Perceptron and Linear Regresssion

Professor Ameet Talwalkar

Outline

(1) Administration

(2) Review - Generative vs Discriminative

3 Review - Multiclass classification
4) Perceptron
(5) Linear regression

Homeworks

- Homework 2: due now
- Homework 3 available online
- Due on Monday, 2/13 (two days before the midterm)

Outline

(1) Administration

(2) Review - Generative vs Discriminative

3 Review - Multiclass classification
4) Perceptron
(5) Linear regression

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

- Aims to model the joint probability $p(x, y)$ and thus maximize the joint likelihood $\sum_{n} \log p\left(\boldsymbol{x}_{n}, y_{n}\right)$.
- The generative models we cover do so by modeling $p(x \mid y)$ and $p(y)$

Generative approach

Model joint distribution of $(x=$ (height, weight), $y=$ sex $)$

our data		
Sex	Height	Weight
1	6^{\prime}	175
0	$5^{\prime} 2^{\prime \prime}$	120
1	$5^{\prime} 6^{\prime \prime}$	140
1	$6^{\prime} 2^{\prime \prime}$	240
0	$5.7^{\prime \prime}$	130
\cdots	\cdots	\cdots

Intuition: we will model how heights vary (according to a Gaussian) in each sub-population (male and female).

Model of the joint distribution (1D)

$$
\begin{aligned}
p(x, y) & =p(y) p(x \mid y) \\
& = \begin{cases}p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} & \text { if } y=0 \\
p_{1} \frac{1}{\sqrt{2 \pi \sigma_{1}}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} & \text { if } y=1\end{cases}
\end{aligned}
$$

$p_{0}+p_{1}=1$ are prior probabilities, and
 $p(x \mid y)$ is a class conditional distribution

Model of the joint distribution (1D)

$$
\begin{aligned}
p(x, y) & =p(y) p(x \mid y) \\
& = \begin{cases}p_{0} \frac{1}{\sqrt{2 \pi \sigma_{0}}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} & \text { if } y=0 \\
p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x-\mu_{1}\right.}{2)^{2}}} 2 & \text { if } y=1\end{cases}
\end{aligned}
$$

$p_{0}+p_{1}=1$ are prior probabilities, and
 $p(x \mid y)$ is a class conditional distribution

What are the parameters to learn?

QDA Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

QDA Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{0}^{*}, p_{1}^{*}, \mu_{0}^{*}, \mu_{1}^{*}, \sigma_{0}^{*}, \sigma_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$

QDA Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{0}^{*}, p_{1}^{*}, \mu_{0}^{*}, \mu_{1}^{*}, \sigma_{0}^{*}, \sigma_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$
Max likelihood $(D=2)\left(p_{0}^{*}, p_{1}^{*}, \boldsymbol{\mu}_{0}^{*}, \boldsymbol{\mu}_{1}^{*}, \boldsymbol{\Sigma}_{0}^{*}, \boldsymbol{\Sigma}_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$

Decision boundary

Decision based on comparing conditional probabilities

$$
p(y=1 \mid x) \geq p(y=0 \mid x)
$$

which is equivalent to

$$
p(x \mid y=1) p(y=1) \geq p(x \mid y=0) p(y=0)
$$

Decision boundary

Decision based on comparing conditional probabilities

$$
p(y=1 \mid x) \geq p(y=0 \mid x)
$$

which is equivalent to

$$
p(x \mid y=1) p(y=1) \geq p(x \mid y=0) p(y=0)
$$

Namely,

$$
-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0}
$$

Decision boundary

Decision based on comparing conditional probabilities

$$
p(y=1 \mid x) \geq p(y=0 \mid x)
$$

which is equivalent to

$$
p(x \mid y=1) p(y=1) \geq p(x \mid y=0) p(y=0)
$$

Namely,

$$
\begin{aligned}
& -\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0} \\
& \Rightarrow a x^{2}+b x+c \geq 0 \quad \leftarrow \text { the QDA decision boundary not linear! }
\end{aligned}
$$

QDA vs LDA vs NB

$$
\text { Max likelihood }(D=2)\left(p_{0}^{*}, p_{1}^{*}, \boldsymbol{\mu}_{0}^{*}, \boldsymbol{\mu}_{1}^{*}, \boldsymbol{\Sigma}_{0}^{*}, \boldsymbol{\Sigma}_{1}^{*}\right)=\arg \max \log P(\mathcal{D})
$$

QDA vs LDA vs NB

Max likelihood $(D=2)\left(p_{0}^{*}, p_{1}^{*}, \boldsymbol{\mu}_{0}^{*}, \boldsymbol{\mu}_{1}^{*}, \boldsymbol{\Sigma}_{0}^{*}, \boldsymbol{\Sigma}_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$

- QDA: Allows distinct, arbitrary covariance matrices for each class
- LDA: Requires the same arbitrary covariance matrix across classes
- GNB: Allows for distinct covariance matrices across each class, but these covariance matrices must be diagonal
- GNB in HW2 Problem 1: Requires the same diagonal covariance matrix across classes

Generative versus discriminative: which one to use?

