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Abstract—LTE Network Function Virtualization (LTE-NFV)
scales user services in a low cost fashion by transforming
the centralized legacy LTE Core architecture to a distributed
architecture. This distributed architecture makes multiple in-
stances of LTE Network Functions (NFs) and virtualizes them on
commodity data-center network. The functionality of LTE-NFV
architecture breaks however, since the distributed NF instances
connected via unreliable IP links delay the execution of critical
events. The failure of time-critical events results in users’ quality
of service degradation and temporary service unavailability.
In this paper, we propose a new way to virtualize LTE core
network. We argue that logic-based NFs segregation should be
done for NFV, instead of instance-based NFs segregation done
in current NFV implementation. Our approach of ‘logic-based
NFs segregation’ combines the logic of an event into a single
NF, thus localizing the execution of critical events to one virtual
machine. This way, only the localized entities exchange signalling
messages, and the events do not experience large delays. We
further reduce the delays by exploiting the parallelism in LTE
network protocols; and partition these protocols such that their
signalling messages run in parallel. In addition, we eliminate
unnecessary messages to reduce the signalling overhead. We
build our system prototype over OpenEPC LTE core network
in virtualized platform. Our results show that we can reduce
event execution time and signalling overhead up to 50% and
40%, respectively.

I. INTRODUCTION

In this paper, we analyze the impact of virtualization on
LTE Evolved Packet Core (EPC) functionality and service
provisioning. We find that the legacy LTE EPC architecture
is designed for fewer, powerful, and dedicated Network Func-
tions (NFs). However, we argue that the functionality of EPC
architecture breaks when this architecture is virtualized and
scaled to thousands of NFs, where each NF is implemented
in data-center network.
Challenges and impact: We discover two major challenges
in virtualized EPC (vEPC).
1. Virtualized network is not designed for LTE: LTE EPC
is virtualized over data-center network which suffers from
long queueing delays in switches, packet losses, timed out
retransmissions, and out of order packets delivery [1]. Because
of these characteristics, virtualized NFs (VNFs) implemented
over commodity data-center network only provide flow level
guarantees, whereas LTE standard requires packet level guar-
antees (100ms and 300ms delays for voice and data packets,
respectively) [2].
2. LTE EPC is not designed for virtualized network: In
legacy EPC, there are fewer NF boxes, which are connected
through dedicated fiber links. The round-trip-time (RTT) over
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direct link is stable, and determines NF reachability and
packet retransmission counters [3]. In vEPC however, some
network signalling packets take longer over congested IP links,
triggering unnecessary packet retransmissions at sender. The
timeout and retransmission of signalling packets for one NF
causes ‘time-out domino effect’ at the NFs that follow. This
higher signalling failure rate while executing certain network
events [4] have direct impact on user traffic (e.g. voice and
data) continuity. We call these events ‘mission critical events’.
Goal: We want to protect mission critical events from delay
and failure. We identify three mission critical events; handover
event during device mobility, paging event during device idle
mode, and service request for gaining network resources. Since
these three events cause 50% of LTE network signalling [5]
[6], we aim to isolate these events from the vEPC to reduce
network signalling load as well as execute critical events in a
timely manner.
Design: In legacy EPC, few dedicated NFs can handle millions
of customers. In vEPC, whereas, thousands of NFs instances
are initiated to handle same number of customers. These NF
instances are distributed across data center network. The use
of multiple NF instances in data-center achieves scalability,
and provides simplified and inexpensive approach. However,
it breaks the basic functionality of EPC when an event
experiences long and unpredictable delays between these NFs.
The distributed NF instances jeopardize the timely execution
of events.
In contrast, we took a holistic approach to design a robust and

scalable EPC virtualization architecture. Our design theme is
to perform logic based NFs segregation for an event, rather
than the instance based NFs segregation in vEPC. In our
design, we extract an event’s logic from each NF in the form
of a module, and then assemble the extracted modules of the
same event from several NFs into a Fat-proxy. This Fat-proxy
– comprised of an event’s complete execution logic – acts as
a standalone execution engine for that event. Let’s take an
example of the “handover event” Fat-proxy that extracts mod-
ules from the Mobile Management Entity (MME), P-Gateway
(PGW), and Serving Gateway (SGW) NFs, and assembles
them to make independent handover event facilitator. The
concept of Fat-proxy or thick client is very useful in distributed
community, where server delegates some processing logic to
the client [7]. Our design is motivated from similar concept
but under different setting; we want to make proxy a powerful
component that completely executes a particular event.
When vEPC receives an event request, it forwards the request
to that event-specific Fat-proxy; it takes on the responsibility
of executing that event and finally flushes the updated event
status and device session information to vEPC. This way, all978-1-5090-6501-1/17/$31.00 c© 2017 IEEE



event execution logic remains local to one entity (Fat-proxy),
thus solving issues incurred by distributed vEPC architecture,
and keeping greater number of signalling messages away
from vEPC. Nevertheless, extracting event specific logic
from multiple NFs is a challenge as we have to keep track
of different events, and resolve logic and data dependencies
among those events.
The second part of our design exploits the inherent parallelism
in LTE network protocols by identifying and partitioning the
mutual exclusive logic of an event. In the “handover event”
example, the MME logic can be split into two mutually
exclusive partitions, which are able to run S1AP protocol op-
erations and GTP protocol operations in parallel. Traditionally,
these two types of operations execute one after the other. By
partitioning, the network operations run in parallel and speed-
up the execution of the event, thus mitigating the timeouts and
the need to re-transmit packets.
Results: We show that our design (1) reduces more than 40%
signalling load by skipping and parallelizing the messages for
network operations, (2) reduces up to 50% event execution
time, and (3) improves voice and data applications perfor-
mance.

II. BACKGROUND: LTE ARCHITECTURE

LTE network consists of three main components; User Agent
(UE), Evolved Node Base-station (eNodeB), and Evolved
Packet Core (EPC), as shown in Figure 1. These components
are both logically and physically distributed. The eNodeB
anchors as a radio interface between UE and EPC. EPC
communicates with packet data networks in the outside world
such as the Internet, private corporate networks or the IP Mul-
timedia Subsystem (IMS) and facilitates user communication.
LTE EPC is comprised of a number of LTE Network Func-
tions (NFs), which are Mobility Management Entity (MME),
Home Subscriber Server (HSS), Serving Gateway (SGW),
Packet Data Network Gateway (PGW), Policy and Charging
Rules Function (PCRF), and a few others. These NFs handle
control-plane and data-plane traffic through separate network
interfaces. As shown in Figure 1, control-plane traffic from
radio network is sent to MME (via S1-AP logical interface),
whereas data-plane traffic is forwarded to SGW. MME acts as
a central management entity that authenticates and authorizes
UE, handles network events (such as device Attach, Handover,
Service provisioning, and Paging events), and maintains SGW
and PGW connections for data-plane traffic.

S1-AP MME HSS

Serving-Gateway PDN-Gateway

Data-Plane
Control-Plane

Evolved Packet Core (EPC)

Radio Network (eNodeBs)

UE

Figure 1: LTE architecture: an overview

EPC NFs are static in nature and are connected or chained
in a certain way to achieve desired LTE network functionali-
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Figure 2: Number of events per user during busy
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ty/service. These NFs exchange a number of control messages
to execute a specific network event. For example, during device
Attach event, MME obtains device security keys from HSS, au-
thenticates the device, and creates device session information
at SGW and PGW. These SGW and PGW establish data bearer
connection with the device and configure specific QoS profile,
thus registering the device with LTE network. The delay or
failure in one control-message results in complete event failure
[8]. To mitigate these failure, the NFs – implemented over
vendor specific software and hardware – guarantee message
level reliability and high availability.

III. MOTIVATION AND PROBLEM SCOPE

Instance-based vEPC implementation is not right: To
understand deployment strategies of virtualizing LTE by re-
search and industry communities, we surveyed ETSI (the
LTE standardized body) documents on NFV [9], white papers
from industry [10], and recent work on LTE NFV (discussed
in related work section VIII). We find that most of these
efforts talk about instance-based vEPC implementation, where
vEPC NFs (MME, SGW, PGW etc.) are installed as virtual
machine instances. In this paper, we stimulate the discussion
that although such contemporary NFV implementation (which
is highly distributed) suits the web-based applications’ needs
well, it may not be a good choice for implementing vEPC.
We address two major issues in the context of instance-based
vEPC implementation, i.e. (1) signalling storm during peak
hours, and (2) timely execution of mission critical events.
Controlling network signalling storm: LTE devices fre-
quently interact with LTE network to execute their events.
These events are Device Attach, Service Request and Release,
Handover, Paging, Bearer Activation, Modification and Deac-
tivation, Detach Request, and many others. Out of these events,
some are executed more frequently than others. As shown
in Figure 2, Handover event is executed at least 50 times
more than device Attach incident during busy hours [5] [6].
To execute one such event, different NF components interact
with each other and generate a greater number of signalling
messages. Some events produce more signalling messages
than others. For example, one handover event can generate
upto 32 signalling messages compared to paging event that
produces only 6 signalling messages. When all events are
combined from all devices during busy hours, a signalling
storm is generated at EPC NFs. We are motivated to provide a
solution that controls the signalling storm at LTE core without
restricting devices’ network access (the solution operational
LTE networks use to control signalling storm [11]).
Signalling messages within vEPC incur latencies: LTE
eNodeBs are connected with vEPC over a dedicated fiber
link. The latencies within vEPC are caused by VM hypervisor



as well as switching contention and port queuing [1], which
reach upto hundreds of milliseconds [12]. For each event
request from eNodeB, a greater number of signalling messages
exchanged among different VNFs in vEPC suffer network
delays. For example, a single handover request message from
device generates up to 32 signalling messages (including those
related to SGW and MME relocation) within vEPC, and
suffer delays. Therefore, in this paper, we limit our scope to
signalling messages within vEPC, which are prone to higher
latencies as compared to fixed latencies over the eNodeB-
vEPC fiber link.
Administrating mission critical events: Our preliminary
study on LTE operational network discloses that average
events completion time at EPC is significantly high during
rush hours, reaching up to 3 seconds (as shown in Figure 4)1.
This higher latency directly affects user QoS experience; from
Voice over LTE (VoLTE) call drop and voice jitter, to affecting
TCP based services (refer to Table 6.1.7: Standardized QCI
characteristics in [2] that provides latency requirements for
different applications). We are also motivated to provide timely
execution of mission critical events during higher service load
at LTE NFs.
Defining mission critical events: We classify those events
as mission critical events whose delay or failure has a direct
impact over ongoing user services (i.e. voice, data, and mul-
timedia services). These events are:

• Handover event that ensures seamless user traffic flow
during user mobility.

• Paging event that wakes device from idle state when
voice/data traffic is pending at LTE network.

• Service Request event that provides on-demand network
resources to device.

Interestingly, these 3 events make up 50% of all LTE network
signalling traffic [5]. By targeting these events, we not only
ensure timely execution of user service sessions but also
address highly occurring network signalling messages.
Assumptions: This work neither assumes special data center
network topology and high performance server boxes nor
requires changes in LTE standard. We address timely execution
of critical events on commodity data center network (with
no dedicated/express links) while obeying LTE standard to
provide plug and play solution for any carrier network.

IV. CHALLENGES IN VIRTUALIZING LTE-EPC

We discover multiple challenges from our implementation
of LTE-EPC virtualization, and from our study on LTE stan-
dard documents and virtualized network infrastructure.

A. On data-center network characteristics

NFV infrastructure consists of commodity servers running
Virtualized Network Functions (VNFs) over cloud platforms.
In contrast to legacy LTE NFs implementation, NFV im-
plementation introduces a number of changes. First, VNFs

1We gather LTE traces at device and ignore radio retransmissions (at both
MAC and RLC LTE layers), and also excluded device and radio RTT from
results.
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may be located over multiple hops unlike the traditional NFs
which are directly connected. Therefore, during congestion,
long queueing delays in switches introduce high latencies [1]
[12]. Second, during high data-center utilization, packet loss
probability increases that can adversely affect traffic flows,
where the loss of an ACK may cause TCP to perform a timed
out retransmission. Third, data-center network traffic exploits
the inherent multi-path nature of data-center networks [12]
resulting in out of order packet delivery. Fourth, data-center
network is designed to meet application deadlines, which
provide mechanisms to meet traffic flow deadlines (e.g. mice
flows), rather than packet level guarantees [12].
In short, data-center network is designed to meet Service Level
Agreement (SLA) by protecting execution bounds on traffic
flows. However, in LTE, service guarantees are made by timely
execution of mission critical events.

B. On inter-VNF delay

LTE-NFV framework provides the flexibility and network
scalability by decomposing original NFs into multiple VNFs
[9]. In order to ramp up the original capacity of a NF,
multiple VNF instances are needed. For example, hundreds
(if not thousands) of MME-VNF instances are initiated over
commodity servers in order to facilitate 10 millions subscribers
as supported by conventional MME function [13]. As shown
in Figure 3, legacy MME is decomposed into multiple MME
instances, where each MME holds the profiles of subset of
customers. These VNF instances are distributed within data
center. Ideally, related EPC VNF instances (e.g. MME, SGW,
PGW etc.) are placed within the same rack that eliminates
network delays between two EPC NFs. However, during mo-
bility, device switches from source eNodeB to target eNodeB
– connected to different MME instance. As a result, the
device session migrates from its source MME to target MME
during handover. Thereafter, new serving MME and rest of old
serving EPC NFs (e.g. SGW and PGW etc.) end up residing
at different racks. Now network delays play important role on
timely execution of network signalling messages. We find that
LTE-NFV framework is not able to cope with varying delays
among different VNF instances because of following reasons:

Expiry of a timer at any NF may lead to event failure:
LTE was designed for fewer EPC NFs which are directly
connected over dedicated fiber link. Therefore, in legacy LTE
network, the variation in RTT values is negligible. This moti-
vates LTE network designer to use RTT for two purposes (1)
path management, and (2) calculating message retransmission
timer between a pair of EPC NFs.



Path management: As a matter of fact, all EPC NFs and the
connection between them must always be active to serve users.
To determine that a peer NF is active, the NFs exchange echo-
request and echo-response messages [3]. This exchange of the
echo-request and echo-response messages between two NFs
allows for quick path failure detection [3].
Retransmission timer: Echo-request and echo-response also
help in calculating packet retransmission time at EPC NF. Re-
transmission timer is calculated based on RTT measurements
(i.e. time difference between echo-request and echo-response)
[3]. Although, such timer value incorporates arbitrary RTT
value delays, it does not include larger RTT value variations
because network communication delay does not vary for
directly connected legacy LTE NFs.
However, virtualized EPC implementation needs to address
significant RTT variations. Data-center network’s link redun-
dancy provides multiple paths for each distributed pair of NF
[12]. This means echo-request and echo-response packets may
traverse through two different paths for each RTT calculation.
This can potentially cause a significant variation between
two subsequent RTT measurement readings. To make things
worse, data-center network congestion can cause RTT spikes
to tens of milliseconds making EPC retransmission timer
calculation even harder. Figure 5 shows variation of RTT
values in a virtualized network [12]. RTT varies from few
microseconds to 1000 microseconds under normal network
load. This 1000X RTT difference converts into hundreds of
different timer values.
When a NF selects smaller timer value based on smaller
RTT, the signalling messages from that NF are unnecessarily
retransmitted, as shown in Figure 6. Unnecessary signalling
messages retransmission lead to overall delay in event exe-
cution; and expiry of event-timer running at device results in
event failure.

Expiration of a timer has a domino effect: For one event
execution, multiple EPC NFs are chained such that one NF
output is an input of second NF, and so on. For example, in
handover event execution, signalling messages are exchanged
between 5 different NFs (i.e. source MME, source SGW, target
MME, target SGW, and PGW). Each pair of NF is running
a different retransmission timer value. When one timer value
expires, it produces a domino effect that causes expiration of
preceding NF timer. This has been shown in Figure 7, where
source MME sends handover signalling message (e.g. Forward
Relocation Request message) to a target MME. Target MME
sends another handover message (e.g. Create Session Request
message) to SGW. Even in the presence of mild network
congestion, the response from SGW is delayed and the timer
at target MME expires. Because source MME is waiting for
a response from target MME, eventually the timer value at
source MME expires. This can potentially create a domino
effect to chained NFs for handover event execution.
In short, EPC by design is not only sensitive to network
delays but also does not tolerate even mild delay variance.
It is challenging to provide both constant and smaller network
delays in virtualized data-center network, where packets may
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face network congestion and take multiple packet traversal
paths, which were not the case in legacy EPC.
We should also clarify that engineering efforts, such as off-
loading traffic from busy servers, do not work for vEPC. This
is mainly because current data-center networks are designed
using web service applications in mind; whereas vEPC (by
EPC design rule) requires that all active user sessions remain
within same EPC NFs, otherwise the GTP-tunnel [14] between
two LTE NFs breaks and incurs further delays.

