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The Setting

Observe data Xj, ..., X,

Form an estimate 6, = 6(X1,..., X,)
(e.g., 6 could be a classifier)

Want to compute an assessment ¢ of the quality of 4,
(e.g., &£ could compute a confidence region)



A procedure for quantifying estimator
quality which is

accurate
automatic
scalable



The Unachievable Ideal

Ideally, we would
@ Observe many independent datasets of size n.
@ Compute f, on each.
@ Compute ¢ based on these multiple realizations of ;..
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But, we only observe one dataset of size n.
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Prior Work: The Bootstrap

Use the observed data to simulate multiple datasets of size n:

@ Repeatedly resample n points with replacement from the original
dataset of size n.

@ Compute #% on each resample.

© Compute ¢ baseq on these multiple realizations of é;‘, as our
estimate of ¢ for 6.




Prior Work: The Bootstrap
Computational Issues

@ Expected number of distinct points in a bootstrap resample is
~ 0.632n.

@ Resources required to compute estimate generally scale in
number of distinct data points.

e This is true of many commonly used learning algorithms (e.g.,
SVM, logistic regression, linear regression, kernel methods, general
M-estimators, etc.).

o Use weighted representation of resampled datasets to avoid
physical data replication.

e Example: If original dataset has size 1 TB, then expect resample to
have size ~ 632 GB.



Prior Work: The Bootstrap
Computational Issues

Suppose that the original dataset has size 1 TB. The bootstrap does
the following:

for i+ 1 to 300
resample ~ 632 GB of data
compute 9; on resample

compute ¢ based on the resampled éﬁ’s



Prior Work: The Bootstrap

Advantages
@ Accurate for a wide range of estimators.
@ Automatic: can compute without knowledge of estimator internals.

Disadvantages

@ Must repeatedly compute estimates on ~ 63% of the data.

@ For big data, difficult to parallelize across different estimate
computations.




Prior Work: The b out of n Bootstrap

Compute estimates only on smaller resamples of the data of size
b < n, and analytically correct our quality assessment.

More favorable computational profile than the bootstrap.

@ Accuracy sensitive to choice of b.

@ Still fairly automatic, though analytical correction introduces some
dependency on estimator internals.




Empirical Results: Bootstrap and b out of n Bootstrap

@ Multivariate linear regression with d = 100 and n = 20,000 on
synthetic data.

@ Estimate parameters 0, via least squares.

@ £ computes confidence intervals.

@ Compare widths to ground truth (via relative error).

@ For b out of n bootstrap, use b = n” for various values of ~.



Empirical Results: Bootstrap and b out of n Bootstrap
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Our Approach: The Bag of Little Bootstraps (BLB)

Use only b < n data points to compute each resample while
maintaining robustness to choice of b:

@ Repeatedly subsample b < n points without replacement from the
original dataset of size n.
@ For each subsample do:
@ Repeatedly resample n points with replacement from the
subsample.
@ Compute 6; on each resample.
@ Compute an estimate of § based on these multiple resampled
realizations of 6.
© We now have one estimate of ¢ per subsample. Output their
average as our final estimate of ¢ for 4.



Our Approach: BLB
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Our Approach: BLB
Computational Issues

@ Recall: resources required to compute estimate generally scale in
number of distinct data points.

@ Each BLB subsample/resample contains at most b < n distinct

points.
° Examgle: if n=1,000, 000, data point size is 1 MB, and we take
b= n®8, then

o full dataset has size 1 TB

e subsamples/resamples contain at most 3,981 distinct data points
and have size at most 4 GB

o (in contrast, bootstrap resamples have size ~ 632 GB)



Our Approach: BLB

Like the Bootstrap

@ Accurate for a wide range of estimators. Shares the bootstrap’s
consistency and higher-order correctness.

@ Automatic: can compute without knowledge of estimator internals.

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)

@ Can explicitly control b, the amount of data on which we must
repeatedly compute estimates; can have b/n — 0 as n — co.

@ More robust to choice of b, which can be much smaller than n.
@ Generally faster than the bootstrap (even if computing serially).

@ Easy to parallelize across different estimate computations.




Empirical Results: BLB
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Theoretical Results

BLB shares the bootstrap’s favorable
statistical properties
(consistency & higher-order correctness)

under the same conditions that have been used in prior analysis
of the bootstrap



Scalability

10 nodes on Amazon EC2 using Spark; 150 GB of data
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Non-Synthetic Data

UCI connect4 dataset: logistic regression, d = 42, n = 67,557
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More Empirical Results

Logistic Regression

Relative Error
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