
Logistic Regression

Professor Ameet Talwalkar

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 1 / 48

Outline

1 Administration

2 Review of last lecture

3 Logistic regression

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 2 / 48

HW1

Will be returned today in class during our break

Can also pick up from Brooke during her office hours

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 3 / 48

Outline

1 Administration

2 Review of last lecture
Naive Bayes

3 Logistic regression

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 4 / 48

How to tell spam from ham?

FROM THE DESK OF MR. AMINU SALEH
DIRECTOR, FOREIGN OPERATIONS DEPARTMENT
AFRI BANK PLC
Afribank Plaza,
14th Floormoney344.jpg
51/55 Broad Street,
P.M.B 12021 Lagos-Nigeria

Attention: Honorable Beneficiary,

IMMEDIATE PAYMENT NOTIFICATION VALUED AT US$10 MILLION

 
 

Dear Ameet,

Do you have 10 minutes to get on a videocall before 2pm?

Thanks,

Stefano

Simple strategy: count the words

�
⇧⇧⇧⇧⇧⇧⇤

free 100
money 2

...
...

account 2
...

...

⇥
⌃⌃⌃⌃⌃⌃⌅

�
⇧⇧⇧⇧⇧⇧⇤

free 1
money 1

...
...

account 2
...

...

⇥
⌃⌃⌃⌃⌃⌃⌅

Bag-of-word representation
of documents (and textual data)

Naive Bayes (in our Spam Email Setting)

Assume X ∈ RD, all Xd ∈ [K], and zk is the number of times k in X

P (X = x, Y = c) = P (Y = c)P (X = x|Y = c)

= P (Y = c)
∏

k

P (k|Y = c)zk = πc
∏

k

θzkck

Key assumptions made?

Conditional independence:
P (Xi, Xj |Y = c) = P (Xi|Y = c)P (Xj |Y = c).

P (Xi|Y = c) depends only the value of Xi, not i itself (order of
words does not matter in “bag-of-word” representation of documents)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 5 / 48

Naive Bayes (in our Spam Email Setting)

Assume X ∈ RD, all Xd ∈ [K], and zk is the number of times k in X

P (X = x, Y = c) = P (Y = c)P (X = x|Y = c)

= P (Y = c)
∏

k

P (k|Y = c)zk = πc
∏

k

θzkck

Key assumptions made?

Conditional independence:
P (Xi, Xj |Y = c) = P (Xi|Y = c)P (Xj |Y = c).

P (Xi|Y = c) depends only the value of Xi, not i itself (order of
words does not matter in “bag-of-word” representation of documents)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 5 / 48

Naive Bayes (in our Spam Email Setting)

Assume X ∈ RD, all Xd ∈ [K], and zk is the number of times k in X

P (X = x, Y = c) = P (Y = c)P (X = x|Y = c)

= P (Y = c)
∏

k

P (k|Y = c)zk = πc
∏

k

θzkck

Key assumptions made?

Conditional independence:
P (Xi, Xj |Y = c) = P (Xi|Y = c)P (Xj |Y = c).

P (Xi|Y = c) depends only the value of Xi, not i itself (order of
words does not matter in “bag-of-word” representation of documents)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 5 / 48

Learning problem

Training data
D = {({znk}Kk=1, yn)}Nn=1

Goal

Learn πc, c = 1, 2, · · · ,C, and θck,∀c ∈ [C], k ∈ [K] under the constraints:

∑

c

πc = 1 ,

∑

k

θck =
∑

k

P (k|Y = c) = 1 ,

and all quantities should be nonnegative.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 6 / 48

Learning problem

Training data
D = {({znk}Kk=1, yn)}Nn=1

Goal
Learn πc, c = 1, 2, · · · ,C, and θck,∀c ∈ [C], k ∈ [K] under the constraints:

∑

c

πc = 1 ,

∑

k

θck =
∑

k

P (k|Y = c) = 1 ,

and all quantities should be nonnegative.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 6 / 48

Learning problem

Training data
D = {({znk}Kk=1, yn)}Nn=1

Goal
Learn πc, c = 1, 2, · · · ,C, and θck,∀c ∈ [C], k ∈ [K] under the constraints:

∑

c

πc = 1 ,

∑

k

θck =
∑

k

P (k|Y = c) = 1 ,

and all quantities should be nonnegative.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 6 / 48

Likelihood Function

Let X1, . . . , XN be IID with PDF f(x|θ) (also written as f(x; θ))

Likelihood function is defined by L(θ|x) (also written as L(θ;x)):

L(θ|x) =

N∏

i=1

f(Xi; θ).

