
cniCloud: �erying the Cellular Network Information at Scale

Wenguang Huang1, Chang Zhou1, Yuanjie Li2, Xinbing Wang1, Songwu Lu2, Luoyi Fu1
1Shanghai Jiao Tong University

Department of Electronic Engineering
Shanghai, China

2University of California, Los Angeles
Computer Science Department

Los Angeles, California, United States
{blueskygundam,lemonbirdy,xwang8,yiluofu}@sjtu.edu.cn,{yuanjie.li,slu}@cs.ucla.edu

ABSTRACT
This paper presents cniCloud, a cloud platform for mobile de-
vices to share and query the �ne-grained cellular information
at scale. cniCloud extends the single-device cellular analytics
via crowdsourcing: It collects the �ne-grained cellular net-
work data from massive mobile devices, aggregates them in
a cloud database, and provides interfaces for end users to run
SQL-like query over the cellular data. It o�ers e�cient and
responsive processing by optimizing the database storage,
and adopting the domain-speci�c optimizations. Our prelim-
inary deployments and experiments validate its feasibility
in performing crowdsourced analytics.

1 INTRODUCTION
Cellular networks (3G, 4G LTE and upcoming 5G) have been
an integral part of our daily life. As large-scale wireless infras-
tructure, they provide “anywhere, anytime” Internet access
to billions of mobile users, contributing to 69% of mobile
data tra�c in 2016 [1]. Understanding and analyzing the cel-
lular network behaviors is thus critical for not only network
operators, but also researchers and developers.

An obstacle for researchers and developers to understand
the cellular network is its “black-box” nature at scale. Besides
basic status and functions, the mobile devices (e.g. smart-
phones and tablets) only have limited access to the coarse-
grained cellular network information in the usual scenarios.
Recent e�orts (notably MobileInsight [2]) seek to address this
by enabling the in-device open access to the �ne-grained cel-
lular information. However, such approach is based on single
device, thus unable to comprehensively analyze the large-
scale infrastructure with diverse, dynamic and heterogenous
behaviors among distributed network nodes and operators.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
WiNTECH’17, October 20, 2017, Snowbird, UT, USA.
© 2017 ACM. ISBN 978-1-4503-5147-8/17/10. . . $15.00
DOI: http://dx.doi.org/10.1145/3131473.3131478

In this work, we seek to address this by exploring the
crowdsourcing approach. While each device has limited cel-
lular information, the aggregation of cellular information
from massive devices would o�er more valuable cellular net-
work information. A platform for this purpose would help
researchers and developers better understand the large-scale,
complex cellular network behaviors.

In achieving this, we face two main challenges. First, such
solution should be scalable to the huge cellular data volume
from numerous mobile devices. Second, the aggregation and
analytics of the massive cellular data should be e�cient in
terms of processing speed and system overhead.

We present cniCloud, a cloud platform for the collection
and query of �ne-grained cellular information at scale. cni-
Cloud collects the �ne-grained cellular network data from
massive mobile devices, aggregates them in a cloud database,
and provides interfaces for end users to run SQL-like query
over the cellular data. The whole query and database system
is based on Spark [3], which supports scale-out property. It
o�ers e�cient and responsive processing by optimizing the
database storage, and adopting the domain-speci�c optimiza-
tions. Our preliminary deployments and experiments vali-
date its feasibility in performing queries covering multiple
phones at large areas, while retaining acceptable overheads.

A preliminary version of cniCloud is available at [4].

2 CELLULAR NETWORK PRIMER
The cellular networks are currently the largest wireless in-
frastructure that o�ers “anywhere, anytime” network ser-
vices to mobile users. Figure 1 (right) illustrates its general
architecture. It consists of a radio access network (RAN) and
a core network. The RAN is provisioned by the base stations,
and provides wireless access to the mobile clients (e.g. smart-
phones). The core network connects the RAN to the Internet.
To o�er wide-area network access, both the radio access and
core network span on large geographical areas.

The cellular network adopts a set of protocols to o�er crit-
ical network functions (including wireless, mobility and data
session management). Figure 1 (left) illustrates the protocol
stack. To enable the wireless communication between the
client and the radio base station, cellular network de�nes
physical and link-layer protocols, including PHY, MAC, RLC
(Radio Link Control) and PDCP (Packet Data Convergence

Physical Layer

IP
TCP/UDP

Link Layer (PDCP/RLC/MAC)
Radio Res Ctrl (RRC)
Mobility Mngt (MM)
Session Mngt (SM)

HTTP, FTP, …

Mobile Apps

Mobile Clients Infrastructure

RAN Core Network

Location domain 1

Location domain 2
…

Internet

…

H
ardw

are
Softw

are

Figure 1: 4G LTE cellular network architecture, and protocol stacks.

Table 1: Cellular network protocols

System Protocol Description

3G CM Connectivy Management
SM Session Management
MM Mobility Management

GMM GPRS Mobility Management
RRC Radio Resource Control

4G ESM 4G EPS Session Management
EMM EPS Mobility Management
RRC Radio Resource Control
PHY Physical Layer
MAC Medium Access Control
RLC Radio Link Control

PDCP Packet Data Convergence Protocol

Protocol). On top of it, a set of control plane signaling pro-
tocols are de�ned, including (1) the radio resource control
(RRC) protocol for radio resource allocation and connection
management; (2) the mobility management (MM) protocol
for client location update and mobility support; and (3) the
session management (SM) protocol for voice/data session
establishment and maintenance.

More details of each protocol are shown in Table. 1. The
messages exchanged within these protocols carry rich infor-
mation about the cellular network, such as the protocol status
dynamics, con�gurations, and operation policies. However,
for normal smartphones, the OS and apps only have lim-
ited access to low-level, �ne-grained cellular information at
runtime.

3 MOTIVATING SCENARIOS
To understand the large-scale network behaviors, it is bene�-
cial to enable the cellular data sharing among mobile devices.
We next consider three scenarios empowered by this.
Characterizing the cellular message patterns: Con-
sider how to characterize the patterns of cellular message.

For example, there are several message patterns in each pro-
tocol shown in Table. 1. In particular, we may want to learn
the distribution of the distinct message counts. Such dis-
tribution o�ers basic information for the cellular network
operations. To do it, one way is to collect, classify and count
the cellular messages inside a single test phone. However,
such results may be biased with the noises of each single
phone’s speci�c usage scenarios. Instead, by aggregating the
results of massive multiple mobile devices from di�erent
time and geographical areas, such bias could be mitigated
and the accuracy of analysis could be improved.
Distributions of speci�c cellular parameters: Some
cellular parameters are critical for device-perceived network
behaviors. For example, the radio resource control (RRC)
protocol supports the power saving via periodical sleeping
mode. The sleeping interval is determined by the con�g-
urable timers (e.g. Tshor tDRX speci�ed by [5]). These timers
are con�gured by the serving base station, and vary among
network nodes. The distribution of such timer value would
thus require cellular data from multiple devices at di�erent
geographical areas.
Comparing the cellular network operators: For bet-
ter performance and network accessibility, the mobile users
may want to compare the cellular network operators. One
example is Google Project Fi [6], which allows the smart-
phones to use the multiple carrier networks (e.g. , T-Mobile
and Sprint). By collecting the key message and ranking the
available operators, the Fi-empowered smartphones could
select the best cellular networks and improve user experi-
ence. By sharing the cellular-level data, mobile devices can
collaboratively improve the ranking accuracy and thus their
performance. Note that such ranking results are strongly
related to geographical areas and time. The ranking results
could be more accurate if we can ensure the location and
time diversity of collected data.

message log

decode

requestrespond

query

respond

upload

rename

 Cloud Disk MobileInsight

M
o

b
ile

 P
h

o
n

e
s

Monitors Analyzers

 HDFS

tFile tMsg
tFile

info of mi2log
tMsg

info of message

 Hive

Spark Thrift Server
Java JDBC interface

Log Collection

Data Management

Spark SQL
In-memory storage

Querying Interface

Front-end
Web-based Interface

Figure 2: The system overview of cniCloud.

4 CNICLOUD DESIGN
This section presents the design of cniCloud. cniCloud’s goal
is to enable structured query (e.g. SQL-like) of �ne-grained
cellular network information at scale. This requires three
functions: (1) Log collection: cniCloud should collect �ne-
grained cellular network data from massive mobile devices;
(2) Data management: Given the rich cellular data, cniCloud
should properly manage them to facilitate the query e�-
ciently; (3) Query: cniCloud should provide easy-to-use in-
terface for structured query. In achieving them, cniCloud
should still retain scalability and high e�ciency to query
GB-level data in real time.

Figure 2 illustrates the overview of cniCloud. The whole
system is deployed on a multi-node server cluster. In the
Log collection block, cniCloud extends the sing-device �ne-
grained cellular data collection with sharing functions (§4.1).
Then inside the Data Management, we use HDFS (Hadoop
Distributed File System) [7], Hive [8] and Spark to construct
a distributed in-memory database, which can store and pro-
cess large scale cellular data(§4.2). Finally, for the Querying
interface part, Spark thrift server is adopted as SQL-like inter-
faces, and cniCloud also provides a front-end website server
for user queries(§4.3).

4.1 Log Collection From Massive Phones
The �rst step for cniCloud is to collect the cellular network
data from massive mobile devices. Unfortunately, the state-
of-art OS APIs do not su�ce for this purpose: It only o�ers
basic status and functions of cellular networks, which cannot
support the �ne-grained cellular information query.
MobileInsight primer: MobileInsight [2] is a user-space
mobile app that collects and analyzes the �ne-grained cellu-
lar network information on the o�-the-shelf smartphones. To
collect the low-level cellular information, MobileInsight does
not rely on the legacy mobile OS APIs. Instead, it explores

Table 2: Cellular messages in MobileInsight monitor

Protocol Message Types

3G-CM/SM Session setup/modify/release;
PDN connect/release/modify

3G-MM/GMM Attach/detach;
Authentication request/response;
Location update;
Security mode control;
Identi�cation request/response;
Service requset;
Paging

3G-RRC System info blocks;
Connection setup/release;
Connection re-establish/recon�g;
Handover command;
Measurement control/report;
Radio capability equerry;
Paging;
Security model command

4G-ESM Same as 3G-CM/SM
4G-EMM Same as 3G-MM/GMM
4G-RRC Same as 3G-RRC
4G-PHY PDSCH signal;

Cell measurement
4G-MAC Uplink/downlink transport blocks;

MAC con�g;
Bu�er status report

4G-RLC Control/data packet data unit
4G-PDCP Control packet data unit
CDMA/EvDo Paging information;

Connectivity establishment/release;
Radio link protocol status

an alternative side channel (diagnostic mode) across the hard-
ware chipset and the software, and exposes raw protocol
control/data messages to the user space. This feature meets
cniCloud’s basic demands for cellular information gathering.
Table. 2 shows the �ne-grained cellular network message
type that MobileInsight can collect.
Extensions for data sharing: To enable the sharing of
�ne-grained cellular data, cniCloud extends MobileInsight as
follows. On the phone side, it develops a MobileInsight plugin
to collect the cellular data, and upload them to the cniCloud
cloud. On the cloud side, cniCloud adopts a set of scripts for
the log gathering, classi�cation and metadata construction.
To facilitate the data classi�cations on the cloud, all the
updated logs are renamed as follows:

cniCloud_TIMESTAMP_LOC_MODEL_OPERATOR . l o g

where TIMESTAMP and LOC are the time and GPS locations
the log was collected, respectively. MODEL is the phone model,
and OPERATOR is the cellular network operator the phone is
using. In this way, cniCloud can support temporal/spatial
cellular data analytics, and aggregate cellular logs by phone
models and/or network operators.

