Course Overview

Professor Ameet Talwalkar

3

э.

Image: A match a ma

Outline

2 About this Course

Professor Ameet Talwalkar

-

э

One possible definition¹

a set of methods that can automatically *detect patterns* in data, and then use the uncovered patterns to *predict future data*, or to perform other kinds of decision making *under uncertainty*

cf. Murphy's book

Professor Ameet Talwalkar

Example: detect patterns

How the temperature has been changing in the last 140 years?

Patterns

- We see repeated periods of fluctuation
- General trend is that temperatures are rising

Professor Ameet Talwalkar

How do we describe the pattern?

Professor Ameet Talwalkar

CS260 Machine Learning Algorithms

January 9, 2017 5 / 22

э

How do we describe the pattern?

Build a model: fit the data with a polynomial function

- The model is not accurate for individual years
- But overall, the model captures the major trend

-

Predicting future

What is temperature of 2017?

Global Surface Temperature Changes

• This particular polynomial model is not exactly accurate for that specific year, but it is pretty close

Key ingredients in the machine learning task

Key ingredients in the machine learning task

• Data: collected from past observations (training data)

Key ingredients in the machine learning task

- Data: collected from past observations (training data)
- Modeling: devised to capture the patterns in the data
 - ▶ The model does not have to be true as long as it is close, it is useful
 - We should tolerate randomness and mistakes many interesting things are stochastic by nature.

Key ingredients in the machine learning task

- Data: collected from past observations (training data)
- Modeling: devised to capture the patterns in the data
 - ▶ The model does not have to be true as long as it is close, it is useful
 - We should tolerate randomness and mistakes many interesting things are stochastic by nature.
- Prediction: apply the model to forecast what is going to happen in future

A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936) Types of Iris: setosa, versicolor, and virginica

Huge success 20 years ago

Recognizing handwritten zipcodes and checks (AT&T Labs, circa late 1990s)

3

一日、

More modern ones, in your social life

Recognizing your friends on Facebook

Learn your preferences

Recommending what you might like

(日) (同) (三) (三)

Why is machine learning so popular?

-

3

< 🗇 🕨 🔸

Why is machine learning so popular?

Data

- Flood of data from various sensors leads to several high-impact applications
- e.g., cell phones, internet applications, scientific studies

Computing

- Powerful and cheaply available computing resources enables efficient storage / processing / analysis of this data
- e.g., cloud computing, GPUs, cell phones

Some Applications

- Consumer applications:
 - speech recognition, information retrieval and search, email and document classification, stock price prediction, object recognition, product recommendation, ···
 - ► Highly desirable expertise from industry: Google, Facebook, Microsoft, Yahoo, Twitter, IBM, LinkedIn, Amazon, ···
- Scientific applications:
 - Biology and genetics: identify disease-causing genes and gene networks
 - Climate science: predicting global warming trends
 - Social science: social network analysis; social media analysis
 - Business and finance: marketing, operation research
 - Emerging ones: healthcare, energy, ···

Different flavors of learning problems

• Supervised learning: make prediction given labeled training observations, e.g., Spam detection, Iris

Different flavors of learning problems

- Supervised learning: make prediction given labeled training observations, e.g., Spam detection, Iris
- Unsupervised learning: Discover hidden and latent patterns in data; data exploration, e.g., topic modelling in text data

Different flavors of learning problems

- Supervised learning: make prediction given labeled training observations, e.g., Spam detection, Iris
- Unsupervised learning: Discover hidden and latent patterns in data; data exploration, e.g., topic modelling in text data
- Reinforcement learning: act optimally (or at least well) under uncertainty, e.g., defining a robot's behavior with the world based on the feedback (rewards / punishments) it receives from each action

Different flavors of learning problems

- Supervised learning: make prediction given labeled training observations, e.g., Spam detection, Iris
- Unsupervised learning: Discover hidden and latent patterns in data; data exploration, e.g., topic modelling in text data
- Reinforcement learning: act optimally (or at least well) under uncertainty, e.g., defining a robot's behavior with the world based on the feedback (rewards / punishments) it receives from each action
- Many other paradigms
- The focus and goal of this course
 - Supervised learning (majority of the course)
 - Unsupervised learning (last week of course)

How to grasp machine learning well

Pillars to machine learning

- Statistics
- Linear Algebra
- Optimization
- Algorithms

Resources to study them

- Suggested Reading:
 - Chapter 2 of MLAPA book
 - Linear Algebra Review and Reference by Zico Kolter and Chuong Do (http://www.cs.cmu.edu/~zkolter/course/15-884/ linalg-review.pdf)
 - Convex Optimation Review by Zico Kolter and Honglak Lee (http://www.cs.cmu.edu/~./15381/slides/cvxopt.pdf)

• Wikipedia (some information might not be 100% accurate, though)

Outline

Overview of machine learning

2 About this Course• Administration

< 67 ▶

э

Quick Polls

• Undergrad / Masters / PhD?

(日) (周) (三) (三)

3

Quick Polls

- Undergrad / Masters / PhD?
- Computer Science / Other Engineering / Other?

3. 3

< 4 → <

Quick Polls

- Undergrad / Masters / PhD?
- Computer Science / Other Engineering / Other?
- Registered / Waiting List / Hoping to Register / Other?

< A > < 3

Discussion Section

- There will only be one discussion section
 - Friday 12:00p 1:50pm, Haines 118
 - Led by Chris Wu

- The second section has been been cancelled, but one of the TAs will be holding office hours at this time
 - Friday 11:00a noon

Registration / PTEs

- Course is currently full and I can't increase class size
- I am not giving out PTEs until after HW1 submission date

3

Registration / PTEs

- Course is currently full and I can't increase class size
- I am not giving out PTEs until after HW1 submission date
- I expect several students will drop the course
 - ML is very popular, and many students are interested but don't have mathematical maturity for this graduate level material
 - Last year's attrition rate much higher than typical grad-level class
 - Several students dropped late in the quarter, thus preventing other students from joining

Registration / PTEs (cont)

- I believe / hope that all qualified students will be able to enroll
- Today's math quiz will hopefully mitigate attrition later in the course
 - Representative of mathematical concepts you are excepted to know
 - This is a course requirement
 - Graded to assess your background (but not part of final grade)
 - We may contact students who perform poorly

Registration / PTEs (cont)

- I believe / hope that all qualified students will be able to enroll
- Today's math quiz will hopefully mitigate attrition later in the course
 - Representative of mathematical concepts you are excepted to know
 - This is a course requirement
 - Graded to assess your background (but not part of final grade)
 - We may contact students who perform poorly
- Be honest / realistic with yourself about your background
 - It's better for you, me, and your classmates to drop the course now rather than a month from now
- If you're not registered, I'd encourage you to stay patient
 - Priority will be given to students based on their scores on the math quiz, first problem set, and CS affiliation

過 ト イヨ ト イヨト

Course Logistics

Let's go to the course website:

http://cs.ucla.edu/~ameet/teaching/winter17/cs260/index.html

A 🖓 h

3

Any questions?

Professor Ameet Talwalkar

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト