
Modular Redundancy for Cloud based IMS Robustness
Muhammad Taqi Raza*

Computer Science Department
University of California, Los Angeles

taqi@cs.ucla.edu

Hsiao-yun Tseng
Computer Science Department

University of California, Los Angeles
tsenghy@cs.ucla.edu

Changlong Li
Computer Science Department

University of Science and Technology of China
liclong@mail.ustc.edu.cn

Songwu Lu
Computer Science Department

University of California, Los Angeles
slu@cs.ucla.edu

ABSTRACT
IMS (IP Multimedia Subsystem) is an emerging architectural frame-
work that delivers a number of multimedia services – ranging from
voice/video over LTE, interactive gaming and many more – in oper-
ational LTE network. Network operators are embracing cloud-based
IMS to meet increasing multimedia traffic demand. They can easily
and cost-efficiently implement multimedia applications while ensur-
ing superior end-user experiences through always-on services and
real-time engagement. In this paper, we reveal that cloud-based IMS
cannot provide session-level resilience under faults and becomes the
bottleneck to high service availability. The root cause lies upon the
weak failure recovery mechanisms at both IMS protocol and cloud
platform that terminate the on-going IMS control-plane procedure.
To address this, we propose a design that provides fault-tolerance
to IMS control-plane operations. Our design provides modular re-
dundancy to perform real time failure recovery. As the system op-
erates, the control-plane operations are logged at redundant IMS
NFs modules. These logs are replayed from the failed operation to
resume IMS working after failure. We build our system prototype of
open source IMS over cloud platform. Our results show that we can
achieve session-level resilience by performing fail-over procedure
within tens of milliseconds under different combinations of IMS
control-plane operations failures.

1 INTRODUCTION
IP Multimedia Subsystem (IMS) is a core network solution that
delivers real-time multimedia services over LTE network. The use
of an all IP core network for both signaling and transmitting media
packets makes the IMS a prospective candidate for the cloud system.
There are a number of advantages where cloud based IMS: (1) can
use elasticity and utility style pricing of the cloud model; (2) reduces
Capital Expenditure (CAPEX) and Operational Expenditure (OPEX)
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that require to purchase IMS network functions along with the hard-
ware; (3) brings agility in network function placement (4) quickly
scales to support a variety of new multimedia services. In cloud
based IMS implementation, IMS elements (also referred as network
functions in this paper) are virtualized over data center network.
These virtualized instances reside over Commercial Off-the-Shelf
(COTS) distributed platform for the delivery of end-to-end multi-
media services. The virtualized IMS (vIMS) implementation cannot
enjoy traditional carrier-grade solutions implemented at hardware,
software and service platforms to achieve ultra reliable communi-
cation. Instead, it needs to rely on IMS protocol-level and cloud
platform-level fault tolerance mechanisms to serve its subscribers
during faults. We discover that these mechanisms do not provide any
fault tolerance support, rather they employ fault recovery procedures
once user session states are lost. The failure recovery in cloud based
IMS (i.e. vIMS) takes up to tens of seconds, which not only termi-
nates on-going user service requests but also de-registers the device
from IMS network.
In this paper, we address weak fault tolerance that exists in cloud
based IMS. Our goal is to provide high service availability in vIMS
where we aim to serve existing and new multimedia requests during
faults. To do so, we provide modular redundancy to mask the real-
time failures. Furthermore, we want minimum changes in current
IMS implementation that do not conflict with standardized IMS
operations and recovery procedures.
We propose a design that records Session Initiation Protocol (SIP)
signalling messages exchange over IMS NFs redundant modules.
These messages are replayed to recover the failed SIP operation.
Our design implements a number redundant IMS NF modules which
are assembled into their respective NF. It creates a number of new
interfaces to connect original NFs with redundant NFs (that hold
redundant modules). For every multimedia request (e.g. voice call
request), vIMS NFs carry out a number of SIP operations (e.g. call
invite, call progressing, call connecting and more). They execute
these operations by exchanging a number of SIP messages between
different IMS NFs. These signalling messages are also forwarded
to respective redundant modules where they are logged. The failure
recovery procedure involves quick failure detecting and failure tol-
erance. The failure detection is done through finite state machine
(FSM) where different FSM states keep track of different stages
of SIP procedure. When a particular IMS NF stops responding, it
is actively probed to confirm the failure. On detecting the failure,
neighboring IMS NF reconfigures its interfaces towards redundant
modules of failed NF. It also replays the failed SIP operation (the SIP
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stage at which the failure has occured). Our design performs smooth
transition of IMS operations in fail-back procedure and avoids sud-
den traffic flow towards recovered NF.
We evaluate our design and gather results from our OpenIMS[1]
implementation over Openstack[2]. We analyze our fault tolerance
approach when failure occurs during device registration procedure.
Our results show that our system reduces recovery time upto 20X
compared to current vIMS implementation.