4.2 Data Management
With rich dataset from the massive phones, the next step
for cniCloud is to properly manage these data. We build
cniCloud’s database on with Spark SQL [3], an e�cient and
scalable in-memory data processing engine using SQL-like
and key-store value interface.
Metadata constructions: To facilitate the queries, cni-
Cloud manages the cellular data with two metadata tables:
tFile and tMsg. They are declared as follows:

CREATE TABLE t F i l e (
F i l e p a t h VARCHAR[] , Phone VARCHAR[] ,
C a r r i e r VARCHAR[] , Time TIMESTAMP) ;

CREATE TABLE tMsg (
F i l e p a t h VARCHAR[] , Time TIMESTAMP ,
MsgType VARCHAR[] , MsgHash VARCHAR[] ,
MsgPath VARCHAR[] , LineNo VARCHAR []) ;

The tFile table stores the information of the original Mo-
bileInsight logs. It has attributes including �le path, phone,
carrier and timestamp. Table tMsg stores the information of
the decoded message log �les. It has attributes including �le
path, timestamp, message type, message hash, message path
and row numbers. The message log �les stores the detailed
information how the underlying protocol operates. They
are made up of multiple-nesting of key-value pairs which
is a complex structure. In this way, our design of database
management system should not only focus on support of
relational database, but also support of key-value database.
Optimizations for query e�ciency: cniCloud seeks to
support fast queries of the cellular data at scale. The key is to
optimize how the data is stored and organized. To this end,
cniCloud adopts two optimizations: index-based metadata,
and in-memory processing.
◦ Index-based metadata: To support the structured query,

cniCloud should store the cellular data in a structured way.
One approach is to directly store the data into the database.
This turns out to be slow: Our experiments �nd that, cni-
Cloud’s query speeds degrade signi�cantly with the growing
database size. Instead, we extend tMsg with two extra log
indexes: MsgPath and LineNo. For each cellular message,
MsgPath speci�es the original log path, and LineNo speci�es
the index of the message in this �le. In this way, cniCloud
does not need to store the entire cellular data into the data-
base. The cost is that, every query needs to process the raw
cellular data. Such delay turns out to be tolerable, compared
with the latency caused by database scaling.
◦ In-memory processing: In building cniCloud, a major

performance bottleneck is the storage I/O. Our early version
of cniCloud used MySQL, which reads data directly from disk
and process the query operations through disk I/O. However,
the size of the organized tMsg table is GB-level, but the
maximum I/O speed of normal HDD disk is only near 100
MB/s. It is highly time-consuming for MySQL to read the

data from disk to memory, which is unacceptable. Generally
speaking, the performance of traditional disk database turns
out to be bad due to the disk I/O ine�ciency (see §5). ‘

To this end, our current cniCloud uses SparkSQL [3], an ef-
�cient and scalable in-memory data processing engine using
SQL-like and key-store value interface. In addition, we use
HDFS and Hive to store the same database information on
the disks as a backup, which is to guarantee the robustness
of our system.

SparkSQL supports both relational database and key-value
database well and it deals with query operations through
memory which e�ectively omit the problem disk IO brings.
SparkSQL also optimizes the query on its distributed realiza-
tion. Therefore, the paper adopts SparkSQL as its database
query component.

The query operations of SparkSQL are based on a data
structure called Dataframe. Dataframe has a new concept
called Schema. It is like the table structure in MySQL. The
schema records the �eld names that each column belongs to.
To create a Dataframe, we should �rstly de�ne the Schema,
then �ll it with the table content. cniCloud further uses Hive
to cache the table which is also capable of putting the tables
into memory. It is mainly determined by the characteristic
of Spark Thrift Server. And the combination of these compo-
nents is accomplished by Spark Thrift Server.
Scale-out support: To tackle the growing cellular data in
the future, cniCloud’s database support scale-out property.
This is empowered by Spark and HDFS, which support dis-
tributed deployment on several di�erent nodes to parallelly
improve the performance. By adding more storage servers,
cniCloud can hold more cellular data and retain the same
query e�ciency.

4.3 Querying Interface
With cniCloud’s database, users can query the cellular in-
formation collected from massive phones in large areas. We
have built a front-end website [4] to support this query. In
the following, we �rst exemplify the queries by revisiting
the scenarios in §3, and present the issues and solutions in
building the query interface.
Examples: We consider the scenarios in §3.

1. Characterizing the cellular message patterns: With tMsg
metadata, such query becomes straightforward:

SELECT MsgType , count (∗) FROM tMsg
GROUP BY MsgType ;

In this example, we count the cellular messages, and group
them by the message types (The details of the message types
are illustrated in Table. 2). It readily o�ers us the distribu-
tion of the cellular message patterns. Note that such query
aggregates data from all the phone models under various
scenarios, thus mitigating the biases due to speci�c usages.

2. Distributions of speci�c cellular parameters: In cniCloud,
querying a cellular parameter currently takes two steps. First,

the users query the cellular messages that carry this param-
eter. In the example of Tshor tDRX in §3, users should query
4G RRC messages since they carry this parameter:

SELECT ∗ FROM tMsg
WHERE tMsg . MsgType = " 4G_LTE_RRC " ;

Such query returns the raw message contents. Then the users
can further query Tshor tDRX out of these raw data.

3. Comparing the cellular operators: cniCloud supports the
query based on cellular operators. This allows users to char-
acterize each operator, and compare di�erent operators. Con-
sider T-Mobile as one example. To query its characteristics
of radio resource control, an intuitive query would be:

SELECT count (∗) FROM tMsg
ON tMsg . F i l e p a t h = t F i l e . F i l e p a t h
WHERE t F i l e . C a r r i e r = " T−Mobi le "
AND tMsg . MsgType = " 4G_LTE_RRC " ;

We are currently developing an alternative and more ef-
�cient query approach with the key-value store, as we will
discuss in §6.
Building the web-based query interface: While cni-
Cloud uses SparkSQL, SparkSQL does not have a complete
interface, like MySQL, for web server to visit. To this end,
it uses the framework based on Spark Thrift Server. Spark
Thr�t Server provides us with a Java JDBC interface which
makes the database could be visited in ways like MySQL. It
can also open a process running SparkSQL and listen to it for
interaction. Using Spark Thrift Server can meet both of the
requests. The working �owchart of the querying interface is
illustrated in Figure. 3. The paper develops a framework as
following:
◦ Fault tolerance: Website should be resilient to exceptions

and user-made mistakes, which is also called robustness. As
a database query website, our task is to check the input users
input to see whether they are legal. The paper divide the
error detection into two parts. The �rst part is designed to
deal with blank instructions like space, tab or just empty. The
second part is designed to deal with illegal instructions. The
paper utilizes the error detection mechanism in SparkSQL. If
some instruction is wrong, SparkSQL executes it and would
call back an exception. The Spark Thrift Server can listen to
this exception and the server can get error message through
JDBC interface. In this way, users can get the same exact
error message for exception as they directly using SparkSQL.
◦ File Download: Given the huge data volume, cniCloud

supports the users to download the queries as a summary
report. File download function o�ers users with approach to
log �les. After they get the query result and want to go deep
into the content and structure of log �les, they can download
these �les from the website.

This paper accomplishes another servlet class to deal with
downloading. The idea is to read the �le into input stream
from the local and send it to output stream of the server. The
detailed procedure is as following: (1) The servlet instance

gets the �lename to be downloaded and ensure its absolute
path. (2) The instance de�nes FileInputStream and read �les
into it. (3) The instance checks the type of the �le and �lls
the head of the request with it. (4) The instance obtains Out-
putStream from the response. (5) The instance sets the size
of transferring bu�er. Then it continually reads the content
from FileInputStream and writes into OutputStream until
the end of the �le. (6) The instance closes FileInputStream
and OutputStream.

5 PRELIMINARY RESULTS
In this section, we report our early results in cniCloud’s
e�ciency in performing queries at scale, and its system
overheads. We run experiments to test the performance and
overhead of our systems and compare with other database
systems.
Dataset: We run cniCloud over a MobileInsight dataset [9]
from the 19-month period from 07/31/2015 to 02/28/2017.
This dataset includes traces from 23 phones and seven An-
droid models (Google Pixel, Huawei Nexus 6P, Motorola
Nexus 6, Samsung Galaxy S4/S5, LG Optimus 2, and LG Trib-
ute) from four U.S. carriers (AT&T, T-Mobile, Verizon, Sprint).
It carries 17„873 log �les and 19,619,665 4G/3G signaling mes-
sages, and results in 9.6 MB tFile and 6.4 GB tMsg table in
total.

5.1 Query Performance
Here we choose 3 typical queries of di�erent workloads to
test the query performance of each database system:

Query 1 : SELECT count (∗) FROM tMsg ;
Query 2 : SELECT MsgType , count (∗)

FROM tMsg GROUP BY MsgType ;
Query 3 : SELECT ∗ FROM tMsg WHERE

MsgType= " LTE_PDCP_UL_Config " ;

We conduct two tests. The �rst test is to analyze the query
performance of cniCloud with di�erent number of worker
nodes. We choose 1, 3, 5 worker nodes to deploy cniCloud re-
spectively, and use three typical queries above to assess their
execution time. In Figure4, we can observe a shorter execu-
tion time and performance improvement when the number
of workers increases. This result prove the scale-out ability
of cniCloud. Powered by the distributed computing mecha-
nism of Spark SQL, we can easily improve the performance
of cniCloud by adding more worker nodes.

The second test compares the performance of query be-
tween cniCloud and other popular database systems. Specif-
ically, there are three di�erent database we test in the �rst
test: MySQL, MongoDB and cniCloud on 5 workers. For each
system, we run the same three queries as above to test the
performance. Then we gather the results into Figure.5. The
result shows that MySQL is obviously the slowest one due to
the hugh disk I/O overhead. The performance of MongoDB
is much better than MySQL, for MongoDB can also store

Input Query on
Website

Start
Generate

Corressponding
Servlet Instance

Check Legality
Send Query to

Spark Thrift Server

Translate Query
into SparkSQL

Version
Execute QueryReturn ResultEnd

No

Yes

Figure 3: Flowchart of user querying website

Figure 4: cniCloud performance test

data into memory. But MongoDB is still limited by the calcu-
lation mechanism. Finally, cniCloud is the quickest querying
system because of the in-memory and distributed calcula-
tion features. Generally speaking, cniCloud shows a great
advantage over the other two querying systems. Such high
query performance of cniCloud satis�es our design target
well.

Notice that when executing Query 1, MongoDB runs 0.03s
which defeats cniCloud with a large gap. The reason is about
the query command itself. When we create a database table
in MongoDB, it will record the total row number of the table
in its system. In other words, MongoDB executes Query 1
without any real query operations, and therefore it can give
back the result in such a short time.

5.2 Resource Overhead
We measure the CPU and memory overhead of the cniCloud
to observe the resource consumption when we increase the
worker nodes of our system. We keep inputing a group of
queries into the cniCloud system in a short time period.
Then we change the number of workers and do the same
thing again. We collect the results and gather them together.
Figure. 6 and Figure. 7 show the overhead with time of a
worker node in the server cluster. As Figure. 6 illustrate, We
can see that CPU is always full-loaded when executing a
query. When executing the same query operation, the more
workers cniCloud have, the shorter time duration it lasts.

Figure 5: Performance test among database systems

Figure 6: CPU overhead test

For the memory resource overhead, because our database
message is store in the memory, there would be some resi-
dent consumption in our memory. Figure. 7 shows that after
storing the data into memory, the memory overhead of the
worker become steady.Tthe resident consumption of each
worker decrease when the number of worker nodes increase.

It also proves the scale-out ability of cniCloud. When we
try to enlarge the scale of the server cluster, the consumption
of each worker will decrease. With the scale-out feature,
cniCloud could still work well even the scale of database
increases in the future.

Figure 7: Memory overhead test

6 DISCUSSION
cniCloud is still at early stage. Our ongoing work aims to
improve the organization of the original low-level cellular
network data, and add more function for the query tool.
Speci�cally, we are developing a new table named tDetail,
which contain more message content of the original data.
And based on tDetail table, we are developing a pattern
search function for the query tool.
Parameter query via key-value store: The �rst ongo-
ing work is the organization of tDetail table. Previously, we
have talked about the design and realization of the tFile and
tMsg table. With these 2 tables, reseachers can easily locate
the log �le and log message they need. However, reseachers
still need to download the log �les individually and read the
messages by themselves. Di�erent with tMsg table, tDetail
table will contain more details of the message, including
each component of a real message content. With tDetail, re-
searchers do not have to download the log �les, but they can
read the message content directly on the cniCloud website.

There are two major challenges of realizing tDetail table:
the resource requirement and the data structure. As you
can see, building tDetail table means that we have to put
the whole data into the memory, which is a burden to the
limited memory resource. However, this challenge is easy to
solve by Spark distributed memory management and adding
enough memory into the server cluster. The second problem,
data structure problem, is more tricky. Then length of the
celluar network message is not settled, which means that
the length of di�erent message could vary a lot from others.
So we could not simply use a relational database table to
store the message data. Instead, key-value database table is
the optimized choice for this problem. So now we are using
Spark API to try to store the tDetail in a key-value structure.
Procedure pattern match: The second ongoing work is
the development of pattern search. We can see that there are
many certain patterns of messages when some event hap-
pen. For example, when a network failure due to voice QoS
miscon�gurations happens, there will be a certain pattern
of error messages generated in the log �le. By searching the

certain pattern in the whole data, we can locate more and
more similar messages, which is useful for further cellular
network researches. Futhermore, we plan to add user-de�ned
pattern function in the future. So, we can not only search the
messages with some given certain pattern, but we can also
de�ne our own message pattern to organize the message.

7 RELATEDWORK
The past few years have witnessed a proliferation of experi-
mental testbeds for cellular network research. These e�orts
span on three dimensions: (1) SDR-based approaches: This
includes various software-de�ned radio (SDR) platforms (LT-
Eye [10], WARP [11], Sora [12], Tick [13], etc) equipped with
software-de�ned 4G/3G cellular protocol stacks (OpenAir-
Interface [14], srsLTE [15], OpenLTE [16], openEPC [17],
etc). cniCloud complements these e�orts by leveraging the
commodity phones’ data for network research. (2) Single-
client approaches: This includes various in-phone cellular
network monitoring tools, such as MobileInsight [2], Mobi-
lyzer [18], MobiPerf [19], to name a few. cniCloud moves
one step further than these e�orts, by crowdsourcing the
cellular network information from mobile clients at scale.
(3) Multi-client approaches: Some platforms crowdsource
the coarse-grained cellular network information from var-
ious phones, such as OpenSignal [20], NetRadar [21] and
PhoneLab [22]. Instead, cniCloud enables queries for �ne-
grained cellular network information at scale, by using the
below-IP network data.

cniCloud is inspired by various generic distribute comput-
ing platforms, such as Spark [3], HDFS [7]. It di�ers from
these e�orts since it focuses on the cellular network analytics.
Recent e�orts [23, 24] seek graph-based approach to model
and process the cellular network data from the infrastructure.
cniCloud di�ers from them since it is based on structured
query (SQL) and client-side cellular data.

8 CONCLUSION
In this paper, we report our �rst e�ort of crowdsourcing �ne-
grained cellular information at scale. we present cniCloud, a
cloud platform to enable the query of cellular information
from massive phones. We have described the architecture
and working procedure of cniCloud, and conducted some
experiments to prove the performance and e�ciency of this
tool. While still at early stage, our experiences have vali-
dated cniCloud’s potential for querying low-level mobile
networks message from a large-scale database. Our project
provide a chance for researchers and developers to easily
work together on cloud for crowdsourcing low-level cellular
network information. In a broader context, cniCloud is de-
signed as a sharing platform for researchers and developers.
More community e�orts are needed to share the cellular data,
and develop advanced query interfaces and algorithms.

REFERENCES
[1] Cisco. Cisco Visual Networking Index: Global Mobile Data Tra�c

Forecast Update, 2016–2021. .
[2] Y. Li, H. Deng, Y. Xiangli, Z. Yuan, C. Peng, and S. Lu. In-device,

runtime cellular network information extraction and analysis: demo.
In ACM MobiCom, pages 503–504. ACM, 2016.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,
2010.

[4] cnicloud. http://202.120.36.137:8070/Log_Query4/.
[5] 3GPP. TS36.331: Radio Resource Control (RRC), 2012.
[6] Google. Project �, 2015. https://�.google.com/about/.
[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop dis-

tributed �le system. In Mass storage systems and technologies (MSST),
2010 IEEE 26th symposium on, pages 1–10. IEEE, 2010.

[8] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wycko�, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–
1629, 2009.

[9] Mobileinsight dataset. http://www.mobileinsight.net/insightshare.h
tml.

[10] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. LTE Radio Analytics
Made Easy and Accessible. In ACM SIGCOMM, pages 211–222, 2014.

[11] P. Murphy, A. Sabharwal, and B. Aazhang. Design of warp: a wireless
open-access research platform. In Signal Processing Conference, 2006
14th European, pages 1–5. IEEE, 2006.

[12] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker. Sora:
high-performance software radio using general-purpose multi-core
processors. Communications of the ACM, 54(1):99–107, 2011.

[13] H. Wu, T. Wang, Z. Yuan, C. Peng, Z. Li, Z. Tan, and S. Lu. The tick
programmable low-latency sdr system. In MobiCom, Snowbird, Utah,
USA, Oct 2017.

[14] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet. Openairinterface: A �exible platform for 5g research. ACM
SIGCOMM Computer Communication Review, 44(5):33–38, 2014.

[15] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith. srslte: an open-source platform for lte evolu-
tion and experimentation. In Proceedings of the Tenth ACM Interna-
tional Workshop onWireless Network Testbeds, Experimental Evaluation,
and Characterization, pages 25–32. ACM, 2016.

[16] Openlte. http://openlte.sourceforge.net/.
[17] M. I. Corici, F. C. de Gouveia, T. Magedanz, and D. Vingarzan. Openepc:

A technical infrastructure for early prototyping of ngmn testbeds. In
TRIDENTCOM, pages 166–175, 2010.

[18] A. Nikravesh, H. Yao, S. Xu, D. Cho�nes, and Z. M. Mao. Mobilyzer:
An open platform for controllable mobile network measurements.
In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, pages 389–404. ACM, 2015.

[19] J. Huang, C. Chen, Y. Pei, Z. Wang, Z. Qian, F. Qian, B. Tiwana, Q. Xu,
Z. Mao, M. Zhang, et al. Mobiperf: Mobile network measurement
system. Technical Report. University of Michigan andMicrosoft Research,
2011.

[20] Open Signal. http://opensignal.com/coverage-maps/US.
[21] Netradar. https://www.netradar.org/.
[22] Phonelab. https://phone-lab.org/.
[23] A. P. Iyer, L. E. Li, and I. Stoica. CellIQ: Real-Time Cellular Network

Analytics at Scale. In USENIX NSDI, 2015.
[24] A. P. Iyer, I. Stoica, M. Chowdhury, and L. E. Li. Fast and accurate

performance analysis of lte radio access networks. arXiv preprint
arXiv:1605.04652, 2016.

http://202.120.36.137:8070/Log_Query4/
https://fi.google.com/about/
http://www.mobileinsight.net/insightshare.html
http://www.mobileinsight.net/insightshare.html
http://openlte.sourceforge.net/
https://www.netradar.org/
https://phone-lab.org/

	1 Introduction
	2 Cellular Network Primer
	3 Motivating Scenarios
	4 cniCloud Design
	4.1 Log Collection From Massive Phones
	4.2 Data Management
	4.3 Querying Interface

	5 Preliminary Results
	5.1 Query Performance
	5.2 Resource Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