V. SYSTEM DESIGN

Design overview: The comparison of our design with
contemporary EPC architectures is shown in Figure 8. Net-
work Functions (NFs) pass messages among one another, and
perform operations to execute an event. We see in Figure 8
that the legacy LTE EPC has dedicated NFs (for example,
MME, SGW, and PGW), connected via fiber links. Hence the
message passing between NFs experience minimum delays,
and these NFs almost always guarantee event execution. As
we move from legacy EPC to Virtualized EPC network, we
see multiple instances of the same NFs distributed in data-
center networks and joined via unreliable IP links. These
NFs in vEPC are designed to support few thousands users
as compared to million of users being supported by legacy
network; yet vEPC NFs are simple, scalable, and provide
plug and play solution to the service providers. However,
the main culprit of EPC virtualization is high delay between
consecutive NFs for a single event. When delay guarantees are
not provided, the system fails to execute events and provide
services.
First contribution: We propose an alternative approach for
EPC virtualization that solves the above problems. We base
our design on logic based NFs segregation instead of Instance
based NFs segregation for vEPC. For every critical event, we
extract the logic of that event from each NF in the form of a
module. Then we assemble the event-based modules extracted
from all NFs into a Fat-proxy as shown in Figure 8. This
Fat-proxy acts as a NF for that event. Note that we make
Fat-proxys only for three critical events (handover, paging,
and service request), since we have already established that
these critical events constitute 50% of the control signalling
traffic. The advantage of extracting logic based modules and
assembling them into a Fat-proxy is three-fold. First, the Fat-
proxy acts as a single NF and is made to handle only a
single type of event. This reduces delays and avoids timeouts.
Second, huge storm of critical events’ signalling traffic is
diverged from the EPC to the Fat-proxy, and the EPC can
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handle all the other event requests on time while ensuring
the timely execution of critical events through the Fat-proxy.
Third, a Fat-Proxy that contains complete execution logic of
an event can easily scale-out as the demand increases. We need
to simply spin a new instance of Fat-Proxy and configure its
incoming/outgoing interfaces. In short, our approach of logic
based segregation is not only distributed and scalable but also
mitigates the inherent disadvantages of distributed solutions.
Second contribution: We identify the mutually exclusive
logic inside one module and partition that logic. A single logic
partition runs one network operation. We can run multiple
network operations in parallel since the logic in their respective
partitions is independent of the other. This further speeds up
event execution and helps us choose lower timeout values.
A. Fat-Proxy Design

Our goal is to develop a Fat-proxy for an event by assem-
bling all the event specific logic from different EPC NFs. For
example, Handover Management (HoM) Fat-proxy is made for
handover event by extracting logic components from MME,
SGW and PGW NFs. To develop event-specific Fat-proxy, we
perform three major steps.

1) Functional decomposition: Decomposing event specific
functions from the source code.

2) Event logic extraction: Extracting critical events’ func-
tions by resolving decomposed functions’ dependencies.

3) Logic-based partitioning: Partitioning the mutually exclu-
sive logic of critical event.

1) Functional decomposition The first step in our design
is to decompose a NF into its logic components. We use
OpenEPC source code [15] to construct function call graph.
We extended etrace [16], a run-time function call graph tool,
to extract function call information and global variable usage.
Our goal is to automatically identify functional dependencies
over complete source code. The function call graph captures
the caller-callee relationship. Suppose there are two functions
represented as nodes A and B in a function call graph. We
add an edge from A to B if a function A calls function
B, and/or if a function A accesses a global variable whose
value is manipulated in function B. To construct this graph,
we use gcc feature called “instrument-functions”. We add

cyg profile func enter() at the start of a function and

cyg profile func exit() at the end of a function, and collect
the function call traces in a text file. These “instrument-
functions” write the function pointer addresses of functions,
in which they were called, to the trace file. This data does not
contain any symbol/function names. To resolve the function
pointer addresses to their human readable names, we use BSD
library function dladdr(). It takes a function pointer and tries
to resolve its name and file where it is located. The source
code of above mentioned procedure is shown in Figure 9.
Our functional decomposition methodology captures dynamic
linking of function calls (at runtime). The dynamic call graph
records functions chain resulting from calling an event and
under specific scenario. This is important for correctness of
true functional dependencies among different events (step 2).
We show this in Figure 10a where different functions interact
differently depending upon event execution logic. Figure 10a
captures part of handover and TAU event execution. We have
intentionally omitted certain functions from this call graph
to highlight the fact that same functions can be chained
differently depending on the event they are executing. First, we
show that there are two different ways same event (handover
event) can execute depending upon two different scenarios.
In first scenario, eNodeBsource and eNodeBtarget are not
directly connected (that is two eNodeBs are not connected
over LTE X2 interface). In this case, the downlink user packets,
while the UE is in the handover process, are tunneled through
EPC. The PGW forwards the packets to SGWsource that
forwards them to eNodeBsource. However, eNodeBsource is
unable to forward to eNodeBtarget because there is no X2
interface. Then eNodeBsource reflects these packets back to
SGWsource that uses “indirect” tunnel and forwards these
packets to SGWtarget. SGWtarget finally forwards them to
eNodeBtarget. This ForwardRelocationRequest() function re-
quires that MMEtarget creates a session with SGWtarget by
calling CreateSessionRequest() and CreateSessionResponse()
functions. Create Session procedure sets-up a new device entry
(that includes IMSI, APN name, Link EPS Bearer ID, PGW
S5/S8 Address for Control Plane) for tunneling downlink
packets. Thereafter, device bearers are updated through modify
bearer functions. In Figure 10a solid blue arrows show chain
of call graph (FWD Reloc Req → Create Session Req →
Create Session Resp → Modify Bearer Req → Modify Bearer
Resp). The second scenario of handover takes place when
eNodeBsource and eNodeBtarget are connected over LTE
X2 interface. In this case the user downlink data packets
do not require to be forwarded through EPC tunnel. The
eNodeBtarget sends the path switch request message (by
calling PathSwitchRequest() function) to MME and informs
that the device has moved away from eNodeBsource. The SGW
needs to forward the incoming packets to a different destina-
tion. So the MME invokes ModifyBearerRequest procedure to
the SGW and updates the downlink tunnel identifiers. This
handover procedure has been shown in Figure 10a through
yellow dashed arrows (Path Switch Req → Modify Bearer
Req → Modify Bearer Resp).
We next show how same functions interact differently de-



void __cyg_profile_func_enter (void *this_func, void *caller)
{
Dl_info enter_info;
if (dladdr(this_func, &enter_info) != 0) {
printf("%s", enter_info.dli_sname);
}  }

void __cyg_profile_func_exit (void * this_func, void *caller)
{

Dl_info exit_info;
if (dladdr(this_func, &exit_info) != 0) {
printf("%s", exit_info.dli_sname);
}  }

Figure 9: Generating functional call graph
through gcc instrument functions
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function PathSwitchRequest (enbUeS1Id, mmeUeS1Id) {
// get IP address of UE by removing header
…
// find corresponding UeInfo address
imsi = MapIMSI.find (ueAddr);
//modifying tunnel identifiers (teid)
gtpu.UpdateTeid ();
//get UE corresponding eps bearer
bearer = GetEPSBearer();
ModifyBearerRequest (imsi, tft, bearer);
…
}

(c) A function has nested functions

Figure 10: Function decomposition: (a) Different functions chain differently based on the event logic. (b) The function call graph
consists of those functions (i) which are part of an event (right nodes) and (ii) which are called within a particular functions (left
nodes). (c) In other words, functions are nested and only runtime call graph can identify these functions (i.e. ii)

pending on two different events execution logic. Similar to
handover event, the TAU event also requires Session Creation
and Bearer Modifications procedures to be executed, as shown
by TAU function call graph in Figure 10a (red dotted lines).
In TAU event, when MME selects a new SGW, it sends
a Create Session Request message per PDN connection to
the selected new SGW. The PGW address and traffic flow
template are indicated in the bearer Context Request mes-
sage. The SGW informs the PGW(s) about the change by
invoking ModifyBearerRequest() per PDN connection to the
PGW(s) concerned. The PGW updates its bearer contexts and
generates ModifyBearerResponse(). Finally, SGW generates a
Create Session Response message to MME. Note that Modify
Bearer Req/Response is sandwiched between Create Session
Request/Response (which is different from handover event
execution call graph). This has been captured in Figure 10a
through red dotted lines (Context Ack → Create Session Req
→ Modify Bearer Req → Modify Bearer Resp → Create
Session Resp).
Our function call graph also considers global variable usage
as a reason for functional dependency. This has been shown
through an edge from PathSwitchRequest to CreatePDPCon-
text in Figure 10b, where former function accesses global vari-
able (named bearer) modified in the latter function. Moreover,
through source code snippet in Figure 10c, we show there are
other functions which are although seemingly not part of event
execution function, yet they create a dependency for that event.
For example, PathSwitchRequest() function needs to update
TEID (Tunnel Endpoint Identifier), and gets corresponding
IMSI and EPS bearer before invoking ModifyBearerRequest()
function.

2) Event logic extractions The second step in our design
is to extract critical event execution logic from respective
vEPC NFs and combine them as that event’s Fat-Proxy. This
requires us to first identify those critical event functions
on which other events rely too; because extracting these
dependent functions would make original vEPC failure prone.
Through our functional decomposition procedure (step 1), we
construct an execution graph for each event using function
call graph. We noticed two kinds of dependencies, logic and
data dependencies. The logic dependency occurs between two
events when both events need that logic to execute; when not
identified and handled properly, it can affect the functionality

of the events. Data dependency occurs during the execution
of the event, when it needs to exchange user data with an
external entity. Another variant of this dependency is when
the start of an event depends on the end of other event. Once
we have all events’ execution graphs, we compare the graph
of critical events with all the other events’ (critical and non-
critical) graphs. Our goal is to find the Common Subgraph
Isomorphism (CSI) between critical events and other events’
graphs; this subgraph reveals the shared components between
events, which infact are the logic dependencies between the
two events. Since the CSI problem is NP-Complete, we use an
improved back-tracking algorithm [17] from the CSI literature.
Even though backtracking algorithms are not efficient in terms
of computational time, we argue that our event logic extraction
is a one-time and offline procedure, hence the time complexity
of CSI does not effect our approach.
For all the common components in the execution graphs of
two events, we retain a copy of those common components
in the NF while extracting the independent components of the
critical event. If there is no logic dependency for a component
used by a critical event, we extract it without maintaining its
copy in the NF. The identification of these logic dependencies
help us maintain functional correctness for all the other events
(such as Attach, Detach, and Paging etc.). In Figure 11,
we show execution graphs of ‘Handover’ event and ‘Service
Request’ event. The highlighted components in Figure 11 in
step 1 (create session request, modify bearer request, create
session response, and modify bearer response) are the common
components between the two events. This implies that we
cannot extract these components for handover event, unless we
maintain their copy in the NF to be used by service request
event as well.
Data dependency arises when the handover event is in ‘modify
bearer’ component2. Device bearers are to be modified at
actual SGWs and PGW of EPC. This is shown in Figure 11
in step 2, where handover event’s ‘modify bearer’ component
needs to interact with the EPC. In our design, we restrict any
communication with EPC unless the event is complete, and
remove such mid-way data dependency by always generating
fake ‘modify bearer success’ response for device. Once the
handover event has concluded and returns user state to vEPC,