2 BACKGROUND
The IP Multimedia Subsystem (IMS) is a network architecture that
delivers services based upon the Internet protocols to mobile sub-
scribers. The IMS architecture brings multiple media, multiple point
of access and multiple modes of communication into a single net-
work, enabling end-user experiencing simultaneous voice, data, and
multimedia sessions.
LTE being packet switched domain provides a best effort service
to the users, with no guarantee about the amount of bandwidth a
user gets for a connection and the delay experienced by the packets.
Therefore, IMS is the preferred choice of mobile operators to support
real-time multimedia service.
IMS Architecture: IMS operations are categorized into control-
plane and data-plane operations, as shown in Figure 1.

P-CSCF

S-CSCF

Subscriber (Device)

Charging

MGF

IMS Domain

HSS

LTE Core

Charging
Data-Plane

Control-Plane

PGW

Internet

Figure 1: IMS architecture: an overview

Control-Plane contains all the Call Session Control Function
(CSCF) entities to support the call session control. The CSCF per-
forms all the signaling operations, manages Session Initiation Pro-
tocol (SIP) sessions and coordinates with other network entities for
session control, service control and resource allocation. It consists
of two main entities: the Proxy-CSCF (P-CSCF) and Serving-CSCF
(S-CSCF). LTE subscriber first registers with LTE core network
and then initiates IMS signalling over IMS control-plane. These
signalling messages are relayed by Packet Data Network Gateway
(PGW) of LTE towards P-CSCF. The P-CSCF being an access point
to IMS acts as a SIP proxy server for all the user equipments. P-
CSCF is only a point of access to IMS and does not authenticate
within the IMS. The S-CSCF is responsible for confronting devices
that try to establish session without being registered in the network.
The S-CSCF is the core of the IMS, providing the point of control
within the network that enables operators to control all service deliv-
ery and all sessions. It implements a SIP server having in charge of
handling all the aspects of the services for a subscriber, maintaining
the status of the sessions the user has initiated, and controlling and
delivering of the multimedia contents. The S-CSCF has knowledge
of all the services subscribed by the users, by downloading from the
Home Subscriber Server (HSS). The HSS is a database that contains
all subscribers’ data like the services that are allowed to access,

the network in which each subscriber is granted to roam, and the
information about the location of every subscriber. An important
function of the HSS is to provide the encryption and authentication
keys of the mobile devices.

Data-Plane includes media-gateway NF which processes, stores
data and generates services for the subscribers. Once user session
has been established, the user data-plane traffic is sent to Media
Gateway Function (MGF). The MGF connects LTE core domain
(via PDN gateway - PGW) with IMS domain for multimedia service
and converts between different transmission and coding techniques.
Moreover, it employs monitoring schemes to determine policy rules
in real-time.

3 EXISTING FAULT TOLERANCE SUPPORT
Existing fault tolerance schemes can be divided into a) IMS protocol
level, b) vendor specific platform level, and c) cloud platforms level.
Table 1 provides an overview of these mechanisms, their functions,
pros and cons as well comparison with proposed design.

3.1 IMS Protocol Fault Tolerance
IMS protocol level fault tolerance can be further categorized into I)
control-plane and II) data-plane fault tolerance approaches.

3.1.1 IMS protocol control-plane fault tolerance. IMS pro-
tocol does not provide any fault-tolerance mechanism, rather it relies
on fault recovery procedures.

On S-CSCF Failure: When S-CSCF failure occurs then device
registration procedure is aborted if in-progress, or device is de-
registered from the IMS network if it has already been registered. Af-
ter failure, S-CSCF recovery is performed by HSS through IMS serv-
ing proxy. HSS performs two separate actions depending whether
this failure occurs during device initial registration or when the de-
vice has already been registered with IMS. In the former case, device
has not yet established connection with IMS, so it is safe to switch
to new S-CSCF. Therefore, HSS re-assigns another S-CSCF and all
requests coming from P-CSCF are forwarded to new S-CSCF. We
show this procedure in Figure 2a. In the later case, HSS restores
device session information to S-CSCF. The standard S-CSCF re-
covery procedure mandates S-CSCF to be rebooted. The S-CSCF
loses all subscribers data when it restarts after a failure or it is un-
able to trust any data after it resumes operation which is due to the
fact that it may have lost profile updates from the HSS during the
service interruption period. Therefore, failure recovery from HSS
is mandatory so that device policy information is restored without
requesting information from LTE core network elements such as
PGW. When device registers with IMS network at first time, its SIP
proxies (including P-CSCF address), contact information, authen-
tication information etc are stored at HSS. If any of above data is
changed, S-CSCF updates the record at HSS. Moreover, S-CSCF
stores caller-ID, From-To record, destination device information at
HSS before media traffic flow starts.

There are several issues with such restoration procedure. First, S-
CSCF failure is propagated to device which is against the philosophy
of fault tolerance that requires system failures should be hidden from
end devices. Second, on S-CSCF failure, IMS service is temporarily
suspended. Such failure recovery procedure is not sufficient for
crucial telephony service that require high reliability (99.999% also
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Figure 2: Recovery from S-CSCF, P-CSCF and MGF failures

known as five 9s reliability). Third, although, IMS being an overly
network on LTE service that can be provided by third party service
provider, heavily relies on LTE core network element, i.e. HSS, for
S-CSCF recovery procedure. Therefore, LTE network operators need
to provide access to subscribers private information to third party
service provider. Fourth, instead of storing backup data on redundant
S-CSCF, it is stored in HSS. As a result HSS can become single
point of failure for the stored backup for all devices in IMS.