Notes The likelihood function is just the joint density of the data, except
that we treat it as a function of the parameter θ, L : Θ→ [0,∞).

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 7 / 48

Maximum Likelihood Estimator

Definition: The maximum likelihood estimator (MLE) θ̂, is the value of θ
that maximizes L(θ).

The log-likelihood function is defined by l(θ) = logL(θ)

Maximum occurs at same place as that of the likelihood function

Using logs simplifies mathemetical expressions (converts exponents to
products and products to sums)

Using logs helps with numerical stabilitity

The same is true of the likelihood function times any constant. Thus we
shall often drop constants in the likelihood function.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 8 / 48

Maximum Likelihood Estimator

Definition: The maximum likelihood estimator (MLE) θ̂, is the value of θ
that maximizes L(θ).

The log-likelihood function is defined by l(θ) = logL(θ)

Maximum occurs at same place as that of the likelihood function

Using logs simplifies mathemetical expressions (converts exponents to
products and products to sums)

Using logs helps with numerical stabilitity

The same is true of the likelihood function times any constant. Thus we
shall often drop constants in the likelihood function.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 8 / 48

Bayes Rule

For any document x, we want to compare p(spam|x) and p(ham|x)

Axiom of Probability: p(spam, x) = p(spam|x)p(x) = p(x|spam)p(spam)

This gives us (via bayes rule):

p(spam|x) =
p(x|spam)p(spam)

p(x)

p(ham|x) =
p(x|ham)p(ham)

p(x)

Denominators are same, and easier to compute logarithms, so we compare:

log[p(x|spam)p(spam)] versus log[p(x|ham)p(ham)]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 9 / 48

Bayes Rule

For any document x, we want to compare p(spam|x) and p(ham|x)

Axiom of Probability: p(spam, x) = p(spam|x)p(x) = p(x|spam)p(spam)

This gives us (via bayes rule):

p(spam|x) =
p(x|spam)p(spam)

p(x)

p(ham|x) =
p(x|ham)p(ham)

p(x)

Denominators are same, and easier to compute logarithms, so we compare:

log[p(x|spam)p(spam)] versus log[p(x|ham)p(ham)]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 9 / 48

Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

L = logP (D) = log

N∏

n=1

πynP (xn|yn)

= log

N∏

n=1

(
πyn

∏

k

θznk
ynk

)

=
∑

n

(
log πyn +

∑

k

znk log θynk

)

=
∑

n

log πyn +
∑

n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = arg max

∑

n

log πyn +
∑

n,k

znk log θynk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 10 / 48

Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

L = logP (D) = log

N∏

n=1

πynP (xn|yn)

= log

N∏

n=1

(
πyn

∏

k

θznk
ynk

)

=
∑

n

(
log πyn +

∑

k

znk log θynk

)

=
∑

n

log πyn +
∑

n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = arg max

∑

n

log πyn +
∑

n,k

znk log θynk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 10 / 48

Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

L = logP (D) = log

N∏

n=1

πynP (xn|yn)

= log

N∏

n=1

(
πyn

∏

k

θznk
ynk

)

=
∑

n

(
log πyn +

∑

k

znk log θynk

)

=
∑

n

log πyn +
∑

n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = arg max

∑

n

log πyn +
∑

n,k

znk log θynk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 10 / 48

Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

L = logP (D) = log

N∏

n=1

πynP (xn|yn)

= log

N∏

n=1

(
πyn

∏

k

θznk
ynk

)

=
∑

n

(
log πyn +

∑

k

znk log θynk

)

=
∑

n

log πyn +
∑

n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = arg max

∑

n

log πyn +
∑

n,k

znk log θynk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 10 / 48

Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

L = logP (D) = log

N∏

n=1

πynP (xn|yn)

= log

N∏

n=1

(
πyn

∏

k

θznk
ynk

)

=
∑

n

(
log πyn +

∑

k

znk log θynk

)