2Bearer modification procedure is used to modify device QoS and/or TFT
(Traffic Flow Template) of an EPS bearer.
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Figure 11: Identifying logic dependencies through Common Subgraph Isomorphism
(ICS) and data dependencies through protocol analysis

the vEPC runs the actual ‘modify bearer’ request. It is possible
that such bearer modification step fails (e.g. one of SGW or
PGW fails), even though the device is already notified of a
successful bearer modification. This is not a problem because
the vEPC can simply initiate the re-attach event in this case.
In Figure 11 step 3, we also see the second kind of data
dependency between the handover event and the tracking area
update (TAU) event. The TAU event waits for the handover
event to finish before it starts its execution. Such a dependency
between two events is mitigated when events execute in
blocking mode (see Figure 5.1.3.2.2.7.1: EMM main states in
the UE [8]. The Figure shows that no other event can execute
if one event is being executed).
We follow the above procedure for the other two critical
events, i.e. service request event and paging event. At this
step, we have working Fat-Proxy for all three critical events.

3) Network protocols’ logic-based partitioning The third
and last step is about optimizing Fat-proxy execution (i.e. our
second contribution). We recall that message execution delay
of a critical event disrupts timely execution of that event; and
to be worse its failure aborts the critical event procedure.
Therefore, there is a need to speed-up event execution by
executing some messages in parallel. We propose network
protocols’ logic-based partitioning to achieve this goal. We
partition the mutually exclusive logic of different protocols
in a module (module is event-based logic from one NF). We
identify the opportunity of logic-based partitioning through
analysis of these standardized protocols.
We explain this through handover event example. The han-
dover event triggers coordination between a series of NFs
(MME, SGW, and PGW). Such coordination takes place
between different NFs within EPC, and between EPCs and the
radio network (eNodeB). The MME NF requests eNodeB to
establish secure radio connection with UE, instructs eNodeB
to establish device context, initiates the connection between
SGW NF for user uplink/downlink traffic, and many more.
The signalling messages exchange between MME and eNodeB
are carried out by S1AP protocol, while the communication
between MME and other NF (i.e. SGW) is carried out using
GTP protocol. The legacy EPC infrastructure tightly couples
S1AP protocol with other protocols like GTP protocol in
MME. However, these protocols are designed for different
purposes and their messages do not interleave with each other.
The MME’s interaction with eNodeB via S1AP protocol is mu-

eNodeB S-MME T-MME S-SGW T-SGW
Handover required FWD Allocation

Create Session Req.Handover Request
Session ResponseHandover ACK

FWD Allocation Resp.
Create Indirect data FWD tunnelHandover Command

eNodeB Status
Transfer

FWD tunnel resp.

Those S1AP Messages (      ) and GTP messages (       ) which are executed in parallelFigure 12: Concurrent execution of messages: S1AP messages (shown as dotted line
arrows) and GTP messages (shown as dashed line arrows) are executed in parallel to
each other. Sequence execution of messages (S1AP and GTP) are shown as solid line

tually exclusive to MME’s communication with SGW through
GTP protocol. Therefore, we partition the logic of S1AP,
MME core function, and GTP protocols inside MME NF’s
module. This design choice results in faster communication
between eNodeB and vEPC using S1AP protocol, and between
vEPC’s MME and SGW NFs using GTP protocol, even during
data-center network congestion.
A protocol defines message exchange procedure between
different entities. Figure 12 shows subset of these mes-
sages exchanged between EPC NFs during handover event.
MMEserving (S-MME) receives Handover Required message
from eNodeB and triggers Forward Allocation message to
MMEtarget (T-MME). After receiving, T-MME sends “Cre-
ate Session Request” to SGWtarget (T-SGW). On successful
session response from T-SGW, T-MME sends Handover Ac-
knowledgement to eNodeB. Note that the direction of “Create
Session Request” and “Handover Request” messages are oppo-
site (both messages are sent simultaneously), where former is a
part of GTP protocol, and the latter is a part of S1AP protocol.
The messages shown as dotted and dashed lines in Figure
12 are executed in parallel. The simultaneous transmission
of these messages is possible since their respective protocols
are mutually exclusive. We accelerate handover event (which
we chose as an example) by identifying the protocol level
modularity in a NF and execute their corresponding messages
in parallel. We find that in most network events, there exists
40% to 60% messages that can be executed concurrently to
significantly improve the network performance.
There is a chance that concurrent message execution may fail
and this failure may provide inconsistent view of network
states to eNodeB. For example, on receiving the “Handover
Request” message from T-MME, the eNodeB believes that
the T-MME has successfully established the device connection
with T-SGW. But eNodeB’s network states may get incorrect,
in case T-MME has failed to establish device session with
T-SGW. To handle such network state inconsistencies, we
propose transaction rollback by sending network failure mes-
sage. As stated earlier, message execution failure at any step
terminates the entire handover process, therefore, by sending
a failure message (even at later step) to eNodeB addresses
any inconsistency previously caused by concurrent message
execution. We should highlight that network states within
different NFs of vEPC remain consistent because handover
event executes in blocking mode. Moreover, we partition only
mutually exclusive messages of two different protocols. Our
design is robust where parallel execution of these messages
produce the same result as their sequential execution.