On P-CSCF Failure: Two mechanisms, one at device and the
other at IMS side, are implemented to identify P-CSCF failure. When
the device registers with IMS service, it starts monitoring P-CSCF
health by periodically sending keep-alive messages. If P-CSCF does
not respond to device keep-alive messages, device declares P-CSCF
as failed and contacts PGW to acquire new P-CSCF address. It
then re-initiates the registration procedure with IMS. However, it
is possible that P-CSCF is active but the link between P-CSCF
and S-CSCF is broken. In this case, P-CSCF failure is detected by
PGW that informs UE by sending new P-CSCF address. When the
device receives new P-CSCF address, it declares previous P-CSCF
as unavailable and sends IMS registration request towards newly
assigned P-CSCF. We have shown P-CSCF recovery procedure in
Figure 2b.

Although, P-CSCF failure recovery procedure tries to mitigate
IMS unreachability by assigning new P-CSCF, it introduces a num-
ber of problems. First, IMS relies on device to recover from failure
by performing re-registration procedure with IMS. Second, during
P-CSCF failure as well as the time device connects to new P-CSCF,
IMS service remains unavailable to subscribers. This potentially
compromises promised 99.999% voice service availability by net-
work operator. Third, P-CSCF failure not only terminates any control-
plane session, but data-plane traffic is also aborted, where device
initiates re-registration procedure with IMS network. Therefore, we
can say P-CSCF has ripple effect to data-plane traffic, even though
P-CSCF does not play any role over data-plane communication.

3.1.2 IMS protocol data-plane fault tolerance. Like control-
plane, IMS protocol does not provide any data-plane fault-tolerance
mechanism. MGF is a critical IMS component that connects IMS
with the outside world. When MGF failure occurs, the media traffic
terminates between source and destination. The path between MGF
and PGW is declared out of service. This failure is also propagated to
S-CSCF that prevents device to use media service. Thereafter, PGW
reselects a new MGF, as shown in Figure 2c, with the help of media
gateway control function. Once new MGF becomes operational, all
media-traffic is forwarded to new MGF.

Note that the device remains unreachable by the time its MGF
recovers from failure. There is no mechanism that informs device
once new MGF starts serving. Therefore, the user needs to keep
trying until its requests are being served by IMS. Lack of data-plane
fault tolerance not only renders IMS service black-out, but also IMS
loses important device information. For example, such failures result
into incorrect billing information, and loss of policy information at
charging function.

3.2 Vendor Specific IMS Platform Fault Tolerance
Vendor specific IMS platforms provide three lines of defense at a)
hardware, b) software, and c) overly manager. Figure 3 highlights
hardware and software fault tolerance mechanisms for a number of
fault models.

Hardware Fault Tolerance: Purpose-built hardware platforms
have been developed which can "tolerate" faults. They continue to
provide the required functioning despite occasional internal com-
ponents and modules failures, either transient or permanent. Fault
tolerance is achieved by providing redundant hardware modules.
Whenever a fault is encountered, the redundant modules takeover
the functions of failed hardware module. Such redundancy not only
caters hardware faults but also be exploited to perform system func-
tions under zero fault conditions. Therefore, load sharing is achieved
without installing redundant hardware system. For example, Erics-
son’s Blade Systems (EBS)[3], Alcatel-Lucent’s Element Manage-
ment System (EMS)[4], and Huawaei’s ATCA[5] provide network
function availability even during failures and operational mainte-
nance without disturbing multimedia traffic flow in the network.

Hardware Architecture
Hardware Components, Network Interfaces

Software Design
Software Functional Components, Interaction modules

Fault Model
Expected Faults, Effects on Hardware / Software components

Fault Tolerance Mechanisms
Error Detection, Pro-active Operations, Error Isolation and Recovery, Backup Components Management

Service Availability Manager
Service Provisioning under faults

Figure 3: Vendor-specific fault tolerance approaches

Software Fault Tolerance: IMS equipment vendors provide strong
coupling between their software and hardware. Software fault tol-
erance is achieved by software design and through programming
languages.
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Table 1: Summary of IMS fault tolerance schemes

Fault Tolerance Sup-
port

Function 1 Function 2 Function 3 Prose Cons

IMS Protocol Ignores device request and re-
selects NF

Reboots the server and obtains
information from HSS

Drops the call and let device re-
dial

Simple logic, redo the process call drops, service unsalability
for longer durations

Telecom vendor-
specific platforms

Coupled software and hardware overload protection function geo-redundancy pool IMS signalling resilience, no
call drop

Expensive dedicated platform,
not scalable, voice jitters

Cloud Platform restarts current process and es-
calates faults to higher layers

exploits infrastructure level re-
dundancy

Runs software vendor specific
approaches

Simple, works with all type
of cloud applications, provides
infrastructure level availability
guarantees

Call drop, system unavailable
for longer time, no instance
level fault tolerance, single-
point-of-failure controller

Proposed Design NFs modules act each other
proxy

support of multiple IMS NFs
failure

exploits modular redundancy
for failed operations recovery

IMS signalling resilience, no
call drop, simple logic, exploits
already available modules, scal-
able

Minor changes required at IMS
NF implementation, voice jitter
during failure recovery

Software design ensures redundancy, both for error detection and
error recovery. Such redundancy is not mere replication of programs
rather redundancy of design. As the system operates, functional
checks are made on the acceptability of the results generated by each
piece of software component. When an abnormal result is generated
a spare software component is switched-in to replace the previous
faulty software component block. This new component itself is an
independent design that takes external factors into account when
iterating through a set of inputs. Therefore, it can cope with the
circumstances that has caused the main software block to fail. These
circumstances mainly arise because of faulty process synchroniza-
tion, race conditions, the timing constraints and software block’s
interactions with other processes.
Programming languages provide high availability through declara-
tive programming techniques. These techniques do not guard against
errors, rather they try to minimize the impact of errors and recover
from them as quickly as possible. As a matter of fact, during faults,
data may get corrupted and represent false information. Such incor-
rect data may propagate further within the system and may get writ-
ten to database; bringing incorrectness to whole system. To address
this issue, as soon as some fault occurs, crashed code, through func-
tional programming, is isolated from the rest. Then only that prob-
lematic functional block is restarted and later re-integrated within the
system. Examples of these programming langues include Ericsson’s
ERLANG[3], Alcatel-Lucent’s NVP[6], and Huawaei’s Fusion[7].
They develop scalable real-time systems with requirements on con-
currency, distribution and fault tolerance.

Service Availability Manager: Service availability manager acts
as an overlay on top of purpose-build IMS platform that enables end-
to-end network and service management across all IMS NFs. Service
manager’s goal is to maximize operational efficiencies through ser-
vice provisioning and troubleshooting. It also provides proactive
assurance and flexibility that eases integration into the IMS net-
work. The examples include Ericsson’s Network Manager (ENM)[8],
Alcatel-Lucent’s Service Aware System (SAM)[9], and Huawaei’s
Managed Services Unified Platform (MSUP)[10] that provide in-
band and out-of-band management and isolate the failure from IMS
managed network. Moreover they also provide provisioning of ser-
vice mirrors to monitor service traffic for troubleshooting or official
surveillance purposes.

3.3 Cloud Platform Fault Tolerance
Network operators are keen to deploy their IMS platform over
general-purpose servers over cloud platform. Lack of fault-tolerance

support at IMS protocol level requires fault-tolerance at cloud plat-
form should be exploited for high availability. We find that current
cloud systems being Infrastructure as a Service (IaaS) do not provide
instance-level fault tolerance. We detail cloud based fault tolerance
schemes as:

Hardware redundancy: High availability is implemented with
redundant hardware running redundant instances of each service.
Example of such cloud platform is OpenStack[11]. If one piece of
hardware running one instance of a service fails, the system can
then fail-over to use another instance of a service that is running
on hardware that did not fail[11]. However, IMS service remains
unavailable during fault-recovery period.

Fault Injection: OPNFV is tailored open source cloud solution
for network function virtualization (NFV). Although, OPNFV runs
network services that have very high resilience and availability re-
quirements, it fails to achieve these goals. Current OPNFV fault-
tolerance schemes are same as provided by OpenStack. OPNFV
community has started project named "Vaccine" to extend fault tol-
erance on the three layers, i.e. hardware, Hypervisor and VM, using
methods like fault injection[12].

VM restart: CloudStack recovers from faults either by restarting
VM, or migrating to secondary VM, if primary VM failure persists.
This implementation not only loses vital subscribers records but also
becomes a bottleneck if several attempts are made to recover faulty
VM[13]. Moreover, CloudStack does not provide any monitoring
feature for secondary VMs. This may result in selecting already
unresponsive secondary VM for fault-recovery.

Context switch to replica: In case of active node failure, Open-
Nebula yields control to passive node, which is acting as redundant
node. After fail-over, secondary node will see the resources in the
exact same way as the one in the server that crashed[14]. However,
there will be a set of virtual machines which will be stuck in transient
states while copying the disks to the target host server. Such recovery
procedure adds significant latencies at system to become operational
again – which is not acceptable to high availability of IMS.

4 MODULAR REDUNDANCY DESIGN
Our Approach Our approach is motivated from the success of fault
tolerance approaches in traditional carrier grade boxes. Network
vendors can tolerate faults mainly through redundancy (at software
and hardware). We argue that same style of redundancy is required
to achieve high availability for failure susceptible network functions
– implemented as software. Contrary to redundancy provided by
software and cloud platforms, we aim to detect and recover from
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failures in real time. Our goal is to keep control and media planes
in-tact during failures. We first discuss our failure model and later
describe our design.