=
∑

n

log πyn +
∑

n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = arg max

∑

n

log πyn +
∑

n,k

znk log θynk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 10 / 48

Details

Note the separation of parameters in the likelihood

∑

n

log πyn +
∑

n,k

znk log θynk

which implies that {πc} and {θck} can be estimated separately.
Reorganize terms

∑

n

log πyn =
∑

c

log πc × (#of data points labeled as c)

and

∑

n,k

znk log θynk =
∑

c

∑

n:yn=c

∑

k

znk log θck =
∑

c

∑

n:yn=c,k

znk log θck

The later implies {θck, k = 1, 2, · · · ,K} and {θc′k, k = 1, 2, · · · ,K} can be
estimated independently.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 11 / 48

Details

Note the separation of parameters in the likelihood

∑

n

log πyn +
∑

n,k

znk log θynk

which implies that {πc} and {θck} can be estimated separately.
Reorganize terms

∑

n

log πyn =
∑

c

log πc × (#of data points labeled as c)

and

∑

n,k

znk log θynk =
∑

c

∑

n:yn=c

∑

k

znk log θck =
∑

c

∑

n:yn=c,k

znk log θck

The later implies {θck, k = 1, 2, · · · ,K} and {θc′k, k = 1, 2, · · · ,K} can be
estimated independently.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 11 / 48

Estimating {πc}

We want to maximize

∑

c

log πc × (#of data points labeled as c)

Intuition

Similar to roll a dice (or flip a coin): each side of the dice shows up
with a probability of πc (total C sides)

And we have total N trials of rolling this dice

Solution

π∗c =
#of data points labeled as c

N

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 12 / 48

Estimating {πc}

We want to maximize

∑

c

log πc × (#of data points labeled as c)

Intuition

Similar to roll a dice (or flip a coin): each side of the dice shows up
with a probability of πc (total C sides)

And we have total N trials of rolling this dice

Solution

π∗c =
#of data points labeled as c

N

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 12 / 48

Estimating {θck, k = 1, 2, · · · ,K}

We want to maximize

∑

n:yn=c,k

znk log θck

Intuition

Again similar to roll a dice: each side of the dice shows up with a
probability of θck (total K sides)

And we have total
∑

n:yn=c,k znk trials.

Solution

θ∗ck =
#of times side k shows up in data points labeled as c

#total trials for data points labeled as c

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 13 / 48

Estimating {θck, k = 1, 2, · · · ,K}

We want to maximize

∑

n:yn=c,k

znk log θck

Intuition

Again similar to roll a dice: each side of the dice shows up with a
probability of θck (total K sides)

And we have total
∑

n:yn=c,k znk trials.

Solution

θ∗ck =
#of times side k shows up in data points labeled as c

#total trials for data points labeled as c

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 13 / 48

Translating back to our problem of detecting spam emails

Collect a lot of ham and spam emails as training examples

Estimate the “bias”

p(ham) =
#of ham emails

#of emails
, p(spam) =

#of spam emails

#of emails

Estimate the weights (i.e., p(funny word|ham) etc)

p(funny word|ham) =
#of funny word in ham emails

#of words in ham emails
(1)

p(funny word|spam) =
#of funny word in spam emails

#of words in spam emails
(2)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 14 / 48

Classification rule

Given an unlabeled data point x = {zk, k = 1, 2, · · · ,K}, label it with

y∗ = arg maxc∈[C] P (y = c|x)

= arg maxc∈[C] P (y = c)P (x|y = c)

= arg maxc[log πc +
∑

k

zk log θck]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 15 / 48

Constrained optimization

Equality Constraints

Method of Lagrange multipliers

Construct the following function (Lagrangian)

min f(x)

s.t. g(x) = 0

L(x,�) = f(x) + �g(x)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 16 / 48

A short derivation of the maximum likelihood estimation
To maximize ∑

n:yn=c,k

znk log θck

We can use Lagrange multipliers

f(θ) = −
∑

n:yn=c,k

znk log θck

g(θ) = 1−
∑

k

θck = 0

Lagrangian

L(θ, λ) = f(θ) + λg(θ)

= −
∑

n:yn=c,k

znk log θck + λ

(
1−

∑

k

θck

)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 17 / 48

A short derivation of the maximum likelihood estimation
To maximize ∑

n:yn=c,k

znk log θck

We can use Lagrange multipliers

f(θ) = −
∑

n:yn=c,k

znk log θck

g(θ) = 1−
∑

k

θck = 0

Lagrangian

L(θ, λ) = f(θ) + λg(θ)

= −
∑

n:yn=c,k

znk log θck + λ

(
1−

∑

k

θck

)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 17 / 48

L(θ, λ) = −
∑

n:yn=c,k

znk log θck + λ

(
1−

∑

k

θck

)