VI. SYSTEM IMPLEMENTATION
Our system implementation consists of OpenEPC LTE im-

plementation and LTE EPC NFs virtualization.
OpenEPC LTE deployment: Our test-bed consists of LTE
eNodeB (nanoLTE Access Point [18]), OpenEPC software
EPC platform [15], and Samsung S6 smartphones. The eN-
odeB is a 3GPP Release 9 compliant LTE small cell on
700 MHz band. Considerable effort, involving code mod-
ifications to OpenEPC components, is made to integrate
eNodeB (closed-source) with EPC to ensure interoperability
with commercially available LTE clients (i.e. Samsung S6
smartphones). Our EPC network consists of MME, HSS,
PCRF for control plane, and SGW and PGW for data plane
functions. In addition, the Internet gateway provides connec-
tivity to the Internet. Samsung S6 smartphones use USIM
cards programmed with the appropriate identification name
and secret code to connect with eNodeB. Since eNodeB and
the device communicate on T-Mobile’s licensed band, we use
custom built frequency converters. These converters convert
the frequency in both downlink and uplink from 700 MHz to
2.6 GHz, where we have an experimental license to conduct
over the air experiments.
For the evaluation of our second design choice (protocols’
logic partitioning), where S1AP-MME simultaneously com-
municates with S1AP-eNodeB and SGW, we require changes
at eNodeB-S1AP. Because our eNodeB is closed-source, we
use device emulation provided by OpenEPC. The OpenEPC
provides client-Alice module that emulates user device and
eNodeB and interacts with EPC NFs. The client-Alice module
has basic S1-AP functionality, enough to show performance
improvement when protocols’ logic partitioning is used.
Virtualizing LTE EPC: After LTE testbed deployment, we
virtualize EPC NFs. EPC virtualization includes deployment
of decomposed EPC NFs over VMs, and exposing them to
real LTE traffic load.
EPC’s NFs decomposition and placement: We virtualize EPC
NFs over vMware’s vSphere, which is a server virtualization
platform with consistent management. We first decompose
OpenEPC into a number of LTE NFs (i.e. MME, SGW, PGW,
HSS, and PCRF). To implement an event-specific Fat-proxy,
we first identify the Fat-proxy’s logic based on the event’s state
transition diagram (as shown in Figure 11). We then traverse
through OpenEPC NFs source code to locate that implemen-
tation logic. This event logic is deployed on a separate VM
(after extracting/copying from OpenEPC NFs) and we call it
that event’s Fat-proxy. Now this Fat-proxy’s VM acts as stand-
alone NF. Thereafter, we configure the interfaces for all virtual
NFs (LTE NFs as well as Fat-proxy) by changing OpenEPC
boot process (init) so that the OpenEPC can discover installed
Fat-proxies at start-up and allows relaying packets to and from
these virtual NFs (VNFs).
During actual execution of a critical event, OpenEPC stores
most of the information needed by a NF (such as device states)
in a back-end database. To reduce the overhead of Fat-proxy
communicating with the database back-and-forth, we duplicate
the device states at Fat-proxy when the critical event triggers.

We gather results by changing testbed configurations for two
different settings: (a) placing the VNFs (with no Fat-proxy)
over different servers, which are then connected through
network tunnel, and (b) installing the Fat-proxy VNF within
one server.
Considering real data-center network loads: Because research
lab’s testbed environment does not (a) add round trip time to
data-center network (b) consider dynamic loads at servers (c)
take data-center network congestion into account; we consider
data-center network performance metrics while compiling our
results. We parsed system logs provided by HP Helion cloud
infrastructure and gather inter-data-center network latency
metrics. We measure round trip time from query entering
and exiting the data-center network. We understand, it is
challenging to precisely find the root cause of latency for each
query [19]. Therefore, we apply moving average to cancel
random variation in our result.

VII. EVALUATION AND RESULTS

We evaluate our design based on following aspects: (1)
controlling signalling storm, (2) timely execution of mission
critical events, and (3) performance impact. We compare our
approach against contemporary instance based vEPC LTE
design, which is not only deployed by a number of network
operators [9], but also discussed in recent research papers
[20]–[22]. We run our tests on a local network of servers with
10-core Intel Xeon E5 - 2650 v3 processors at 2.3Ghz, 25MB
cache size, and 16GB memory. We build our prototype and
tested it using real smartphones (Samsung S6 smartphones)
and device emulation mode of OpenEPC. To consider real
operator network scenario, we use a network trace as our input
packet stream; results are representative of tests we run using
these traces.

Signalling load at vEPC: As mentioned earlier in the
paper, during busy hours, operational LTE core is exposed
to signalling storm. First, we show that our design reduces
signalling storm by diverting highly occurring network events
to Fat-proxy. Although, Fat-proxy is part of LTE core, all
execution remains local to Fat-proxy NF. In this way, LTE
core NFs (such as MME, SGW ad PGW) are not exposed
to high signalling messages exchange and remain functional
at all times. Figure 14 shows that for handover3, service
request and paging events, LTE core is exposed to 5X, 6X
and 2X less signalling traffic respectively, compared to when
Fat-proxy is not used. We see that paging event benefits the
most from our design which is due to the fact that paging Fat-
proxy handles all the paging signalling with eNodeB directly
after MME delegates paging execution to Fat-proxy. Whereas,
service request event requires bearer modifications at actual
SGW and PGW which relatively increases vEPC signalling
load even in case of Service Request Fat-proxy.

Total number of signalling messages: We show that less
number of signalling messages are generated by each event
with Fat-proxy compared to the case when Fat-proxy is not
used. This is mostly because we are able to execute some

3Handover event is induced through OpenEPC command line script.
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Figure 14: Signalling load vEPC is exposed during peak hours with and without Fat-proxy
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Figure 15: Event execution time during peak hours with and without Fat-Proxy concept

messages in parallel, and also skip few messages from being
executed. Figure 13 shows the reduction of signalling message
per event (in one hour window) when Fat-proxy is used. Note
that, we are mainly interested in determing signalling load in
vEPC. Therefore, we count two parallel messages as one, but
in actual implementation exactly two messages are generated.
The rationale of treating pair of parallel message as one is that
these two messages are traveling in opposite direction, i.e. one
out of EPC and the other towards EPC NF. Therefore, both
of these messages are independent to each other execution.
Figure 13 shows that handover event produces around 40%
less signalling messages, when handover event is handled
by Fat-proxy. This is mainly because vEPC NFs modules
(specific to handover event) implemented in Fat-proxy are
local to Fat-proxy. Therefore, these modules do not need to use
signalling messages to communicate with each other and avoid
unnecessary signalling exchange. The signalling messages that
handover Fat-proxy skips include create session request/re-
sponse4, delete session request/response5, UE context release
command/complete5, delete indirect data forwarding tunnel
request/response5. Figure 13 shows that paging event can only
skip one message of Uplink-Nas-Transport. This NAS message
carries the information about the service that device wants to
receive from LTE network.