Failure Model IMS employs a number of procedures prior and
during serving users. First, P-CSCF performs DNS queries to retrieve
S-CSCF address. Then it establishes the connection with S-CSCF
for performing control-plane operations. S-CSCF is connected with
HSS to authenticate, authorize and retrieve users records. Through
PCRF (Policy and Charging Rules Function), S-CSCF obtains users
QoS profile and applies it to every subscriber. Failure can occur (1)
in retrieving DNS records when P-CSCF is relocating subscribers to
new S-CSCF for load balancing, (2) populating subscribers record
from HSS and PCRF at the time when S-CSCF is registering the
subscribers, and (3) when on-going multimedia sessions drop dur-
ing P-CSCF and S-CSCF communication. These failures can occur
because of hardware failure, software failure, or network failure
between IMS NFs and helper functions (such as PCRF, DNS or
HSS). In any of such failures, IMS instance cannot obtain desire in-
formation, as a result IMS control-plane/data-plane traffic is aborted.
For simplicity, we regard all such failures as "fail-stop" failure when
either one or more IMS NFs fail to respond. We immediately start
failure recovery procedure to maintain session-level resilience.

P-CSCF

S-CSCF

P-CSCF

S-CSCF

Re
du

nd
an

t 
N

Fs
 M

od
ul

esSER SIP

SER Dim
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I1

Figure 4: Modules redundancy: an overview

Overview We explain our design through Figure 4. We show two
IMS NFs (P-CSCF and S-CSCF) in Figure 4 to elaborate our design.
However, our design is generic and provides fault tolerance to all
IMS NFs (including media NFs). We propose that each IMS NF
modules must be replicated to recover from failure. The number
of modules to be replicated has a tradeoff with the type of failure.
To support complete NF failure resilience (fail-stop failure type),
we are required to duplicate all modules of that NF. P-CSCF im-
plements a number of modules (i.e. SIP Express Router and SIP
client and more). SIP Express Router (SER) anchors as a routing
block of all IMS NFs. It supports 4 major features. (1) The initial
routing block (route[0]) acts as the point of entry to SER for all
requests regardless of method, e.g. process registration requests. (2)
SER parses requests and transfers program control to a destination
specific route block. (3) It supports various transformations (e.g.,
canonicalizing request-URIs). (4) It directly forwards the requests
to registered clients. P-CSCF implements SIP proxy module (not to
be confused with SIP client) that implements user agent scenarios
and establishes and releases multiple calls with the INVITE and
BYE methods. This module directly communicates with SIP client
implemented at device(s) and handles real time requests.
Similarly, S-CSCF also implements SER to support SIP signalling
routing. Moreover, it implements Diameter protocol (Java Diameter

Peer library) for user authentication on registration, and communi-
cates with HSS. An incoming (from P-CSCF) Diameter message re-
ceived by a communicator (Diameter peer) is pushed in a TaskQueue
at first. This TaskQueue is a FIFO (first-in first-out) blocking queue.
As soon as the message is available in the queue, a DiameterWorker
takes it out of the queue and delivers it to a set of event listeners
defined by the type of incoming request.

Our design implements four new external interfaces (𝑒1 – 𝑒4)
where original P-CSCF and S-CSCF NFs are connected with repli-
cated P-CSCF and S-CSCF NFs (holding respective redundant mod-
ules), as shown by double straight lines in Figure 4. These replicated
P-CSCF and S-CSCF NFs also connect with each other through a
separate interface (i.e. 𝐼1 shown by dotted line). This fifth interface
is added to support more than one NF failure case. We explain our
design through three steps procedure, (1) before failure, (2) during
failure, and (3) after failure. The pseudo procedure is shown below.

Before Failure:
if ( message is received from device / S-CSCF )

forward the message to S-CSCF / device
forward the message to redundant modules over e1 and e2

if ( message is received from HSS / P-CSCF )
forward the message to P-CSCF / HSS
forward the message to redundant modules over e3 and e4

During Failure:
detect the failure using fast probing
reconfigure the interfaces towards respective redundant modules
replay the failed SIP operation (re-execute failed SIP stage)

After Failure:
if (the device is inactive)

reconfigure the interfaces back to recovered NF
if (new registration request is received)

forward it to recovered NF

Pseudo code of failure recovery procedure

4.1 Before Failure
During regular vIMS operation, our design creates SIP signalling
message level redundancy. These redundant messages are replayed
in case original NF stops responding. The P-CSCF extends two new
interfaces, one (𝑒1) connects to redundant P-CSCF modules, and
the other (𝑒2) extends to redundant S-CSCF modules. The device
is oblivious of any redundancy at IMS and communicates with P-
CSCF. P-CSCF that intercepts incoming/outgoing device messages
forwards them to redundant P-CSCF NF modules. In this way, the
redundant P-CSCF modules are aware of all signalling messages
coming from/sent to device. Whenever P-CSCF communicates with
S-CSCF, it also sends these messages to redundant S-CSCF NF mod-
ules over 𝑒2 interface. Similarly, S-CSCF implements two separate
interfaces, one (𝑒3) connects to redundant S-CSCF modules, and the
other (𝑒4) links with redundant P-CSCF modules. All NFs beyond
S-CSCF (such as HSS) are oblivious P-CSCF/S-CSCF modules
redundancy. Whenever S-CSCF receives incoming/outgoing SIP
signalling messages, it also forwards them to redundant S-CSCF NF
modules over 𝑒3 interface. Moreover, all communication between S-
CSCF and P-CSCF are recorded at redundant P-CSCF NF modules
over 𝑒4 interface.
Our procedure logs all signalling messages between P-CSCF and
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S-CSCF at real time. This helps in providing session-level resilience
during failures.

4.2 During Failure
Our design is required to detect and tolerate the failure. The failure
detection can only be done if the failed NF remains unresponsive
for a certain amount of time. We argue that because P-CSCF and
S-CSCF are directly connected, the control-plane message retry in-
terval between pair of these NFs should be multiple of their message
Round-Trip-Times (RTTs). We propose that during an IMS opera-
tion, if one NF does not receive response from other NF, it retries the
message every 5*RTT with maximum 5 number of retries. In case
of no reply within 25*RTT, non-responding NF’s status is changed
from in-service to failure-prone. Afterwards, in-service NF starts
probing failure-prone NF on every RTT, with 5 number of retries. If
non-responding NF still does not reply, we change its status from
failure-prone to out-of-service.
This is how we detect and confirm failure in 5xRTT and 25xRTT,
respectively; and perform failure recovery in 30xRTT.

Fault Detection and fail-over based on State transition diagram

Reply-
pending

Calling

Invite 
sent
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Start timer L=25*local RTT

Complete-
Pending

Trying

Timer L 
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Timer G 
expires

Start timer 
L1=5*local 
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(b) State transition diagram for fault detection and fail-over 

Start timer T1=500msec.

Figure 5: State transition diagram detecting failure in IMS sys-
tem

Detecting Failure: Our failure detection is done through finite
state machine (FSM). We introduce few temporary states that keep
track of different stages of SIP procedure. We explain our proposed
state transition diagram by using voice call operation which is run-
ning at P-CSCF. Figure 5 shows when device sends invite request, it
transitions from calling to reply-pending state. If S-CSCF replies to
invite request, P-CSCF moves to complete-pending state, otherwise
after expiration of local timer (timer L) of 30xlocal RTT1 failure
recovery procedure kicks in. In complete-pending state, S-CSCF
keeps probing P-CSCF every 5xlocal RTT. Note that, this probing
message is sent only once every 5xRTT even though more than one
device has progressed to complete-pending state.
Timer G2 keeps track of response from target IMS system. When
there is no response from target IMS system, a re-invite request is
sent. By sending re-invite message, target IMS system may receive
more than one invite request messages where it discards duplicate
invite requests. This proactive probing helps in quick recovery from
transitive faults when previous invite request(s) is(are) failed to be
delivered to target device.

Failure Recovery: After detecting failure, we perform failure
recovery procedure when one IMS NF declares other NF out-of-
service and reconfigures its interface towards redundant modules of
1We propose local RTT, measured between P-CSCF and S-CSCF NFs.
2We propose timer G, calculated based on global RTT – measured between source IMS
and destination IMS systems.

failed NF. We explain this procedure through S-CSCF NF failure
scenario. When S-CSCF does not respond within 30xRTT, we deac-
tivate the link between P-CSCF and S-CSCF (solid line in Figure
4), and activate the link between P-CSCF and redundant S-CSCF
modules (via interface 𝑒2). Now P-CSCF forwards all the traffic to
redundant S-CSCF components through 𝑒2 interface. The redundant
S-CSCF modules resume the operation from the step at which the
failure has occurred.
When a timeout is not a failure: It is possible that proposed, but
configurable, timeout value does not represent actual NF failure.
Such rare case occurs when the link between S-CSCF and P-CSCF
is severely congested or S-CSCF goes through random failure – not
impacting the function of S-CSCF. We still define such case as a
failure that impacts user Quality of Service (QoS). However, we
handover to the actual S-CSCF function through fail-back procedure
(i.e. after-failure case). Note that, in order to avoid ping-pong ef-
fect between failure-recovery and fail-back procedures, the fail-back
procedure does not occur until certain time (30 minutes in our im-
plementation) has passed since the start of proposed failure-recovery
procedure.

We should mention that during control-plane fault tolerance pro-
cedure, we do not disturb any other IMS default failure recovery and
health-monitoring procedures, and let IMS protocol/cloud platform
recover from failure (either through reboot or switching to alternate
S-CSCF NF).

4.3 After Failure
Fail-back procedure starts when (1) minimum time (i.e. 30 minutes in
our implementation) has elapsed since proposed failure-recovery pro-
cedure, and (2) failed NF has recovered from failure either through
IMS protocol or cloud platform failure recovery procedure.
Smooth transition: In this procedure, in-service NF (comprise of
redundant modules), starts redirecting traffic to recovered NF. In our
approach, we do not migrate users’ on-going SIP session informa-
tion, rather we migrate registration information of a device in its
idle mode (when there is no ongoing SIP session). We explain this
with an example where S-CSCF has recovered from the failure. In
migration procedure, we only send device identities to recovered
S-CSCF. We let S-CSCF retrieve the rest of the information, i.e.
network info, charging function address, and preferred service infor-
mation from HSS. We also require S-CSCF to retrieve authentication
vector from HSS and re-authenticate the device[15]. Moreover, all
new registration requests are diverted to recovered S-CSCF.
In short, our scheme performs smooth transition towards recovered
NF by not exposing it to signalling load of active subscribers.