First take derivatives with respect to θck and then find the stationary point

−
(∑

n:yn=c

znk
θck

)
− λ = 0→ θck = − 1

λ

∑

n:yn=c

znk

Plug in expression above for θck into constraint
∑

k θck = 1

Solve for λ

Plug this expression for λ back into expression for θck to get:

θck =

∑
n:yn=c znk∑

k

∑
n:yn=c znk

Chris will review in section on Friday

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 18 / 48

L(θ, λ) = −
∑

n:yn=c,k

znk log θck + λ

(
1−

∑

k

θck

)

First take derivatives with respect to θck and then find the stationary point

−
(∑

n:yn=c

znk
θck

)
− λ = 0→ θck = − 1

λ

∑

n:yn=c

znk

Plug in expression above for θck into constraint
∑

k θck = 1

Solve for λ

Plug this expression for λ back into expression for θck to get:

θck =

∑
n:yn=c znk∑

k

∑
n:yn=c znk

Chris will review in section on Friday

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 18 / 48

Summary

Things you should know

The form of the naive Bayes model
I write down the joint distribution
I explain the conditional independence assumption implied by the model
I explain how this model can be used to classify spam vs ham emails
I explain how it could be used for categorical variables

Be able to go through the short derivation for parameter estimation
I The model illustrated here is called discrete Naive Bayes
I HW2 asks you to apply the same principle to other variants of naive

Bayes
I The derivations are very similar – except there you need to estimate

different model parameters

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 19 / 48

Moving forward

Examine the classification rule for naive Bayes

y∗ = arg maxc log πc +
∑

k

zk log θck

For binary classification, we thus determine the label based on the sign of

log π1 +
∑

k

zk log θ1k −
(

log π2 +
∑

k

zk log θ2k

)

This is just a linear function of the features {zk}

w0 +
∑

k

zkwk

where we “absorb” w0 = log π1 − log π2 and wk = log θ1k − log θ2k.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 20 / 48

Moving forward

Examine the classification rule for naive Bayes

y∗ = arg maxc log πc +
∑

k

zk log θck

For binary classification, we thus determine the label based on the sign of

log π1 +
∑

k

zk log θ1k −
(

log π2 +
∑

k

zk log θ2k

)

This is just a linear function of the features {zk}

w0 +
∑

k

zkwk

where we “absorb” w0 = log π1 − log π2 and wk = log θ1k − log θ2k.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 20 / 48

Naive Bayes is a linear classifier

Fundamentally, what really matters in deciding decision boundary is

w0 +
∑

k

zkwk

This motivates many new methods, including logistic regression, to be
discussed next

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 21 / 48

Outline

1 Administration

2 Review of last lecture

3 Logistic regression
General setup
Maximum likelihood estimation
Gradient descent
Newton’s method

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 22 / 48

Logistic classification

Setup for two classes

Input: x ∈ RD

Output: y ∈ {0, 1}
Training data: D = {(xn, yn), n = 1, 2, . . . , N}

Model:
p(y = 1|x; b,w) = σ[g(x)]

where
g(x) = b+

∑

d

wdxd = b+wTx

and σ[·] stands for the sigmoid function

σ(a) =
1

1 + e−a

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 23 / 48

Logistic classification

Setup for two classes

Input: x ∈ RD

Output: y ∈ {0, 1}
Training data: D = {(xn, yn), n = 1, 2, . . . , N}
Model:

p(y = 1|x; b,w) = σ[g(x)]

where
g(x) = b+

∑

d

wdxd = b+wTx

and σ[·] stands for the sigmoid function

σ(a) =
1

1 + e−a

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 23 / 48

Why the sigmoid function?

What does it look like?

σ(a) =
1

1 + e−a

where

a = b+wTx
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Properties

Bounded between 0 and 1 ← thus, interpretable as probability

Monotonically increasing thus, usable to derive classification rules
I σ(a) > 0.5, positive (classify as ’1’)
I σ(a) < 0.5, negative (classify as ’0’)
I σ(a) = 0.5, undecidable

Nice computational properties As we will see soon

Linear or nonlinear classifier?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 24 / 48

Why the sigmoid function?

What does it look like?

σ(a) =
1

1 + e−a

where

a = b+wTx
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Properties

Bounded between 0 and 1 ← thus, interpretable as probability

Monotonically increasing thus, usable to derive classification rules
I σ(a) > 0.5, positive (classify as ’1’)
I σ(a) < 0.5, negative (classify as ’0’)
I σ(a) = 0.5, undecidable

Nice computational properties As we will see soon

Linear or nonlinear classifier?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 24 / 48

Why the sigmoid function?

