The Big Data Bootstrap

Ariel Kleiner Ameet Talwalkar, Purnamrita Sarkar Michael I. Jordan

UC Berkeley

Observe data X_1, \ldots, X_n

Form an estimate
$$\hat{\theta}_n = \theta(X_1, \dots, X_n)$$

(e.g., θ could be a classifier)

Want to compute an assessment ξ of the quality of $\hat{\theta}_n$ (e.g., ξ could compute a confidence region)

A procedure for quantifying estimator quality which is

accurate automatic scalable Ideally, we would

- Observe many independent datasets of size n.
- 2 Compute $\hat{\theta}_n$ on each.
- Sompute ξ based on these multiple realizations of $\hat{\theta}_n$.

But, we only observe one dataset of size n.

Use the observed data to simulate multiple datasets of size *n*:

- Repeatedly resample n points with replacement from the original dataset of size n.
- 2 Compute $\hat{\theta}_n^*$ on each resample.
- 3 Compute ξ based on these multiple realizations of $\hat{\theta}_n^*$ as our estimate of ξ for $\hat{\theta}_n$.

Computational Issues

- Expected number of distinct points in a bootstrap resample is $\sim 0.632n$.
- Resources required to compute estimate generally scale in number of *distinct* data points.
 - This is true of many commonly used learning algorithms (e.g., SVM, logistic regression, linear regression, kernel methods, general M-estimators, etc.).
 - Use weighted representation of resampled datasets to avoid physical data replication.
 - Example: If original dataset has size 1 TB, then expect resample to have size \sim 632 GB.

Computational Issues

Suppose that the original dataset has size 1 TB. The bootstrap does the following:

for $i \leftarrow 1$ to **300** resample ~ 632 GB of data compute $\hat{\theta}_n^*$ on resample compute ξ based on the resampled $\hat{\theta}_n^{*\prime}$'s

Advantages

- Accurate for a wide range of estimators.
- Automatic: can compute without knowledge of estimator internals.

Disadvantages

- Must repeatedly compute estimates on \sim 63% of the data.
- For big data, difficult to parallelize across different estimate computations.

Compute estimates only on smaller resamples of the data of size b < n, and analytically correct our quality assessment.

More favorable computational profile than the bootstrap.

Issues

- Accuracy sensitive to choice of *b*.
- Still fairly automatic, though analytical correction introduces some dependency on estimator internals.

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- Estimate parameters $\hat{\theta}_n$ via least squares.
- ξ computes confidence intervals.
- Compare widths to ground truth (via relative error).
- For *b* out of *n* bootstrap, use $b = n^{\gamma}$ for various values of γ .

Empirical Results: Bootstrap and b out of n Bootstrap

Use only b < n data points to compute each resample while maintaining robustness to choice of *b*:

- Repeatedly subsample b < n points without replacement from the original dataset of size n.</p>
- Por each subsample do:
 - Repeatedly resample n points with replacement from the subsample.
 - **2** Compute $\hat{\theta}_n^*$ on each resample.
 - **③** Compute an estimate of ξ based on these multiple resampled realizations of $\hat{\theta}_n^*$.
- Solution We now have one estimate of ξ per subsample. Output their average as our final estimate of ξ for $\hat{\theta}_n$.

Our Approach: BLB

- Recall: resources required to compute estimate generally scale in number of *distinct* data points.
- Each BLB subsample/resample contains at most b < n distinct points.
- Example: if n = 1,000,000, data point size is 1 MB, and we take $b = n^{0.6}$, then
 - full dataset has size 1 TB
 - subsamples/resamples contain at most 3,981 distinct data points and have size at most 4 GB
 - (in contrast, bootstrap resamples have size \sim 632 GB)

Like the Bootstrap

- Accurate for a wide range of estimators. Shares the bootstrap's consistency and higher-order correctness.
- Automatic: can compute without knowledge of estimator internals.

Beyond the Bootstrap (and *b* out of *n* Bootstrap/Subsampling)

- Can explicitly control *b*, the amount of data on which we must repeatedly compute estimates; can have $b/n \rightarrow 0$ as $n \rightarrow \infty$.
- More robust to choice of b, which can be much smaller than n.
- Generally faster than the bootstrap (even if computing serially).
- Easy to parallelize across different estimate computations.

Empirical Results: BLB

BLB shares the bootstrap's favorable statistical properties (consistency & higher-order correctness)

under the same conditions that have been used in prior analysis of the bootstrap

10 nodes on Amazon EC2 using Spark; 150 GB of data

UCI connect4 dataset: logistic regression, d = 42, n = 67, 557

More Empirical Results

Logistic Regression