There is no fixed rule

- It depends on how well your modeling assumption fits the data
- When data follows the generative assumption, generative models will likely yield a model that better fits the data
- But, discriminative models are less sensitive to incorrect modelling assumptions (and often require less parameters to train)

Outline

(1) Administration

(2) Review - Generative vs Discriminative
(3) Review - Multiclass classification

- Use binary classifiers as building blocks
- Multinomial logistic regression

4 Perceptron
(5) Linear regression

Setup

Predict multiple classes/outcomes: $C_{1}, C_{2}, \ldots, C_{K}$

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits +26 characters (lower and upper cases) + special characters, etc

Studied methods

- Nearest neighbor classifier
- Naive Bayes
- Gaussian discriminant analysis
- Logistic regression

From multiclass to binary classification

"one versus the rest"

- Train a binary classifier or each class C_{k} :
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel all the rest data into NEGATIVE (or '0')
- Train K total binary classifiers
- Aggregate predictions at test time

From multiclass to binary classification

"one versus the rest"

- Train a binary classifier or each class C_{k} :
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel all the rest data into negative (or ' 0 ')
- Train K total binary classifiers
- Aggregate predictions at test time
"one versus one"
- Train a binary classifier for each pair of classes C_{k} and $C_{k^{\prime}}$
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel training data with label $C_{k^{\prime}}$ into negative (or '0')
(3) Disregard all other data
- Train $K(K-1) / 2$ total binary classifiers
- Tally 'votes' from each classifier at test time

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
- Makes a big difference if you have a lot of data to go through.

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
- Makes a big difference if you have a lot of data to go through.

Bad about both of them

Combining classifiers' outputs seem to be a bit tricky.
Is there a more natural approach to generalize logistic regression?

First try

Can we just define the following conditional model for each class?

$$
p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right]
$$

First try

Can we just define the following conditional model for each class?

$$
p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right]
$$

This would not work because:

$$
\sum_{k} p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sum_{k} \sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right] \neq 1
$$

as each summand can be any number (independently) between 0 and 1 .

But we are close! We can learn the K linear models jointly to ensure this property holds!

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

$$
\arg \max _{k} P\left(C_{k} \mid \boldsymbol{x}\right) \rightarrow \arg \max _{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
$$

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

$$
\arg \max _{k} P\left(C_{k} \mid \boldsymbol{x}\right) \rightarrow \arg \max _{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
$$

Properties:

- Preserves relative ordering of 'scores' $\boldsymbol{w}_{k}^{\top} \boldsymbol{x}$ for each class
- Maps scores to values between 0 and 1 that also sum to 1
- Reduces to binary logistic regression when $K=2$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

We will change y_{n} to $\boldsymbol{y}_{n}=\left[\begin{array}{llll}y_{n 1} & y_{n 2} & \cdots & y_{n K}\end{array}\right]^{\mathrm{T}}$, a K-dimensional vector using 1-of-K encoding, e.g., if $y_{n}=2$, then, $\boldsymbol{y}_{n}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & \cdots & 0\end{array}\right]^{\mathrm{T}}$.

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

We will change y_{n} to $\boldsymbol{y}_{n}=\left[\begin{array}{llll}y_{n 1} & y_{n 2} & \cdots & y_{n K}\end{array}\right]^{\mathrm{T}}$, a K-dimensional vector using 1-of-K encoding, e.g., if $y_{n}=2$, then, $\boldsymbol{y}_{n}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & \cdots & 0\end{array}\right]^{\mathrm{T}}$.
$\Rightarrow \sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)=\sum_{n} \log \prod_{k=1}^{K} P\left(C_{k} \mid \boldsymbol{x}_{n}\right)^{y_{n k}}=\sum_{n} \sum_{k} y_{n k} \log P\left(C_{k} \mid \boldsymbol{x}_{n}\right)$
Optimization requires numerical procedures, analogous to those used for binary logistic regression

Outline

(1) Administration

(2) Review - Generative vs Discriminative
(3) Review - Multiclass classification
4. Perceptron

- Intuition
- Algorithm
(5) Linear regression

Main idea

Consider a linear model for binary classification

$$
\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}
$$

We use this model to distinguish between two classes $\{-1,+1\}$.
One goal

$$
\varepsilon=\sum_{n} \mathbb{I}\left[y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right]
$$

i.e., to minimize errors on the training dataset.

Hard, but easy if we have only one training example

How can we change \boldsymbol{w} such that

$$
y_{n}=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

Two cases

- If $y_{n}=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, do nothing.
- If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$,

$$
\boldsymbol{w}^{\mathrm{NEW}} \leftarrow \boldsymbol{w}^{\mathrm{OLD}}+y_{n} \boldsymbol{x}_{n}
$$

Why would it work?

If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, then

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)<0
$$

Why would it work?

If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, then

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)<0
$$

What would happen if we change to new $\boldsymbol{w}^{\text {NEW }}=\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}$?

$$
y_{n}\left[\left(\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}\right)^{\mathrm{T}} \boldsymbol{x}_{n}\right]=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}+y_{n}^{2} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n}
$$

Why would it work?

If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, then

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)<0
$$

What would happen if we change to new $\boldsymbol{w}^{\text {NEW }}=\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}$?

$$
y_{n}\left[\left(\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}\right)^{\mathrm{T}} \boldsymbol{x}_{n}\right]=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}+y_{n}^{2} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n}
$$

We are adding a positive number, so it is possible that

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{NEWT}} \boldsymbol{x}_{n}\right)>0
$$

i.e., we are more likely to classify correctly

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point \boldsymbol{x}_{n} (can be a fixed order of the training instances)
- Make a prediction $y=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$ using the current \boldsymbol{w}
- If $y=y_{n}$, do nothing. Else,

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

- UNTIL converged.

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point \boldsymbol{x}_{n} (can be a fixed order of the training instances)
- Make a prediction $y=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$ using the current \boldsymbol{w}
- If $y=y_{n}$, do nothing. Else,

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

- UNTIL converged.

Properties

- This is an online algorithm.
- If the training data is linearly separable, the algorithm stops in a finite number of steps.
- The parameter vector is always a linear combination of training instances (requires initialization of $\boldsymbol{w}_{0}=0$)

Convergence under linear separability

- Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T} \in \mathbb{R}^{D}$ be a sequence of T points processed until convergence

Convergence under linear separability

- Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T} \in \mathbb{R}^{D}$ be a sequence of T points processed until convergence
- Assume $\left\|\boldsymbol{x}_{t}\right\| \leq r$ for all $t \in[1, T]$, for some $r>0$

Convergence under linear separability

- Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T} \in \mathbb{R}^{D}$ be a sequence of T points processed until convergence
- Assume $\left\|\boldsymbol{x}_{t}\right\| \leq r$ for all $t \in[1, T]$, for some $r>0$
- Assume that there exist $\rho>0$ and $\boldsymbol{v} \in \mathbb{R}^{D}$ s.t. for all $t \in[1, T]$,

$$
\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}
$$

Convergence under linear separability

- Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T} \in \mathbb{R}^{D}$ be a sequence of T points processed until convergence
- Assume $\left\|\boldsymbol{x}_{t}\right\| \leq r$ for all $t \in[1, T]$, for some $r>0$
- Assume that there exist $\rho>0$ and $\boldsymbol{v} \in \mathbb{R}^{D}$ s.t. for all $t \in[1, T]$,

$$
\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}
$$

Then, the number of updates M made by the Perceptron algorithm when processing $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ is bounded by

$$
M \leq r^{2} / \rho^{2}
$$

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
M \rho \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|}
$$

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
M \rho \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\|
$$

(Cauchy-Schwarz inequality)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\|
\end{aligned}
$$

(Cauchy-Schwarz inequality)
(definition of updates)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| \\
& =\left\|\boldsymbol{w}_{T+1}\right\|
\end{aligned}
$$

(Cauchy-Schwarz inequality)
(definition of updates)
(telescoping sum, $\boldsymbol{w}_{0}=0$)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| \\
& =\left\|\boldsymbol{w}_{T+1}\right\| \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t+1}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}}
\end{aligned}
$$

(Cauchy-Schwarz inequality) (definition of updates)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(telescoping sum, $\boldsymbol{w}_{0}=0$)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| \\
& =\left\|\boldsymbol{w}_{T+1}\right\| \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t+1}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}}
\end{aligned}
$$