What does it look like?

σ(a) =
1

1 + e−a

where

a = b+wTx
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Properties

Bounded between 0 and 1 ← thus, interpretable as probability

Monotonically increasing thus, usable to derive classification rules
I σ(a) > 0.5, positive (classify as ’1’)
I σ(a) < 0.5, negative (classify as ’0’)
I σ(a) = 0.5, undecidable

Nice computational properties As we will see soon

Linear or nonlinear classifier?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 24 / 48

Why the sigmoid function?

What does it look like?

σ(a) =
1

1 + e−a

where

a = b+wTx
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Properties

Bounded between 0 and 1 ← thus, interpretable as probability

Monotonically increasing thus, usable to derive classification rules
I σ(a) > 0.5, positive (classify as ’1’)
I σ(a) < 0.5, negative (classify as ’0’)
I σ(a) = 0.5, undecidable

Nice computational properties As we will see soon

Linear or nonlinear classifier?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 24 / 48

Linear or nonlinear?

σ(a) is nonlinear, however, the decision boundary is determined by

σ(a) = 0.5⇒

a = 0⇒ g(x) = b+wTx = 0

which is a linear function in x

We often call b the offset term.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 25 / 48

Linear or nonlinear?

σ(a) is nonlinear, however, the decision boundary is determined by

σ(a) = 0.5⇒ a = 0⇒ g(x) = b+wTx = 0

which is a linear function in x

We often call b the offset term.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 25 / 48

Contrast Naive Bayes and our new model

Similar

Both classification models are linear functions of features

Different

Naive Bayes models the joint distribution: P (X,Y) = P (Y)P (X|Y)
Logistic regression models the conditional distribution: P (Y |X)

Generative vs. Discriminative

NB is a generative model, LR is a discriminative model

We will talk more about the differences later

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 26 / 48

Contrast Naive Bayes and our new model

Similar

Both classification models are linear functions of features

Different

Naive Bayes models the joint distribution: P (X,Y) = P (Y)P (X|Y)
Logistic regression models the conditional distribution: P (Y |X)

Generative vs. Discriminative

NB is a generative model, LR is a discriminative model

We will talk more about the differences later

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 26 / 48

Contrast Naive Bayes and our new model

Similar

Both classification models are linear functions of features

Different

Naive Bayes models the joint distribution: P (X,Y) = P (Y)P (X|Y)
Logistic regression models the conditional distribution: P (Y |X)

Generative vs. Discriminative

NB is a generative model, LR is a discriminative model

We will talk more about the differences later

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 26 / 48

Likelihood function

Probability of a single training sample (xn, yn)

p(yn|xn; b;w) =

{
σ(b+wTxn) if yn = 1
1− σ(b+wTxn) otherwise

Compact expression, exploring that yn is either 1 or 0

p(yn|xn; b;w) = σ(b+wTxn)yn [1− σ(b+wTxn)]1−yn

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 27 / 48

Likelihood function

Probability of a single training sample (xn, yn)

p(yn|xn; b;w) =

{
σ(b+wTxn) if yn = 1
1− σ(b+wTxn) otherwise

Compact expression, exploring that yn is either 1 or 0

p(yn|xn; b;w) = σ(b+wTxn)yn [1− σ(b+wTxn)]1−yn

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 27 / 48

Log Likelihood or Cross Entropy Error

Log-likelihood of the whole training data D

logP (D) =
∑

n

{yn log σ(b+wTxn) + (1− yn) log[1− σ(b+wTxn)]}

It is convenient to work with its negation, which is called
cross-entropy error function

E(b,w) = −
∑

n

{yn log σ(b+wTxn) + (1− yn) log[1− σ(b+wTxn)]}

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 28 / 48

Log Likelihood or Cross Entropy Error

Log-likelihood of the whole training data D

logP (D) =
∑

n

{yn log σ(b+wTxn) + (1− yn) log[1− σ(b+wTxn)]}

It is convenient to work with its negation, which is called
cross-entropy error function

E(b,w) = −
∑

n

{yn log σ(b+wTxn) + (1− yn) log[1− σ(b+wTxn)]}

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 28 / 48

Shorthand notation

This is for convenience

Append 1 to x
x← [1 x1 x2 · · · xD]

Append b to w

w ← [b w1 w2 · · · wD]

Cross-entropy is then

E(w) = −
∑

n

{yn log σ(wTxn) + (1− yn) log[1− σ(wTxn)]}

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 29 / 48

How to find the optimal parameters for logistic regression?

