOT represent different labels as in classification

Roughly linear relationship

Roughly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

How to learn the unknown parameters?

training data (past sales record)

sqft	sale price
2000	800K
2100	907K
1100	312K
5500	2,600K
• • •	•••

Reduce prediction error

How to measure errors?

- The classification error (*hit* or *miss*) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?

Reduce prediction error

How to measure errors?

- The classification error (*hit* or *miss*) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?
 - ► *absolute* difference: | prediction sale price|
 - squared difference: (prediction sale price)² [differentiable]

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^{2}
1100	312K	350K	38K	38^2
5500	2,600K	2,600K	0	0
•••				

Minimize squared errors

Our model

Sale price = price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^2
5500	2,600K	2,600K	0	0
•••	•••			
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

3

Minimize squared errors

Our model

$$\label{eq:sale_source} \begin{split} \textsc{Sale price} &= \texttt{price_per_sqft} \times \texttt{square_footage} + \texttt{fixed_expense} + \\ \texttt{unexplainable_stuff} \end{split}$$

Training data

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^2
5500	2,600K	2,600K	0	0
•••	•••			
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the residual/remaining unexplainable_stuff is minimized.

Linear regression

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)

• Model:
$$f: \boldsymbol{x} \to y$$
, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_D]^{\mathrm{T}}$: weights, parameters, or parameter vector
- ▶ w₀ is called *bias*
- We also sometimes call $ilde{m{w}} = [w_0 \; w_1 \; w_2 \; \cdots \; w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too

Linear regression

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)

• Model:
$$f: \boldsymbol{x} \to y$$
, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$

- $\boldsymbol{w} = [w_1 \; w_2 \; \cdots \; w_D]^{\mathrm{T}}$: weights, parameters, or parameter vector
- ▶ w₀ is called *bias*
- We also sometimes call $ilde{m{w}} = [w_0 \; w_1 \; w_2 \; \cdots \; w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too
- Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

How do we learn parameters?

Minimize prediction error on training data

- Use squared difference to measure error
- Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$
A simple case: x is just one-dimensional (D=1)

Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

A 🖓

3

A simple case: x is just one-dimensional (D=1)

Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Identify stationary points by taking derivative with respect to parameters and setting to zero

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$

$$\frac{\partial RSS(\tilde{w})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$
$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get "Normal Equations"

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$
$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get "Normal Equations"

$$\sum y_n = Nw_0 + w_1 \sum x_n$$
$$\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2$$

$$\frac{\partial RSS(\tilde{w})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$
$$\frac{\partial RSS(\tilde{w})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get "Normal Equations"

$$\sum y_n = Nw_0 + w_1 \sum x_n$$
$$\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2$$

We have two equations and two unknowns! Do some algebra to get:

$$w_1 = \frac{\sum (x_n - \bar{x})(y_n - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 and $w_0 = \bar{y} - w_1 \bar{x}$

where $\bar{x} = \frac{1}{n} \sum_{n} x_n$ and $\bar{y} = \frac{1}{n} \sum_{n} y_n$.

Why is minimizing RSS sensible?

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0,\sigma^2)$ is a Gaussian random variable

Why is minimizing RSS sensible?

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0,\sigma^2)$ is a Gaussian random variable

• Conditional likelihood of one training sample:

$$p(y_n|x_n) = N(w_0 + w_1 x_n, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2}}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{\mathsf{N}} p(y_n | x_n) = \sum_n \log p(y_n | x_n)$$

3

A (1) > 4

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{\mathsf{N}} p(y_n | x_n) = \sum_n \log p(y_n | x_n)$$
$$= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$$

3

A (1) > 4

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_n \log p(y_n | x_n)$$

= $\sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$
= $-\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 - \frac{N}{2} \log \sigma^2 - N \log \sqrt{2\pi}$

1

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_n \log p(y_n | x_n)$$

= $\sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi\sigma} \right\}$
= $-\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 - \frac{N}{2} \log \sigma^2 - N \log \sqrt{2\pi}$
= $-\frac{1}{2} \left\{ \frac{1}{\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + N \log \sigma^2 \right\} + \text{const}$

What is the relationship between minimizing RSS and maximizing the log-likelihood?

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

A 🕨

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s = \sigma^2$

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0$$

< 回 ト < 三 ト < 三 ト

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s = \sigma^2$

$$\begin{aligned} \frac{\partial \log P(\mathcal{D})}{\partial s} &= -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0\\ &\to \sigma^{*2} = s^* = \frac{1}{\mathsf{N}} \sum_n [y_n - (w_0 + w_1 x_n)]^2 \end{aligned}$$

< 回 > < 三 > < 三 >

How does this probabilistic interpretation help us?

- It gives a solid footing to our intuition: minimizing $\mathsf{RSS}(\tilde{w})$ is a sensible thing based on reasonable modeling assumptions
- Estimating σ^* tells us how much noise there could be in our predictions. For example, it allows us to place confidence intervals around our predictions.