(Cauchy-Schwarz inequality) (definition of updates)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(definition of updates)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{array}{rlr}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| & \text { (Cauchy-Schwarz inequality) } \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| & \text { (definition of updates) } \\
& =\left\|\boldsymbol{w}_{T+1}\right\| & \text { (telescoping sum, } \boldsymbol{w}_{0}=0 \text {) } \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t+1}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} & \text { (telescoping sum, } \boldsymbol{w}_{0}=0 \text {) } \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} & \text { (definition of updates) } \\
& =\sqrt{\sum_{t \in I} \underbrace{y_{t} \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}}_{\leq 0}+\left\|\boldsymbol{x}_{t}\right\|^{2}} &
\end{array}
$$

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| \\
& =\left\|\boldsymbol{w}_{T+1}\right\| \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t+1}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I} 2 \underbrace{y_{t} \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}}_{\leq 0}+\left\|\boldsymbol{x}_{t}\right\|^{2}} \\
& \leq \sqrt{\sum_{t \in I}\left\|\boldsymbol{x}_{t}\right\|^{2}}
\end{aligned}
$$

(Cauchy-Schwarz inequality) (definition of updates)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(definition of updates)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| \\
& =\left\|\boldsymbol{w}_{T+1}\right\| \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t+1}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I} 2 \underbrace{y_{t} \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}}_{\leq 0}+\left\|\boldsymbol{x}_{t}\right\|^{2}} \\
& \leq \sqrt{\sum_{t \in I}\left\|\boldsymbol{x}_{t}\right\|^{2}} \leq \sqrt{M r^{2}}
\end{aligned}
$$

(Cauchy-Schwarz inequality) (definition of updates)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(definition of updates)

- Recall that $\rho \leq \frac{y_{t}\left(\boldsymbol{v} \cdot \boldsymbol{x}_{t}\right)}{\|\boldsymbol{v}\|}, \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}$, and $\boldsymbol{w}_{0}=0$
- Let I be the subset of the T rounds with an update, i.e., $|I|=M$

$$
\begin{aligned}
M \rho & \leq \frac{\boldsymbol{v} \cdot \sum_{t \in I} y_{t} \boldsymbol{x}_{t}}{\|\boldsymbol{v}\|} \leq\left\|\sum_{t \in I} y_{t} \boldsymbol{x}_{t}\right\| \\
& =\left\|\sum_{t \in I}\left(\boldsymbol{w}_{t+1}-\boldsymbol{w}_{t}\right)\right\| \\
& =\left\|\boldsymbol{w}_{T+1}\right\| \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t+1}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I}\left\|\boldsymbol{w}_{t}+y_{t} \boldsymbol{x}_{t}\right\|^{2}-\left\|\boldsymbol{w}_{t}\right\|^{2}} \\
& =\sqrt{\sum_{t \in I} 2 \underbrace{y_{t} \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}}_{\leq 0}+\left\|\boldsymbol{x}_{t}\right\|^{2}} \\
& \leq \sqrt{\sum_{t \in I}\left\|\boldsymbol{x}_{t}\right\|^{2}} \leq \sqrt{M r^{2}}
\end{aligned}
$$

(Cauchy-Schwarz inequality) (definition of updates)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(telescoping sum, $\boldsymbol{w}_{0}=0$)
(definition of updates)

Outline

(1) Administration

(2) Review - Generative vs Discriminative
(3) Review - Multiclass classification
4) Perceptron
(5) Linear regression

- Motivation
- Algorithm
- Univariate solution
- Probabilistic interpretation

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

- We can measure 'closeness' of prediction and labels, leading to different ways to evaluate prediction errors.
- Predicting shoe size: better to be off by one size than by 5 sizes
- Predicting song year: better to be off by one year than by 20 years
- This will lead to different learning models and algorithms

