The Big Data Bootstrap

Ariel Kleiner
Ameet Talwalkar, Purnamrita Sarkar Michael I. Jordan

UC Berkeley

The Setting

Observe data X_{1}, \ldots, X_{n}

Form an estimate $\hat{\theta}_{n}=\theta\left(X_{1}, \ldots, X_{n}\right)$ (e.g., θ could be a classifier)

Want to compute an assessment ξ of the quality of $\hat{\theta}_{n}$ (e.g., ξ could compute a confidence region)

Our Goal

A procedure for quantifying estimator quality which is

accurate
automatic scalable

The Unachievable Ideal

Ideally, we would
(1) Observe many independent datasets of size n.
(2) Compute $\hat{\theta}_{n}$ on each.
(3) Compute ξ based on these multiple realizations of $\hat{\theta}_{n}$.

But, we only observe one dataset of size n.

Prior Work: The Bootstrap

Use the observed data to simulate multiple datasets of size n :
(1) Repeatedly resample n points with replacement from the original dataset of size n.
(2) Compute $\hat{\theta}_{n}^{*}$ on each resample.
(3) Compute ξ based on these multiple realizations of $\hat{\theta}_{n}^{*}$ as our estimate of ξ for $\hat{\theta}_{n}$.

Prior Work: The Bootstrap

- Expected number of distinct points in a bootstrap resample is ~ $0.632 n$.
- Resources required to compute estimate generally scale in number of distinct data points.
- This is true of many commonly used learning algorithms (e.g., SVM, logistic regression, linear regression, kernel methods, general M-estimators, etc.).
- Use weighted representation of resampled datasets to avoid physical data replication.
- Example: If original dataset has size 1 TB , then expect resample to have size ~ 632 GB.

Prior Work: The Bootstrap

Computational Issues

Suppose that the original dataset has size 1 TB. The bootstrap does the following:

```
for }i\leftarrow1\mathrm{ to }30
    resample ~ 632 GB of data
    compute }\mp@subsup{\hat{0}}{n}{*}\mathrm{ on resample
compute \xi based on the resampled }\mp@subsup{\hat{0}}{n}{*\prime}\mathrm{ s
```


Prior Work: The Bootstrap

Advantages

- Accurate for a wide range of estimators.
- Automatic: can compute without knowledge of estimator internals.

Disadvantages

- Must repeatedly compute estimates on $\sim 63 \%$ of the data.
- For big data, difficult to parallelize across different estimate computations.

Prior Work: The b out of n Bootstrap

Compute estimates only on smaller resamples of the data of size $b<n$, and analytically correct our quality assessment.

More favorable computational profile than the bootstrap.

Issues

- Accuracy sensitive to choice of b.
- Still fairly automatic, though analytical correction introduces some dependency on estimator internals.

Empirical Results: Bootstrap and bout of n Bootstrap

- Multivariate linear regression with $d=100$ and $n=20,000$ on synthetic data.
- Estimate parameters $\hat{\theta}_{n}$ via least squares.
- ξ computes confidence intervals.
- Compare widths to ground truth (via relative error).
- For b out of n bootstrap, use $b=n^{\gamma}$ for various values of γ.

Empirical Results: Bootstrap and bout of n Bootstrap

Our Approach: The Bag of Little Bootstraps (BLB)

Use only $b<n$ data points to compute each resample while maintaining robustness to choice of b :
(1) Repeatedly subsample $b<n$ points without replacement from the original dataset of size n.
(2) For each subsample do:
(1) Repeatedly resample n points with replacement from the subsample.
(2) Compute $\hat{\theta}_{n}^{*}$ on each resample.
(3) Compute an estimate of ξ based on these multiple resampled realizations of $\hat{\theta}_{n}^{*}$.
(3) We now have one estimate of ξ per subsample. Output their average as our final estimate of ξ for $\hat{\theta}_{n}$.

Our Approach: BLB

Our Approach: BLB

- Recall: resources required to compute estimate generally scale in number of distinct data points.
- Each BLB subsample/resample contains at most $b<n$ distinct points.
- Example: if $n=1,000,000$, data point size is 1 MB , and we take $b=n^{0.6}$, then
- full dataset has size 1 TB
- subsamples/resamples contain at most 3,981 distinct data points and have size at most 4 GB
- (in contrast, bootstrap resamples have size $\sim 632 \mathrm{~GB}$)

Our Approach: BLB

Like the Bootstrap

- Accurate for a wide range of estimators. Shares the bootstrap's consistency and higher-order correctness.
- Automatic: can compute without knowledge of estimator internals.

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)

- Can explicitly control b, the amount of data on which we must repeatedly compute estimates; can have $b / n \rightarrow 0$ as $n \rightarrow \infty$.
- More robust to choice of b, which can be much smaller than n.
- Generally faster than the bootstrap (even if computing serially).
- Easy to parallelize across different estimate computations.

Empirical Results: BLB

Theoretical Results

BLB shares the bootstrap's favorable statistical properties (consistency \& higher-order correctness)

under the same conditions that have been used in prior analysis of the bootstrap

Scalability

10 nodes on Amazon EC2 using Spark; 150 GB of data

Non-Synthetic Data

UCI connect4 dataset: logistic regression, $d=42, n=67,557$

More Empirical Results

Logistic Regression