We will minimize the error function

E(w) = −
∑

n

{yn log σ(wTxn) + (1− yn) log[1− σ(wTxn)]}

However, this function is complex and we cannot find the simple solution
as we did in Naive Bayes. So we need to use numerical methods.

Numerical methods are messier, in contrast to cleaner analytic
solutions.

In practice, we often have to tune a few optimization parameters —
patience is necessary.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 30 / 48

An overview of numerical methods

We describe two

Gradient descent (our focus in lecture): simple, especially effective for
large-scale problems

Newton’s method: classical and powerful method

Gradient descent is often referred to as a first-order method

Requires computation of gradients (i.e., the first-order derivative)

Newton’s method is often referred as to an second-order method

Requires computation of second derivatives

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 31 / 48

Gradient Descent

Start at a random point

w

f(w)

w0w*

Gradient Descent

Start at a random point

Determine a descent direction

w

f(w)

w0w*

Gradient Descent

Start at a random point

Determine a descent direction
Choose a step size

w

f(w)

w0w*

Gradient Descent

Start at a random point

Determine a descent direction
Choose a step size
Update

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w2 w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w2 w1 w0w* …

w

g(w) Non-convex

Any local minimum is a global minimum

Where Will We Converge?

Least Squares, Ridge Regression and
Logistic Regression are all convex!

…

…

w

f(w) Convex

w*

Multiple local minima may exist
w*w!

…

Why do we move in the direction opposite the gradient?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 32 / 48

Update Rule: wi+1 = wi � αi
df
dw

(wi)

Choosing Descent Direction (1D)

We can only move in two directions
Negative slope is direction of descent!

w0 w

f(w)

w* w

f(w)

w*

positive ⇒ go left!

w0

negative ⇒ go right!

zero ⇒ done!

Step Size

Negative Slope

We can move anywhere in
Negative gradient is direction of
steepest descent!

Rd

2D Example:
• Function values are in black/white

and black represents higher values
• Arrows are gradients

"Gradient2" by Sarang. Licensed under CC BY-SA 2.5 via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Gradient2.svg#/media/File:Gradient2.svg

Choosing Descent Direction

Update Rule:

Step Size

Negative Slope

wi+1 = wi � αi�f(wi)

Example: min f(θ) = 0.5(θ2
1 − θ2)

2 + 0.5(θ1 − 1)2

We compute the gradients

∂f

∂θ1
= 2(θ21 − θ2)θ1 + θ1 − 1

∂f

∂θ2
= −(θ21 − θ2)

Use the following iterative procedure for gradient descent

1 Initialize θ
(0)
1 and θ

(0)
2 , and t = 0

2 do

θ
(t+1)
1 ← θ

(t)
1 − η

[
2(θ

(t)
1

2
− θ(t)2)θ

(t)
1 + θ

(t)
1 − 1

]

θ
(t+1)
2 ← θ

(t)
2 − η

[
−(θ

(t)
1

2
− θ(t)2)

]

t← t+ 1

3 until f(θ(t)) does not change much

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 33 / 48

Example: min f(θ) = 0.5(θ2
1 − θ2)

2 + 0.5(θ1 − 1)2

We compute the gradients

∂f

∂θ1
= 2(θ21 − θ2)θ1 + θ1 − 1

∂f

∂θ2
= −(θ21 − θ2)

Use the following iterative procedure for gradient descent

1 Initialize θ
(0)
1 and θ

(0)
2 , and t = 0

2 do

θ
(t+1)
1 ← θ

(t)
1 − η

[
2(θ

(t)
1

2
− θ(t)2)θ

(t)
1 + θ

(t)
1 − 1

]

θ
(t+1)
2 ← θ

(t)
2 − η

[
−(θ

(t)
1

2
− θ(t)2)

]

t← t+ 1

3 until f(θ(t)) does not change much

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 33 / 48

Example: min f(θ) = 0.5(θ2
1 − θ2)

2 + 0.5(θ1 − 1)2

We compute the gradients

∂f

∂θ1
= 2(θ21 − θ2)θ1 + θ1 − 1

∂f

∂θ2
= −(θ21 − θ2)