5 PROTOTYPING
In our implementation, we use open source IMS platform (OpenIMS[1])
and open source cloud operating system (OpenStack[2]) to imple-
ment the functionalities of IMS protocol and its virtualization, re-
spectively. The OpenIMS provides basic implementation of IMS
NFs (both S-CSCF and P-CSCF) and HSS that can be deployed over
Unix-based platforms like Linux, BSD or Solaris. The OpenStack
provides full flexibility on how IMS NFs are managed on cloud
platform. It provides abstraction of common hardware resources
through virtualization and meets compute, networking and storage
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S-CSCF failure during registration (baseline vIMS)S-CSCF failure during registration (proposed vIMS)
Time in Secondsmsec CDF Time in Secondsmsec CDF

18.09 18090 0.1 0.29 290 0.1
18.11 18110 0.2 0.33 330 0.2
18.12 18120 0.3 0.35 350 0.3
18.13 18130 0.4 0.35 350 0.4
18.14 18140 0.5 0.38 380 0.5
18.15 18150 0.6 0.39 390 0.6
18.16 18160 0.7 0.4 400 0.7
18.19 18190 0.8 0.4 400 0.8
18.23 18230 0.9 0.43 430 0.9
18.25 18250 1 0.43 430 1

S-CSCF failure during SIP call (baseline vIMS) S-CSCF failure during SIP call (proposed vIMS)
Time in Secondsmsec CDF Time in Secondsmsec CDF

18.15 18150 0.1 0.33 330 0.1
18.19 18190 0.2 0.35 350 0.2
18.21 18210 0.3 0.38 380 0.3
18.25 18250 0.4 0.4 400 0.4
18.26 18260 0.5 0.45 450 0.5
18.28 18280 0.6 0.48 480 0.6
18.31 18310 0.7 0.49 490 0.7
18.32 18320 0.8 0.5 500 0.8
18.39 18390 0.9 0.55 550 0.9
18.44 18440 1 0.6 600 1
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Scenario: S-CSCF failure during registration (openstack)
(a) UE send registration message to P-CSCF;
(b) P-CSCF use DNS query to find I-CSCF's address;
(c) I-CSCF try to forward message to S-CSCF;
(d) I-CSCF cannot contect S-CSCF;
(e) OpenStack found out that S-CSCF crashed; ==> failure detected
(f) OpenStack reboot the S-CSCF;
(g) Now the messages can be forwarded to S-

The time it took for this scenario:
detect error: 10 sec (step e)
reboot: 8 sec (step f)
perform re-registration: ~0.1 sec (step g)

Scenario: S-CSCF failure during SIP call (openstack)
(a) UE send INVITE message to P-CSCF;
(b) P-CSCF try to forward message to S-CSCF;
(c) P-CSCF cannot contect S-CSCF; 
(e) OpenStack found out that S-CSCF crashed; ==> failure detected
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Figure 6: Service recovery time after S-CSCF fail-stop fail-
ure: comparing proposed-vIMS with baseline-vIMS

P-CSCF failure recovery (baseline vIMS) P-CSCF failure recovery (proposed vIMS)
Time in Secondsmsec CDF Time in Secondsmsec CDF

18.24 18240 0.1 0.46 460 0.1
18.3 18300 0.2 0.5 500 0.2
18.3 18300 0.3 0.59 590 0.3
18.4 18400 0.4 0.62 620 0.4

18.41 18410 0.5 0.63 630 0.5
18.41 18410 0.6 0.8 800 0.6
18.49 18490 0.7 0.85 850 0.7

18.5 18500 0.8 1.1 1100 0.8
18.52 18520 0.9 1.1 1100 0.9
18.89 18890 1 1.3 1300 1
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(b) P-GW cannot contect P-CSCF; ==> failure detected
(c) P-GW trigger UE to update bearer (allocate a new P
perform re-registration

The time it took for this scenario:
detect error: 10 sec (step a-b) 
reboot: 8 sec
re-registration: ~0.1 sec (step c)
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Figure 7: Service recovery time after P-CSCF fail-stop fail-
ure: comparing proposed-vIMS with baseline-vIMS

demands of different IMS applications. We spent significant efforts
to modify source code in both platforms to suite our needs.

5.1 Prototyping Baseline vIMS
OpenIMS has coupled all IMS NFs by implementing them over
single virtual machine (e.g. VMware) that provides optimal perfor-
mance when hundreds of users are accessing IMS network at the
same time. For our cloud IMS deployment, we first decouple IMS
NFs into separate VM. Then these VMs are bridged through virtual
network interface. These stand-alone VMs are deployed over Open-
Stack to achieve baseline vIMS implementation. We also provide 1:1
redundant copy of IMS NFs to achieve minimum industry require-
ment for cloud applications[16]. We use default timers as specified
by IMS and OpenStack documents[17] and consider this implemen-
tation as base-line vIMS with which our design is compared.