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Features used to predict

\ni Property Details for $\mathbf{3 6 2 0}$ South BUDLONG, Los Angeles, CA 90007

1 Interior Features		
Kitchen Information - Remodaled - Oven, Range	Laundry Information - Inside Launtry	Heating \& Cooling - Wall Cooling Unit(s)
Multi-Unilt information		
Community Features - Units in Complex (Total 5 Multi-Family Information - \# Lessed: 5 - \#t Buildings: 1 - Owner Pays Water - Tenant Paya Electricity, Tenant Pays Gas Unit 1 Information - \#t af Beds: 2 - B of Batins: 1 - Unfumished - Monthly Rent: $\$ 1,700$	Unit 2 Intormation - \# of Becis: 3 - \# of Baths: 1 - Unfurnished - Monthly Rent \$2,260 Unit 3 Information - Unfurnished Unit 4 Information - IN of Becis: 3 - \# of Baths: 1 - Unfurnished	- Monthly Rent: $\$ 2,360$ Unit 5 Information - \#ot Beds: 3 - \# of Baths: 2 - Unfurrished - Monthly Rent: $\$ 2,325$ Unit 6 Information - \#t ot Bede: 3 - \#t of Bans: 1 - Monthly Fient: $\$ 2,250$
Property/Lot Detailis		
Property Features - Automaric Gate Card/Code Access Lot Information - Lot Size (Sq Ft): 9,649 - Lot Size /acrest 0.2215 - Lot Size Sourca: Public Records	- Automatic Gate, Lawn, Sidenalks - Comer Lot, Near Public Transit Property Information - Updated/fiemodelec - Square Footape Source Public Records	- Tax Faccel Numberr 5040017018
Parking / Oarage, Exierior Features, Uutilies a. Financing		
Parking Information - \# of Parlong Spaces (Tota): 12 - Parking Spacs - Gated Building Information - Total Floora: 2	Utillity Information - Green Certification Aating: 0.00 - Green Location: Transportation, Walkability - Green Walk Score 0 - Green Yeer Cartified: 0	Financial Intormation - Capitalization Rase (\%): 6.25 - Actual Annual Gross Fient: \$128,331 - Gross fient Multiplier: 11.29
Location Dotails, Misc. Intormation 8 Listing Information		
Location Information - Cross Strags: W 36th PI	Expense Information - Operar:ing: $\$ 37,664$	Listing Intormation - Listing Terms Cash, Cash To Existing Loan - Buyer Finanding: Cash

Correlation between square footage and sale price

Note: colors here do NOT represent different labels as in classification

Roughly linear relationship

Roughly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

How to learn the unknown parameters?

training data (past sales record)

sqft	sale price
2000	800 K
2100	907 K
1100	312 K
5500	$2,600 \mathrm{~K}$
\cdots	\cdots

Reduce prediction error

How to measure errors?

- The classification error (hit or miss) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?

Reduce prediction error

How to measure errors?

- The classification error (hit or miss) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?
- absolute difference: | prediction - sale price|
- squared difference: (prediction - sale price) ${ }^{2}$ [differentiable]

sqft	sale price	prediction	error	squared error
2000	810 K	720 K	90 K	8100
2100	907 K	800 K	107 K	107^{2}
1100	312 K	350 K	38 K	38^{2}
5500	$2,600 \mathrm{~K}$	$2,600 \mathrm{~K}$	0	0
\cdots	\cdots			

Minimize squared errors

Our model

Sale price $=$ price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810 K	720 K	90 K	8100
2100	907 K	800 K	107 K	107^{2}
1100	312 K	350 K	38 K	38^{2}
5500	$2,600 \mathrm{~K}$	$2,600 \mathrm{~K}$	0	0
\cdots	\cdots			
Total				$8100+107^{2}+38^{2}+0+\cdots$

Minimize squared errors

Our model

Sale price $=$ price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810 K	720 K	90 K	8100
2100	907 K	800 K	107 K	107^{2}
1100	312 K	350 K	38 K	38^{2}
5500	$2,600 \mathrm{~K}$	$2,600 \mathrm{~K}$	0	0
\cdots	\cdots			
Total				$8100+107^{2}+38^{2}+0+\cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized - i.e., the residual/remaining unexplainable_stuff is minimized.

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \rightarrow y$, with $f(\boldsymbol{x})=w_{0}+\sum_{d} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$: weights, parameters, or parameter vector
- w_{0} is called bias
- We also sometimes call $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ parameters too

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \rightarrow y$, with $f(\boldsymbol{x})=w_{0}+\sum_{d} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$: weights, parameters, or parameter vector
- w_{0} is called bias
- We also sometimes call $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ parameters too
- Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$

How do we learn parameters?

Minimize prediction error on training data

- Use squared difference to measure error
- Residual sum of squares

$$
R S S(\tilde{\boldsymbol{w}})=\sum_{n}\left[y_{n}-f\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(w_{0}+\sum_{d} w_{d} x_{n d}\right)\right]^{2}
$$

A simple case: \boldsymbol{x} is just one-dimensional $(D=1)$

Residual sum of squares

$$
R S S(\tilde{\boldsymbol{w}})=\sum_{n}\left[y_{n}-f\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}
$$

A simple case: \boldsymbol{x} is just one-dimensional $(D=1)$

Residual sum of squares

$$
R S S(\tilde{\boldsymbol{w}})=\sum_{n}\left[y_{n}-f\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}
$$

Identify stationary points by taking derivative with respect to parameters and setting to zero

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{aligned}
\sum y_{n} & =N w_{0}+w_{1} \sum x_{n} \\
\sum x_{n} y_{n} & =w_{0} \sum x_{n}+w_{1} \sum x_{n}^{2}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{aligned}
\sum y_{n} & =N w_{0}+w_{1} \sum x_{n} \\
\sum x_{n} y_{n} & =w_{0} \sum x_{n}+w_{1} \sum x_{n}^{2}
\end{aligned}
$$

We have two equations and two unknowns! Do some algebra to get:

$$
w_{1}=\frac{\sum\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{n} \sum_{n} x_{n}$ and $\bar{y}=\frac{1}{n} \sum_{n} y_{n}$.

Why is minimizing RSS sensible?

Probabilistic interpretation

- Noisy observation model

$$
Y=w_{0}+w_{1} X+\eta
$$

where $\eta \sim N\left(0, \sigma^{2}\right)$ is a Gaussian random variable

Why is minimizing RSS sensible?

Probabilistic interpretation

- Noisy observation model

$$
Y=w_{0}+w_{1} X+\eta
$$

where $\eta \sim N\left(0, \sigma^{2}\right)$ is a Gaussian random variable

- Conditional likelihood of one training sample:

$$
p\left(y_{n} \mid x_{n}\right)=N\left(w_{0}+w_{1} x_{n}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}}
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\log P(\mathcal{D})=\log \prod_{n=1}^{\mathrm{N}} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right)
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\log P(\mathcal{D}) & =\log \prod_{n=1}^{\mathrm{N}} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\}
\end{aligned}
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\log P(\mathcal{D}) & =\log \prod_{n=1}^{\mathrm{N}} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\} \\
& =-\frac{1}{2 \sigma^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}-\frac{\mathrm{N}}{2} \log \sigma^{2}-\mathrm{N} \log \sqrt{2 \pi}
\end{aligned}
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\log P(\mathcal{D}) & =\log \prod_{n=1}^{N} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\} \\
& =-\frac{1}{2 \sigma^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}-\frac{\mathrm{N}}{2} \log \sigma^{2}-\mathrm{N} \log \sqrt{2 \pi} \\
& =-\frac{1}{2}\left\{\frac{1}{\sigma^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}+\mathrm{N} \log \sigma^{2}\right\}+\mathrm{const}
\end{aligned}
$$

What is the relationship between minimizing RSS and maximizing the log-likelihood?

Maximum likelihood estimation

Estimating σ, w_{0} and w_{1} can be done in two steps

- Maximize over w_{0} and w_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } \operatorname{RSS}(\tilde{\boldsymbol{w}})!
$$

Maximum likelihood estimation

Estimating σ, w_{0} and w_{1} can be done in two steps

- Maximize over w_{0} and w_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } \operatorname{RSS}(\tilde{\boldsymbol{w}})!
$$

- Maximize over $s=\sigma^{2}$

$$
\frac{\partial \log P(\mathcal{D})}{\partial s}=-\frac{1}{2}\left\{-\frac{1}{s^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}+\mathbf{N} \frac{1}{s}\right\}=0
$$

Maximum likelihood estimation

Estimating σ, w_{0} and w_{1} can be done in two steps

- Maximize over w_{0} and w_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } \operatorname{RSS}(\tilde{\boldsymbol{w}})!
$$

- Maximize over $s=\sigma^{2}$

$$
\begin{aligned}
\frac{\partial \log P(\mathcal{D})}{\partial s} & =-\frac{1}{2}\left\{-\frac{1}{s^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}+\mathrm{N} \frac{1}{s}\right\}=0 \\
& \rightarrow \sigma^{* 2}=s^{*}=\frac{1}{\mathrm{~N}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}
\end{aligned}
$$

How does this probabilistic interpretation help us?

- It gives a solid footing to our intuition: minimizing $\operatorname{RSS}(\tilde{\boldsymbol{w}})$ is a sensible thing based on reasonable modeling assumptions
- Estimating σ^{*} tells us how much noise there could be in our predictions. For example, it allows us to place confidence intervals around our predictions.