Event execution time: Figure 15 shows CDF of event
execution time for handover, service request and paging events
with and without Fat-proxy implementation. We see that with
handover Fat-proxy event latency decreases by the factor of
6X on average. This improvement is observed because (1)
all events execution remains local to handover Fat-proxy and
does not suffer any network delays, and (2) handover Fat-
proxy executes 6 signalling messages in parallel and skips total
of 8 messages. We note that even with handover Fat-proxy,
handover latency is higher than 100 ms. This is because in our
experiment we handle worst case handover scenario in which

4Conventionally it is used to communicate with two distant NFs.
5These messages are used to remove states from memory. In Fat-Proxy the

states are automatically deleted when the Fat-Proxy responds back to vEPC.

both MME and SGW are relocated. Although event comple-
tion time exceeds data packets QoS time-bounds (100msec for
voice over LTE call, and 300msec for TCP based traffic [2]), it
does not affect user QoS experience where users’ data packets
are tunneled from old serving SGW to target SGW and then
delivered to user.
Service Request (SR) Fat-proxy, on average can reduce only
upto 50% service request event execution time mainly because
at the end of service request event execution, SR Fat-proxy
needs to update device bearers with vEPC.
Paging event execution time with and without Fat-proxy is
not significantly high. We observe in paging event, all of
the signalling messages are exchanged between S1APs of
MME and eNodeB which diminish intra-vEPC NFs delay.
The improvement we see in Figure 15c is mainly achieved
by pushing S1AP to the edge of cloud and executing one pair
of message in parallel.
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Figure 16: Impact of event execution time on voice and data applications

Voice and data applications performance: We are in-
terested to find how an event execution time impact voice
and data applications. We deploy voice over LTE (VoLTE)
and TCP applications to test voice and data throughput,
respectively. We consider handover event execution scenario.
Figure 16a shows that VoLTE delay increases as the event
execution time increases. The VoLTE remains within its QoS
requirement of 100ms as far as event execution time remains
below 450ms. Even if the event execution time is more than
100ms , the VoLTE packets are kept forwarded via tunnel from
eNodeBsource to eNodeBtarget. However, VoLTE packets de-
lay start increasing as handover takes more time to complete
mainly because of the resource contention at vEPC. To show
how VoLTE delay converts into voice quality of service, we



consider Mean Opinion Score (MOS) – a measure of voice
quality, as shown in Figure 16b. We use AQuA software tool
[23] to calculate MOS value for VoLTE voice. The MOS value
are ranged from 1 for unacceptable to 5 for excellent voice
quality. VoLTE calls often are in the 3.5 to 4.2 range. We find
that when event execution time increases beyond 800msec, the
voice quality degrades from fair (MOS value 3) to poor (MOS
value 2) and then to unacceptable (MOS value 1) at 1000msec.
Because handover Fat-Proxy execution always remains below
400msec, therefore, our design provides higher voice quality
even during peak load. Figure 16c shows the TCP throughput
under event execution time. The throughput exponentially
degrades from 6Mbps to 2Mbps when an event execution
time goes over 850ms. Through our Fat-Proxy design, the
throughput remains stable and does not degrade.

VIII. RELATED WORK
ETSI has provided several documents discussing guidelines

and requirements for LTE-NFV [9]. There are several white
papers [10] by technology giants, but none of them has
demonstrated any system design of LTE-NFV that solves LTE
specific issues in virtualized environment.
Closest to our work are CoMb [24], OpenBox [25], E2
[26], OpenNF [27], DPCM [28], and PEPC [29]. CoMb [24]
uses network controller that assigns processing responsibilities
across the network. OpenBox [25] decouples the control plane
of NFs from their data plane. E2 [26] is an application-
agnostic scheduling framework for packet processing. OpenNF
[27] provides a control plane architecture that allows quick
reallocation of flows across NF instances. Our work differs
from these by bringing innovation in the method used to
decompose the vNF and the algorithm to determine what to
consolidate. Our solution is tailored to LTE vEPC design.
DPCM [28] proposes low latency LTE data access approach
for service request, handover and roaming scenarios. It runs
location update procedure parallel to data-plane forwarding.
Our work differs from DPCM [28] where we parallelize
mutually exclusive signalling messages within a control-plane
procedure, rather than parallelizing two different procedures.
Moreover, our procedure gracefully handles parallel messages
failure and ensures network states consistency among different
NFs. PEPC [29] highlights that device states are duplicated
across multiple NFs. PEPC [29] consolidates these states to
amplify EPC performance. In contrast, our work does not
consolidate device states; instead our design brings control-
plane events execution logic closer to speed-up their execution.

IX. CONCLUSION

In this paper, we disclose new major issues in virtualizing
LTE core which mainly arise from instance-based NFV de-
sign. We propose a new way of thinking to virtualize LTE
core so that LTE events are executed within time-bounds.
We leverage the logic-based modularity of NFs, decompose
the NFs based on events logic and assemble them into a
Fat-proxy. This Fat-proxy takes the message-intensive critical
events away from the core network. We further speed up event
execution by executing event messages in parallel.

Future work: One of the future research is to co-relate device
activity with different events. By doing so, vEPC would be
able to predict forthcoming device action well in advance and
can thus prepare the resources. Such an approach has promise
to improve both (1) device performance and (2) vEPC design.
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