5.2 Prototyping Proposed vIMS
We exploit OpenIMS modular structure and adopt its implementa-
tion to our needs. We describe our efforts as below:
Call Session Control Functions (CSCFs): Our design switches
between failed CSCF and redundant CSCF in real time. To do so,
we modify SIP Express Router (SER) of OpenIMS to implement
sendto() and receivefrom() for more than one NF module. SER
handles all SIP registration, SIP service requests, and directs their
signalling to P-CSCF and S-CSCF functional modules.
Finite state machine: In FSM implementation an operation must
start from an initial state and transitions to another accepted state. To
achieve this, we create FSM transition table in each NF that transi-
tions from a given state to a new state when either SIP procedure has
progressed or its guard timer has expired. By doing so, the proposed
FSM only executes using necessary functional modules.
Failure recovery: To successfully execute failure recovery proce-
dure, we are required to immediately resume IMS operation from
SIP procedure stage at which the fault has occurred. To achieve
this goal, we keep track of on-going device session before fault
using a hash table to store/retrieve user’s session information. When
failure occurs, the neighboring IMS NF detects it and activates the
redundant NF module(s). These modules starts the failure recovery
procedure by retrieving last stored SIP procedure stage and related
session information from hash table (sent by the NF that has detected
the failure). The network configurations at incoming and outgoing

interfaces are also modified. The redundant NF modules applies fil-
ters to distinguish whether service requests and registration requests
are coming from existing subscribers or new ones to optimize their
working.

6 EVALUATION
We evaluate the fault-tolerance mechanisms of our proposed vIMS.
The baseline vIMS implementation, described in Section 5.1, serves
as the baseline of our experiments. We run our tests on a local
network of servers with Intel Xeon(R) ES-2420 V2 processor at
2.20GHZ x 12, 16M Cache size, and 16GB memory. For each VM,
we use Ubuntu Server 14.04.3 LTS with the OpenIMS Core.

We consider session resilience when NFs stop responding during
device registration procedure. We consider fail-stop failure at: (a)
P-CSCF and (b) S-CSCF.
Failure recovery? The device initiates control-plane operation (ei-
ther registration or SIP call) with IMS network. While control-plane
operation is on-going, we let one of the IMS NF to crash. Figure
6 and Figure 7 show experimental results along with enlargements
of critical regions. Irrespective of P-CSCF or S-CSCF crash, the
control-plane operation aborts in 5 seconds (in accordance to opera-
tional IMS network, we have set device timeout value as 5 seconds).
OpenStack takes 10 seconds to detect the failure and takes another
8 seconds to prepare backup NF and restores the service. In about
18 seconds, the baseline vIMS comes back to service, but the client
does not make a new registration attempt, as it has timed-out 13
seconds prior to recovery.
In contrast, at worst, proposed vIMS takes about 600ms in case of
S-CSCF, and about 1300ms for P-CSCF case to recover from failure.
We observe two different recovery phenomena. First, when S-CSCF
crashes, the recovery is made at redundant S-CSCF modules that
successfully resume the failed S-CSCF operation. But when S-CSCF
takes more than 500ms to perform recovery, the timeout happens at
device. On time-out, device retries the SIP operation and redundant
S-CSCF modules successfully execute the failed operation. Second,
when P-CSCF crashes, the device often experiences time-out (only
20% of the time P-CSCF redundant modules take charge within
500ms, as shown in Figure 7). This is because a redundant P-CSCF
module needs to re-establish the IPsec tunnel with the device that
aborts on-going control-plane operation. Once new IPsec tunnel has
been established, device re-attempts its unsuccessful operation and
is served by redundant P-CSCF modules.
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7 RELATED WORK
Our work is in contrast with other recent efforts on NFV, vIMS and
middle boxes’ fault tolerance space.

NFV: [18] provides general purpose NFV platform, [19] and [20]
make use of software and hardware choices to meet specific service
demands. [21] discusses NFV integration in mobile network. [22]
challenges the way NFV is done for LTE and proposes an alternate
way (based on NFs logic) of doing LTE-NFV.

Cloud based IMS: [23] provides dynamic resource allocation
algorithm for vIMS, [23] discusses merits of deployment strategies
of vIMS. [24] enhances vIMS features for M2M. But these efforts
do not discuss fault tolerance aspects in vIMS. Recent work [25]
reveals that modular vIMS design can introduce latencies and cause
failures. In contrast, our work does not discuss working of individual
module, rather it aims to provide fault tolerance to a system as a
whole.

Fault Tolerance: [26] and [27] propose logging NF states during
normal operations and reconstructing them after a failure. Their
approaches cannot address real-time and transitory NF sessions
recovery. [28] and [18] discuss fault tolerance in non-IMS (SIP
based) voice over IP applications.

Contrary to above mentioned works, our design provides session-
level resilience during faults.

8 CONCLUSION
Our study shows that cloud based IMS cannot achieve high service-
resilience solely relying on cloud-computing platforms. Our design
is inspired from the way failures are masked in carrier grade IMS.
We propose providing software modular redundancy to recover from
failures in real-time. Our design does not bring any changes to stan-
dardized IMS implementation, other than creating and configuring
few network interfaces for logging signalling messages and recover-
ing from failures.
Future work: In future we seek to propose a solution that achieves
vIMS session resilience without introducing any redundancy. More-
over, we aim to provide IMS fault tolerance solution at data-plane,
addressing security issues due to failures, and mitigating failures due
to NFs handoffs when network elements are scaled up and down.
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