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The Setting

Observe data X1, . . . ,Xn

Form an estimate θ̂n = θ(X1, . . . ,Xn)
(e.g., θ could be a classifier)

Want to compute an assessment ξ of the quality of θ̂n
(e.g., ξ could compute a confidence region)



Our Goal

A procedure for quantifying estimator
quality which is

accurate
automatic
scalable



The Unachievable Ideal

Ideally, we would
1 Observe many independent datasets of size n.
2 Compute θ̂n on each.
3 Compute ξ based on these multiple realizations of θ̂n.
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But, we only observe one dataset of size n.



Prior Work: The Bootstrap

Use the observed data to simulate multiple datasets of size n:
1 Repeatedly resample n points with replacement from the original

dataset of size n.
2 Compute θ̂∗n on each resample.
3 Compute ξ based on these multiple realizations of θ̂∗n as our

estimate of ξ for θ̂n.
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Prior Work: The Bootstrap
Computational Issues

Expected number of distinct points in a bootstrap resample is
∼ 0.632n.
Resources required to compute estimate generally scale in
number of distinct data points.

This is true of many commonly used learning algorithms (e.g.,
SVM, logistic regression, linear regression, kernel methods, general
M-estimators, etc.).
Use weighted representation of resampled datasets to avoid
physical data replication.
Example: If original dataset has size 1 TB, then expect resample to
have size ∼ 632 GB.



Prior Work: The Bootstrap
Computational Issues

Suppose that the original dataset has size 1 TB. The bootstrap does
the following:

for i ← 1 to 300
resample ∼ 632 GB of data
compute θ̂∗n on resample

compute ξ based on the resampled θ̂∗n’s



Prior Work: The Bootstrap

Advantages
Accurate for a wide range of estimators.
Automatic: can compute without knowledge of estimator internals.

Disadvantages
Must repeatedly compute estimates on ∼ 63% of the data.
For big data, difficult to parallelize across different estimate
computations.



Prior Work: The b out of n Bootstrap

Compute estimates only on smaller resamples of the data of size
b < n, and analytically correct our quality assessment.

More favorable computational profile than the bootstrap.

Issues
Accuracy sensitive to choice of b.
Still fairly automatic, though analytical correction introduces some
dependency on estimator internals.



Empirical Results: Bootstrap and b out of n Bootstrap

Multivariate linear regression with d = 100 and n = 20,000 on
synthetic data.
Estimate parameters θ̂n via least squares.
ξ computes confidence intervals.
Compare widths to ground truth (via relative error).
For b out of n bootstrap, use b = nγ for various values of γ.



Empirical Results: Bootstrap and b out of n Bootstrap
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Our Approach: The Bag of Little Bootstraps (BLB)

Use only b < n data points to compute each resample while
maintaining robustness to choice of b:

1 Repeatedly subsample b < n points without replacement from the
original dataset of size n.

2 For each subsample do:
1 Repeatedly resample n points with replacement from the

subsample.
2 Compute θ̂∗n on each resample.
3 Compute an estimate of ξ based on these multiple resampled

realizations of θ̂∗n .
3 We now have one estimate of ξ per subsample. Output their

average as our final estimate of ξ for θ̂n.



Our Approach: BLB
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Our Approach: BLB
Computational Issues

Recall: resources required to compute estimate generally scale in
number of distinct data points.
Each BLB subsample/resample contains at most b < n distinct
points.
Example: if n = 1,000,000, data point size is 1 MB, and we take
b = n0.6, then

full dataset has size 1 TB
subsamples/resamples contain at most 3,981 distinct data points
and have size at most 4 GB
(in contrast, bootstrap resamples have size ∼ 632 GB)



Our Approach: BLB

Like the Bootstrap
Accurate for a wide range of estimators. Shares the bootstrap’s
consistency and higher-order correctness.
Automatic: can compute without knowledge of estimator internals.

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)
Can explicitly control b, the amount of data on which we must
repeatedly compute estimates; can have b/n→ 0 as n→∞.
More robust to choice of b, which can be much smaller than n.
Generally faster than the bootstrap (even if computing serially).
Easy to parallelize across different estimate computations.



Empirical Results: BLB
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Theoretical Results

BLB shares the bootstrap’s favorable
statistical properties

(consistency & higher-order correctness)
under the same conditions that have been used in prior analysis

of the bootstrap



Scalability

10 nodes on Amazon EC2 using Spark; 150 GB of data
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Non-Synthetic Data

UCI connect4 dataset: logistic regression, d = 42,n = 67,557
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More Empirical Results
Logistic Regression
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