Use the following iterative procedure for gradient descent

1 Initialize θ
(0)
1 and θ

(0)
2 , and t = 0

2 do

θ
(t+1)
1 ← θ

(t)
1 − η

[
2(θ

(t)
1

2
− θ(t)2)θ

(t)
1 + θ

(t)
1 − 1

]

θ
(t+1)
2 ← θ

(t)
2 − η

[
−(θ

(t)
1

2
− θ(t)2)

]

t← t+ 1

3 until f(θ(t)) does not change much

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 33 / 48

Impact of step size

Choosing the right η is important

small η is too slow?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

large η is too unstable?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 34 / 48

Impact of step size

Choosing the right η is important

small η is too slow?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

large η is too unstable?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 34 / 48

Impact of step size

Choosing the right η is important

small η is too slow?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

large η is too unstable?

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 34 / 48

Gradient descent

General form for minimizing f(θ)

θt+1 ← θ − η∂f
∂θ

Remarks

η is step size – how far we go in the direction of the negative gradient
I Step size needs to be chosen carefully to ensure convergence.
I Step size can be adaptive, e.g., we can use line search

We are minimizing a function, hence the subtraction (−η)

With a suitable choice of η, we converge to a stationary point

∂f

∂θ
= 0

Stationary point not always global minimum (but happy when convex)

Popular variant called stochastic gradient descent

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 35 / 48

Gradient Descent Update for Logistic Regression

Simple fact: derivatives of σ(a)

d σ(a)

d a
=

d

d a

(
1 + e−a

)−1
=
−(1 + e−a)′

(1 + e−a)2

=
e−a

(1 + e−a)2
=

1

1 + e−a
e−a

1 + e−a

= σ(a)[1− σ(a)]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 36 / 48

Gradients of the cross-entropy error function

Cross-entropy Error Function

E(w) = −
∑

n

{yn log σ(wTxn) + (1− yn) log[1− σ(wTxn)]}

Gradients

∂E(w)

∂w
= −

∑

n

{
yn[1− σ(wTxn)]xn − (1− yn)σ(wTxn)]xn

}

=
∑

n

{
σ(wTxn)− yn

}
xn

Remark

en =
{
σ(wTxn)− yn

}
is called error for the nth training sample.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 37 / 48

Gradients of the cross-entropy error function

Cross-entropy Error Function

E(w) = −
∑

n

{yn log σ(wTxn) + (1− yn) log[1− σ(wTxn)]}

Gradients

∂E(w)

∂w
= −

∑

n

{
yn[1− σ(wTxn)]xn − (1− yn)σ(wTxn)]xn

}

=
∑

n

{
σ(wTxn)− yn

}
xn

Remark

en =
{
σ(wTxn)− yn

}
is called error for the nth training sample.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 37 / 48

Numerical optimization

Gradient descent for logistic regression

Choose a proper step size η > 0

Iteratively update the parameters following the negative gradient to
minimize the error function

w(t+1) ← w(t) − η
∑

n

{
σ(wTxn)− yn

}
xn

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 38 / 48

Intuition for Newton’s method

Approximate the true function with an easy-to-solve optimization
problem

f(x)
f
quad

(x)

x
k

x
k
+d

k

f(x)
f
quad

(x)

x
k

x
k
+d

k

In particular, we can approximate the cross-entropy error function around
w(t) by a quadratic function, and then minimize this quadratic function

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 39 / 48

Intuition for Newton’s method

Approximate the true function with an easy-to-solve optimization
problem

f(x)
f
quad

(x)

x
k

x
k
+d

k

f(x)
f
quad

(x)

x
k

x
k
+d

k

In particular, we can approximate the cross-entropy error function around
w(t) by a quadratic function, and then minimize this quadratic function

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 39 / 48

Approximation

Second Order Taylor expansion around xt

f(x) ≈ f(xt) + f ′(xt)(x− xt) +
1

2
f ′′(xt)(x− xt)2

Taylor expansion of cross-entropy error function around w(t)

E(w) ≈ E(w(t)) + (w −w(t))T∇E(w(t)) +
1

2
(w −w(t))TH(t)(w −w(t))

where

∇E(w(t)) is the gradient

H(t) is the Hessian matrix evaluated at w(t)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 40 / 48

Approximation

Second Order Taylor expansion around xt

f(x) ≈ f(xt) + f ′(xt)(x− xt) +
1

2
f ′′(xt)(x− xt)2

Taylor expansion of cross-entropy error function around w(t)

E(w) ≈ E(w(t)) + (w −w(t))T∇E(w(t)) +
1

2
(w −w(t))TH(t)(w −w(t))

where

∇E(w(t)) is the gradient

H(t) is the Hessian matrix evaluated at w(t)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 40 / 48

So what is the Hessian matrix?

The matrix of second-order derivatives

H =
∂2E(w)

∂wwT

In other words,

Hij =
∂

∂wj

(
∂E(w)

∂wi

)

So the Hessian matrix is RD×D, where w ∈ RD.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 41 / 48

Optimizing the approximation

Minimize the approximation

E(w) ≈ E(w(t)) + (w −w(t))T∇E(w(t)) +
1

2
(w −w(t))TH(t)(w −w(t))

and use the solution as the new estimate of the parameters

w(t+1) ← min
w

(w −w(t))T∇E(w(t)) +
1

2
(w −w(t))TH(t)(w −w(t))

The quadratic function minimization has a closed form, thus, we have

w(t+1) ← w(t) −
(
H(t)

)−1
∇E(w(t))

i.e., the Newton’s method.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 42 / 48

Optimizing the approximation

Minimize the approximation

E(w) ≈ E(w(t)) + (w −w(t))T∇E(w(t)) +
1

2
(w −w(t))TH(t)(w −w(t))

and use the solution as the new estimate of the parameters

w(t+1) ← min
w

(w −w(t))T∇E(w(t)) +
1

2
(w −w(t))TH(t)(w −w(t))

The quadratic function minimization has a closed form, thus, we have

w(t+1) ← w(t) −
(
H(t)

)−1
∇E(w(t))

i.e., the Newton’s method.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 42 / 48

Contrast gradient descent and Newton’s method

Similar

Both are iterative procedures.

Different

Newton’s method requires second-order derivatives.

Newton’s method does not have the magic η to be set.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 43 / 48

Other important things about Hessian

Our cross-entropy error function is convex

∂E(w)

∂w
=
∑

n

{σ(wTxn)− yn}xn (3)

⇒H =
∂2E(w)

∂wwT
= homework (4)

For any vector v,
vTHv = homework ≥ 0

Thus, positive semi-definite. Thus, the cross-entropy error function is
convex, with only one global optimum.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 44 / 48

Other important things about Hessian

Our cross-entropy error function is convex

∂E(w)

∂w
=
∑

n

{σ(wTxn)− yn}xn (3)

⇒H =
∂2E(w)

∂wwT
= homework (4)

For any vector v,
vTHv = homework ≥ 0

Thus, positive semi-definite. Thus, the cross-entropy error function is
convex, with only one global optimum.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 44 / 48

Good about Newton’s method

Fast (in terms of convergence)!

Newton’s method finds the optimal point in a single iteration when the
function we’re optimizing is quadratic

In general, the better our Taylor approximation, the more quickly Newton’s
method will converge

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 45 / 48

Bad about Newton’s method

Not scalable!

Computing and inverting Hessian matrix can be very expensive for
large-scale problems where the dimensionally D is very large. There are
fixes and alternatives, such as Quasi-Newton/Quasi-second order method.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 46 / 48

Summary

Setup for 2 classes

Logistic Regression models conditional distribution as:
p(y = 1|x;w) = σ[g(x)] where g(x) = wTx

Linear decision boundary: g(x) = wTx = 0

Minimizing cross-entropy error (negative log-likelihood)

E(b,w) = −∑n{yn log σ(b+wTxn)+(1−yn) log[1−σ(b+wTxn)]}
No closed form solution; must rely on iterative solvers

Numerical optimization

Gradient descent: simple, scalable to large-scale problems
I move in direction opposite of gradient!
I gradient of logistic function takes nice form

Newton method: fast to converge but not scalable
I At each iteration, find optimal point in 2nd-order Taylor expansion
I Closed form solution exists for each iteration

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 47 / 48

Naive Bayes and logistic regression: two different modeling
paradigms

Maximize joint likelihood
∑

n log p(xn, yn) (Generative, NB)

Maximize conditional likelihood
∑

n log p(yn|xn) (Discriminative, LR)

More on this next class

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 48 / 48

	Administration
	Review of last lecture
	Naive Bayes

	Logistic regression
	General setup
	Maximum likelihood estimation
	Gradient descent
	Newton's method

