
UCLA C.S. Dept. Tech. Report TR060027 December 2006

Load Shedding in Classifying Multi-Source Streaming Data:
A Bayes Risk Approach

Yijian Bai
UCLA

bai@cs.ucla.edu

Haixun Wang
IBM T. J. Watson

haixun@us.ibm.com

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

Abstract

In many applications, we monitor data obtained from mul-
tiple streaming sources for collective decision making.
The task presents several challenges. First, data in sensor
networks, satellite transmissions, and many other fields
are often of large volume, fast speed, and highly bursty
nature. Second, because data are collected from multi-
ple sources, it is impossible to offload classification deci-
sions to individual data sources. Hence, the central clas-
sifier responsible for decision making is constantly under
overloaded situations. In this paper, we study intelligent
load shedding for classifying multi-source data. We aim
at maximizing classification quality under resource (CPU
and bandwidth) constraints. We use a Markov model
to predict the distribution of feature values over time.
Then, leveraging Bayesian decision theory, we use Bayes
risk analysis to model the variances among different data
sources in their contributions to classification quality. We
adopt an Expected Observational Risk criterion to quan-
tify the loss of classification quality due to load shed-
ding, and propose a Best Feature First (BFF) algorithm
that greedily minimizes such a risk. We also introduce
an approximate BFF algorithm that reduces computation
complexity. The effectiveness of the approach proposed
is confirmed by several experiments on both synthetic and
real-life data.

1 Introduction

Mining high-speed, large volume data streams introduces
new challenges for resource management [8, 11]. In many
applications, data from multiple sources (e.g., data col-

lected by different types of sensors) arrive continuously
at a central processing site, which analyzes the data for
knowledge-based decision making. Typically, the cen-
tral site handles a multitude of such tasks at the same
time, which makes resource management a major issue
for many applications. In particular, under overloaded sit-
uations, policies ofload sheddingmust be developed for
incoming data streams so that the quality of decision mak-
ing is least affected. In this paper, we develop principles
of load shedding for multi-task, multi-source stream clas-
sification applications.

Multi-task, Multi-source Stream Classification. Con-
sider a central sever that handlesn independent classifica-
tion tasks, where each task processes a multiple number of
input streams. Figure 1 shows a typical configuration of
the system, where, for presentation simplicity, we assume
all tasks havek input streams.
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Figure 1: Multi-task, multi-source stream classification

Our problem is the following.Suppose at a given mo-
ment, the central classifier, which monitorsn× k streams
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from n tasks, only has capacity to process m out of the
n × k input streams. Then, which of the input streams
should be inspected so that the classification quality is
least affected?

We use the following two examples to illustrate situa-
tions that give rise to the problem.

1. A security application monitors many locations with
security cameras. At each location, multiple cam-
eras are set up at different viewing angles, since the
speed and direction of a moving object cannot be de-
termined precisely if only one viewing angle is used.
As a result, each location generates multiple image
or video streams and sends them to the central server
for classification. In this case, data from different
cameras are of the same type but they have different
semantics (different viewing angles).

2. In environment monitoring, a central classifier
makes decisions based on a set of factors, such as
temperature, humidity, wind-speed, etc., each ob-
tained by sensors distributed in a wireless network
over a wide geographical region. In this case, multi-
ple data sources for one task contains different types
of information.

An inherent challenge to the problem is that the cen-
tral task of decision making cannot be easily offloaded to
each data source, as classification depends on information
from all of thek sources. On the other hand, in most sit-
uations, it is safe to assume that at any given time, there
exist only a small number of events of potential interest,
which means, even ifm � n × k, it is still possible to
monitor all the tasks and catch all events of interest if we
know how to intelligently shed loads.

Upon receiving the data from multiple sources, the cen-
tral server fuses them into a single form that is processable
by the classifier. For ease of discussion, we assume the
combined data is a vector, and each source provides data
as onefeatureof the vector1.

The goal of intelligent load shedding is to reduce the
cost of the stream classification process while maintaining
the quality of classification. The following factors may
have significant implications on the overall cost.

1Each input stream may in fact contain one or morefeaturesfor the
classification algorithm.

• Cost of data preprocessing. Raw data from the
sources may have to be preprocessed before classi-
fication algorithms can be applied. For example, for
video streams, extracting frames from a video and
extracting features from key frames can be a very
costly process.

• Cost of data transmission. Delivering large amount
of data from remote sources to the centralized server
may incur considerable cost.

• Cost of data collection. Data may be costly to obtain
to begin with. This may limit the sampling rate of a
sensor, or its on-line time due to energy conservation
concerns.

As a concrete example, the central server in the above
security application may have to perform a two-step pro-
cedure: a) the serverobservethe video stream, i.e. re-
ceive the stream from the network, parse the video frame
images to determine the composition of objects and the
location of objects in the image. This step has a very high
computation cost in terms of data transmission and video
parsing. b) the server runs a classification algorithm on
the interpreted image to determine potential security risk.

Cost is reduced if high quality decisions can be made
with less amount of data. For example, if we can predict
the object locations in the video based previous data, then
we can avoid parsing incoming video frames. Granted,
there might be extra overhead associated with makingin-
telligentdecisions on load-shedding. However if the any
of the above costs are the dominant factors in the classi-
fication process, it becomes worthwhile to pay a reason-
able cost forintelligenceto avoid the full costs of data
acquiring and observations. For example, the cost of si-
multaneously receiving and interpreting streaming videos
from many monitoring video-cameras can become pro-
hibitively expensive. Therefore avoiding such data obser-
vations by prediction has the potential to reduce the cen-
tral CPU and network load tremendously. In this paper,
we study this problem ofintelligent load-shedding in de-
tail.

State-of-the-Art Approaches.Although stream classifi-
cation has been a focus of recent study, none of the exist-
ing solutions fully address the challenges associated with
our problem.
• Randomly shedding load

While dropping data indiscriminately and randomly
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from incoming data streams is an obvious choice [9,
3, 2], such methods lead to degradation of classifi-
cation quality. In many cases, not all incoming data
contribute equally to the overall quality of classifica-
tion. In overloaded situations, it is much more de-
sirable if we can somehow choose to drop data that
contributes the least to the quality.

• Relying on static QoS metric functions
Static QoS specifications [9] assumes that the user
hasa priori knowledge about how data contributes
to the quality. In other words, a data source can ap-
ply a QoS metricf on a data item~x = (x1, · · · , xn),
and the value off(~x) indicates to what extent drop-
ping~x negatively impacts the quality. Unfortunately,
stream applications operate in a dynamically chang-
ing environment, which meansf is unlikely to stay
static. For example, data classification applications
must handle concept drifts, where the decision model
has to constantly evolve to adapt to the changing
data distribution [18]. The multi-source setting in-
troduces more restrictions in using such static QoS –
even if we have a metric for the collective~x, we may
not have metrics for each componentxi of ~x, which
means sources still cannot drop the data.

• Solving the special case ofk = 1
LoadStar [4] focused on a special case of our prob-
lem. It assumes each classification task has only
one data source (k = 1). At any time, it decides
which task to work on. Thus, the load shedding de-
cisions are made on a task-by-task basis and it does
not take into consideration the fact that different fea-
tures of the data may contribute differently to the
overall quality. In fact, fork = 1, we can safely of-
fload classification tasks from the centralized server
to each data source, which already has complete in-
formation to make load shedding decisions. How-
ever, for multi-source classification tasks, load shed-
ding cannot be offloaded to the source, as only the
central server has complete information about each
task.

Observations.In this paper, we introduce a quality-aware
load shedding mechanism based on the following obser-
vations.

1. Streaming data often exhibit strong temporal-locality
(e.g. videos showing objects’ movement over time).

This property enables us to build a model to predict
the content of the next incoming data. It then en-
ables us to predict the classification result in the near
future. If this can be done with high confidence, then
we can skip observing data sources that are compu-
tationally expensive to process (e.g. video streams).

2. It is important to recognize that, at a given time,
multiple sources (features) of a task (e.g. multiple
cameras) may have different degree of impact on
the classification result. For example, an approach-
ing object may be caught by a camera at one angle
much earlier before being caught by another cam-
era. Thus, it is advantageous to perform feature-
based load shedding, which is the focus of this pa-
per, instead of task-based load shedding (as Load-
Star [4] performs). In other words, for a given task,
we should only observe those features that contribute
the most to classification accuracy. Then, among a
number of different classification tasks, we pick to
observe a combination of features across different
tasks to maximize the total classification quality.

3. In the Bayesian decision theory,Bayes Riskis used
to measure the quality of classification, and prevent
the Bayesian classifier from certain types of errors
that are costly for a particular application [5] (e.g.
getting false alarms in a security application is usu-
ally more acceptable than missing alarms). In this
paper, we argue that it is only natural that the same
criteria should be considered on the data acquisition
level as well, i.e. if the classifier tries to prevent a
certain error, then the load-shedder for the classifier
must try to prevent the same error when making load
shedding decisions, instead of using another unre-
lated load-shedding criteria.

To achieve this, a simplistic method would use Bayes
Risk as the guideline for load shedding, i.e., greed-
ily observing those features that lead to the largest
reduction of expected Bayes Risk. In this paper,
we show that the optimal guideline is embodied by
part of the expected Bayes Risk (which we term ex-
pected Observational Risk) caused solely by the lack
of data observation. With this new optimization goal,
we achieve good classification quality in the pres-
ence of aggressive feature-based load shedding. The
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adopted Expected Observational Risk precisely cap-
tures the portion of total Bayes Risk that are caused
by the lack of data value observation, therefore is
more effective as an optimization goal for load shed-
ding than the full Bayes Risk.

Contributions. To the best of our knowledge, this is
the first report in the literature that studies load shedding
for the general multi-source stream classification prob-
lem. Our paper makes the following contributions. (a)
We proposefeature-basedload shedding for stream clas-
sification, using Observational Risk as the guideline for
load shedding. (b) We give a complete analysis of the
Bayes risk and a novel algorithm BFF that greedily min-
imizes the expected Observational Risk on a feature-by-
feature basis. (c) We present an alternative algorithm that
approximates the BFF algorithm, which trades some deci-
sion quality for reduced cost. (d) We present experiments
on both synthetic data and real-life data to show the ad-
vantage of our algorithm over random load shedding and
task-basedload shedding methods.

Paper Organization. The rest of the paper is organized
as follows. Section 2 analyzes the general problem of
multi-source stream classification, and motivates the ap-
proach of using Markov model to predict data values for
load shedding. Section 3 analyzes Bayes risk and Ob-
servational Risk. Section 4 presents the feature-based
load shedding algorithm Best Feature First (BFF), and its
lower-cost variant HVWT. Section 5 shows BFF’s gain in
performance over random and task-based algorithms.

2 Problem Analysis and the Markov
Model

2.1 Problem Analysis

Assume a classification task monitors two data sources
X1 andX2 for threats. Each of the sources sends a single
feature stream. Thus, at any timet, the state of a task can
be modeled as a point in a two-dimensional feature space.
In Figure 2, we show states for three such tasks at timet,
which we denote asA(t), B(t), andC(t). Furthermore,
we assume the feature space is divided into two areas such
that points in the shaded area represent threats, and points
in unshaded area represent non-threats.

A(t)

C(t)

B(t)

B(t+1)

C(t+1)

A(t+1)

X1

X2

Figure 2: Task Movement in the Feature Space

Let p be the probability distribution of a point’s posi-
tion at timet + 1 given its position at timet. The exam-
ple in Figure 2 illustratesp as a normal distribution and
it also assumes that the two featuresX1 andX2 are in-
dependent. It follows that the position of a point at time
t + 1 is within an elliptical boundary with high probabil-
ity. Knowing the distributionp enables us to form some
load shedding strategies, which can be used to guide our
data observation (e.g. feature extraction, video analysis)
at timet + 1.

• First, different tasks should be given different prior-
ities when we make data observation. For example,
according top, the next position ofB is far away
from the decision boundary, so without making data
observation at timet + 1, we can already classifyB
with high confidence—no matter whereB moves to,
its classification result will stay the same with high
confidence, thus we can safely predict its class la-
bel without any observation. This is not true forA

andC, for which data observations are necessary for
better classification accuracy.

• Second, different features (streams) should be given
different priorities when we make data observation.
In Figure 3(a), we zoom in on taskA, where distribu-
tion p at timet+1 is represented by an elliptical con-
fidence boundary. The question is, if we can only af-
ford to make one observation, either ofX1 or of X2,
which observation should we make? Suppose we
chooseX1, and the observed valuex1 happens to be
the mean. Then the elliptical region degenerates into
a vertical line segment in Figure 3(b), representing
the conditional distributionp(X2|X1 = x1). How-
ever, this does not help us much – the conditional dis-
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tribution runs across the decision boundary, and we
are still unable to classifyA with high confidence.
If we instead make observation onX2, and again
we assume the observedx2 is the mean ofX2, the
resulting conditional distributionp(X1|X2 = x2)
will not run across the decision boundary, which en-
ables us to make a classification with a much higher
confidence— i.e., with high confidence no matter
what the value ofX2 happens to be, the classifica-
tion will be the same.

A(t)

A(t+1)

p(x1, x2)

(a)

A(t)

A(t+1)

(x
1

= obs
1
)

p(x1, x2|x1=obs1 )

(b)

A(t)

A(t+1)

(x
2

= obs
2
)

p(x1, x2|x2=obs2 )

(c)

Figure 3: Joint and Conditional Distributions

In summary, fromp we derive the following guideline
for load shedding: for taskA, it is more beneficial to ob-
serveX2 than X1; for C, X1 than X2; for B, neither
observation is critical for classification. These intuitions
are explained analytically by the risk analysis in Section
3.

2.2 Markov Model for Movement Predic-
tion in the Feature Space

It is clear from our discussion in the previous section that,
to make intelligent load shedding decisions at timet, we
need to knowp, the distribution of a point’s position at
timet+1. In other words, we should capture the temporal-
locality of the data, and model the movement of a point in
the feature space.

We make a simplifying assumption: a point’s location
in the feature space at timet + 1 is solely dependent on
its location at timet. We then build a finite discrete-time

Markov chain to model a point’s movement as a stochastic
process.

We also assume that features are independent to each
other with regard to points’ movement in the feature
space. This assumption allows us to build a Markov
model on each feature2. More specifically, letX be a
feature that hasM distinct values3. Our goal is to learn a
state transition matrixK of sizeM ×M , where entryKij

is the probability that featureX will take valuej at time
t + 1 givenX = i at timet.

We deriveK through MLE (maximum likelihood esti-
mation). The MLE of the transition matrixK is given by

K̂ij =
nij

∑

k nik

i.e., the fraction of transitions fromi to j among transi-
tions fromi to k, for all possiblek. In other words, we
only need to use the number of observed state transitions
in the history to estimate the transition matrixK. To adapt
to potential concept shifts in the streaming data, i.e., to al-
low for the change of behavior of a point’s movement in
the feature space, we use a finite sliding window of recent
history for maximum likelihood estimation.

3 Bayes Risk Analysis

In this section, we present a best-effort solution to the load
shedding problem described in Section 1. We begin with
a greedy algorithm, which is based on a naive analysis
of the expected Bayes Risk over all classification tasks.
Then, we argue that a portion of the expected Bayes Risk,
which we call the expectedObservational Risk, should be
used as the metric for feature-based load shedding.

3.1 The Expected Bayes Risk

In Bayesian decision theory, we study the risk of misclas-
sification by using a loss function. Letδ(ci|cj) denote the
cost of predicting classci when the data is really of class
cj . Then, at a given point~x in the feature space, the risk

2Without the independence assumption, we need a multivariate
Markov model, which may requires us to estimate a very large transi-
tion matrix.

3We treat continuous values with the same model by discretizing
them into a finite number of bins.
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of our decision to label~x as classci out of K classes is:

R(ci|~x) =

K∑

j=1

δ(ci|cj)P (cj |~x) (1)

whereP (cj |~x) is the posterior probability that~x belongs
to classcj .

One particular loss function is the zero-one loss func-
tion, which is given by

δ(ci|cj) =

{
0 if i = j

1 if i 6= j

under which, the conditional risk in Eq 1 can be simplified
as

R(ci|~x) = 1 − P (ci|~x) (2)

Bayes risk is used to guide classifier training so that the
learned classifier conforms with applications’ error re-
quirements. We can adjust the loss function to reflect our
different tolerance to different types of errors.

We argue that the same criterion must be adopted for
load-shedding. In other words, if the underlying classifier
is tuned to minimize Bayes risk defined by a certain loss
function, then it only makes sense that our load-shedding
mechanism is optimized under the same guideline.

3.2 Expected Bayes Risk and Feature Ob-
servation

Intuition We use Figure 3 to explain what we try to
achieve. We do not know the exact position of~x at time
t + 1, instead, we know the distribution of its position.
In Figure 3(a), the expected risk of A(t + 1) is integrated
over the entire elliptical area. If, however, we choose to
observe dimensionX1, the integration area is reduced to
the dashed vertical line in Figure 3(b), as only dimension
X2 will have any remaining uncertainty in terms of the
exact location of A(t + 1).

In other words, observations may reduce risk. But not
all observations are equal. In Figure 3, if we choose to
observeX1 first, the variance ofX2 is still very high, and
a large portion of the distribution is close to the decision
boundary (high risk area). Whereas if we observeX2 first,
the remaining variance onX1 is much smaller, the distri-
bution is far away from and on the same side of the de-
cision boundary. Therefore, observingX2 gives a larger
risk reduction.

In the rest of this section, we give a rigid analysis of the
intuition we described above.

Risk Before Feature Observation Without any data
observation, our knowledge about a point’s next location
in the feature space is given by distributionp(~x). The ex-
pected risk for classifying a point~x as classci, can be
represented by

Rbefore(ci) = E~x[R(ci|~x)] =

∫

~x

R(ci|~x)p(~x)d~x (3)

which is an integration over the elliptical area in Figure
3(a). Notep(~x) is a shorthand forpt+1(~x), which is de-
rived from the current distribution and the state transition
matrixK of the Markov model.

pt+1(~x) = pt(~x)K

The optimal predictionck is the prediction that minimizes
the expected risk:

k = argmin
i

Rbefore(ci) = argmin
i

E~x[R(ci|~x)] (4)

Therefore the expected risk before any observation is
the risk of classifying the point as classck, which is
Rbefore(ck).

Risk After Feature Observation Suppose we choose
to inspect one data stream, which supplies values forXj .
After observingxj = obsj , the total risk for labeling this
partially observed data point as classci comes to4:

Rafter(ci|obsj) = E(~x|xj=obsj)[R(ci|~x)]

=

∫

~x|xj=obsj

R(ci|~x)p(~x|obsj)d~x(5)

Clearly, Figure 3(b) and 3(c) correspond to Eq 5 with dif-
ferentj’s.

Risk Reduction due to Observation The benefit of
making an observation ofxj is given by the reduction in
the expected Bayes Risk. Suppose after observation the
predicted class isc′k, then the expected risk after observa-
tion isRafter(c

′
k|obsj), and we have

Rdiff (obsj) = Rbefore(ck) − Rafter(c
′
k|obsj)(6)

Thus, a greedy method would pick the feature that leads
to the maximal reduction of risk for observation. In other
words, we should choose the feature that maximizes Eq 6

4Sometimes we usep(~x|obsj) to stand forp(~x|Xj = obsj) for ease
of presentation.
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among all features from all classification tasks5. The best
feature to observe is given by Eq 7.

j∗ = argmax
j

Rdiff (obsj) (7)

Quality of Feature Observation Eq 6 provides a
guideline for feature observation in load shedding. How-
ever, in order to computeRdiff by Eq 6, we need to know
the observed valueobsj . This contradicts our purpose: we
want a metric to tell us what feature to observe.

To actually use Eq 6, we substituteobsj by the expected
value of the feature,E[Xj ], as our best guess for the ob-
servation. This leads to the following Quality of Obser-
vation (QoO) metric definition. TheQBayes in Eq 8 mea-
sures the quality of making an observation on featureXj ,
which is conditioned upon the expected value of feature
Xj .

QBayes(Xj)=Rbefore(ck) − Rafter(c
′
k|E[xj ]) (8)

A generalized metric for making thek-th feature observa-
tion after already having observedk − 1 features can be
derived in a similar manner.

3.3 A Pitfall

The load shedding guideline developed in the previous
section is quite straightforward. However, as we demon-
strate in this section, there is a pitfall in using expected
Bayes risk for load shedding.

Dissecting the risk Let p(C1|x) and p(C2|x) be the
posterior distributions of two classesC1 andC2. With-
out loss of generality, Figure 4(a) shows the two dis-
tributions as two Bell curves. At pointx0, we have
p(C1|x) = p(C2|x). In other words,x0 is the classifi-
cation boundary ofC1 andC2. We further assume feature
valueX1 of time t + 1 has a uniform distribution within
range[a, b].

If we know X1 = x1 at timet + 1, we can make an
optimal decision, which is to predict the class that has

5Note that the predicted class before any observation,ck in equa-
tion 6, is task-dependent. I.e., theRbefore(ck) should really be
Rbefore(ck; taskobsj

), wheretaskobsj
is the task that observation

obsj belongs to. Therefore this value is shared by all observationsobsj

for the same task, but different in different tasks. Same applies to equa-
tion 8.

C1 C2

X1

x0 Optimal Risk 
Lower-bound

a b

(a) The Optimal Risk Lower-bound of Fea-
ture X1 for timet + 1

C1 C2

X1

E[x1]

Obs 
Risk

a b

R(E[x1])

(b) Risk Decomposition and Expected Risk
of Feature X1 for Timet

C1 C2

X2

E[x2]c d

R(E[x2])

(c) Risk Decomposition and Expected Risk
of Feature X2 for Timet

Figure 4: Bayes Risk Composition
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higher posterior probability atx1. Assuming 0/1 loss,
the optimal risk atx1 is the value of the smaller posterior
probability. Therefore, given thatx1 distributes uniformly
within [a, b], the expected optimal risk is the average of
the shaded area in Figure 4(a).

This expected optimal risk cannot be further reduced
by improving the underlying classifier, or by any other
means. In fact, it is the unavoidable, lowest risk, as it is
dictated by the nature of the class posterior probabilities.

Then, what will be the risk if we do not know the ex-
act value ofX1 at time t + 1? We still need to make a
prediction, and suppose that we predictC2. Then the to-
tal Bayes Risk is the shaded areas in Figure 4(b), and we
can see the risk is not optimal at data points whereC1

should have been the optimal decision. Compared with
the optimal risk, the increased portion, which we call the
Observational Risk, is shown as the extra shaded areas in
Figure 4(b).

The Pitfall The strategy we developed in the previous
section may not be optimal in risk reduction. To see this,
we can compare the two featuresX1 andX2 shown in
Figure 4(b) and Figure 4(c), where we want to decide
which feature to observe. As shown in the figure,X2

has a different distribution at timet + 1 (uniform within
[c, d]) fromX1, and consequently different expected value
E(X2) and different Observational Risk.

By observing the value of a feature, we can elimi-
nate the Observational Risk associated with that feature.
Clearly, we should choose to observe featureX1, because
as shown in Figure 4, its area that corresponds to the Ob-
servational Risk is larger.

However, based on the strategy developed in the last
section, we would opt to observe featureX2, because
it has a much lower risk value at its expected location
E(X2), as shown in the figure. According to Eq 8, we
should choose the featureX such that the expected risks
before observingX (in the figure, the average value of
the total shaded area) and after observingX (in the figure,
R(E[X ])) has the largest difference. SinceR(E[X1]) is
much larger thanR(E[X2]), the risk reduction may in fact
favor featureX2.

3.4 The Expected Observational Risk

The naive risk analysis in Section 3.2 failed to deliver an
optimal load shedding strategy because it tries to mini-
mize the entire Bayes Risk when making data observation
choices. It does not realize that Bayes risk consists of two
parts, and only one part, the Observational Risk, can be
eliminated by making observations. The other part, the
Optimal Risk, is unavoidable, and data observation can-
not lead to a risk lower than this lower bound.

As data observations can only reduce the Observational
Risk portion of Bayes Risk, it makes sense to use Obser-
vational Risk instead of the full Bayes Risk as our opti-
mization goal for load shedding.

In this section, we propose a new metric,QObs, to
guide data observation. The superiority ofQObs over
QBayes is due to its focus on the reducible risks, and such
superiority is confirmed later in experiments in Section 5.

The QObs Metric At each location~x in the feature
space, there is an optimal decision given by the under-
lying classifier, suppose it isc∗. Clearly,c∗ is given by6:

c∗ = argmin
i

R(ci|~x) (9)

Then, we can re-write the Expected Bayes Risk for un-
observed tasks in Eq 3 into the following form, where we
assume the assigned class by the classifier isck according
to Eq 4.

Rbefore(ck) = E~x[R(ck|~x)] =

∫

~x

R(ck|~x)p(~x)d~x

=

Optimal Risk Lower-bound
︷ ︸︸ ︷∫

~x

R(c∗|~x)p(~x)d~x

+

∫

~x

[R(ck|~x) − R(c∗|~x)]p(~x)d~x

︸ ︷︷ ︸

Expected Observational Risk

(10)

It is clear from Eq 10 that the expected risk for an un-
observed data point consists of two parts.

• The first part,
∫

~x
R(c∗|~x)p(~x)d~x, is the expected Op-

timal Risk, which is the lowest possible risk that the
underlying classifier can achieve.

6c∗ is actually a function of~x. Herec∗ is used in place ofc∗(~x) for
representation simplicity.

8
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• The second part,
∫

~x
[R(ck|~x) − R(c∗|~x)]p(~x)d~x, is

the expected risk increase over the lower bound,
which is caused by a non-optimal prediction due to
classifier’s lack of knowledge about the true data.
This is the portion that observation of data affects
the most – it is completely eliminated after the full
observation of all features.

Therefore, we should first observe features that lead to
the largest reduction of the second part of Bayes Risk, the
Observational Risk, which only apply to un-observed (or
partially observed) data.

The expectation of the Observational Risk (which
we will refer to asRobs) for un-observed or partially-
observed data is then:

Robs
before(ck) =

∫

~x

[R(ck|~x) − R(c∗|~x)]p(~x)d~x (11)

Intuitively, if the distribution has less overlap with the de-
cision boundary, then the Expected Observational Risk
will have a lower value—this explains the guidelines de-
rived from intuitions in Section 2.

Similarly, the risk after the first observationRafter in
Eq 6 can also be decomposed into two parts, in much the
same way as the decomposition of Eq 10 goes. Therefore
the Observational Risk after observing featurexj is given
by:

Robs
after(c

′
k|obsj) =

∫

(~x|xj=obsj)

[R(c′k|~x) − R(c∗|~x)]p(~x|obsj)d~x

Now, we can replaceobsj with its expectation, and mod-
ify the Quality of Observation metricQBayes defined in
Eq 8 intoQObs, which measures the gain of Observational
Risk after observing the featureXj. (Hereck is the pre-
dicted class before the observation, andc′k is the predicted
class after the observation.)

QObs(Xj)=Robs
before(ck) − Robs

after(c
′
k|E[xj ]) (12)

The above gives the guideline for picking the first fea-
ture for observation. We can use similar procedures to
maximize Expected Observational Risk reductions before
and after making thekth feature observation for a task.
Eventually, with full observation the risk is reduced to the
optimal risk at the observed location~xobs, which solely
depends on the underlying classifier and the location it-
self, without any contribution from the data observation
error.

Therefore, the generalized metricQObs measures the
quality of making thekth observationxk, which is condi-
tioned on the feature values we have already observed so
far (obs1, obs2, · · ·, obsk−1), and the expected value of the
featurexk that we are about to observe.

QObs(Xk) = Robs(ck|obs1,··· ,k−1)

−Robs(c′k|obs1,··· ,k−1, E[xk]) (13)

=

∫

~x|obs1,··· ,k−1

R′(ci|~x)p(~x|obs1,··· ,k−1)d~x

−

∫

~x|obs1,··· ,k−1,

xk=E[xk]

R′(ci|~x)p(~x|obs1,··· ,k−1, E[xk])d~x

Obviously, Eq 12 is a special case of Equation 13 where
the set of already-observed features is empty.

4 The Best Feature First (BFF) Al-
gorithm

4.1 The BFF Algorithm

The Best Feature First (BFF) algorithm (shown in Algo-
rithm 1) is derived based on Eq 13. BFF is invoked once
in every time unit, which utilizes the metricQObs to re-
peatedly pick the nextbest feature to observe until the
capacity for the time unit is consumed.

Intuitively, in Algorithm 1, at the beginning of each
time unit we first compute the predicted distributions for
each feature using Markov chains, and then compute an
expected decision for each task based on the predictions.
Then we repeatedly pick to observe thebestunobserved
feature over all tasks that leads to the largest reduction in
Expected Observational Risk. By doing so, we greedily
minimize Expected Observational Risk over all tasks.

4.2 Implementation Issues and Cost Analy-
sis

While conceptually clear, the BFF algorithm has a few
implementation and computation issues that require fur-
ther elaboration.

Computing the Expected Risks: The BFF algorithm
requires computing the Expected Observational Risk. For

9
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Algorithm 1 The Best Feature First (BFF) Algorithm
inputs: A total ofn classification tasks, where each taskTi hask
streaming data sources(features). For the current time unit, some
or all of theN = n× k streams may have new data available.
outputs: Decisionsδi (i ∈ 1, · · · , n) for each of then tasks
static variables: One next feature distribution vectorp(x), and
one Markov modelK built on data in a sliding window, for each
of theN streams
how to use: invoke once per load-shedding time unit

1: Compute the predicted feature distributionp(x) for each
featurex, based on the previousp(x) value and the Markov
modelK.

2: Compute the predicted decisionδi (i ∈ 1, · · · , n) for each
of the n tasks, based on the predicted feature distribution
p(x) (Equation 4).

3: Apply heuristics to prune the set of all features, which re-
sults in candidate feature setFcand. (See discussion in Sec-
tion 4.2.)

4: For all featuresxj ∈ Fcand, computeQObs(xj) by Eq 13
5: For all featuresxk /∈ Fcand, assignQObs(xk)← 0
6: observed count← 0
7: while still data andobserved count < Capacity do
8: Pick the unobserved streamxj with the highestQObs(xj)

value across all features of all tasks, and observe its actual
data value. Break tie randomly.

9: If the highestQObs(xj) equals to 0, randomly pick the
remaining (Capacity−observed count) number of fea-
tures to observe, and terminate the loop.

10: Update distributionp(xj) to a unit vector to reflect the
observation made.

11: Update the decisionδi for the taskTi that streamxj

belongs to, based on the new feature distributionp(xj)
(Equation 4).

12: Update theQObs values for the remaining unobserved
streams belonging to taskTi (Equation 13 ).

13: observed count← observed count + 1
14: end while
15: Update the Markov model for each stream based on obser-

vations made in this and previous time unit (add counts for
newly observed transitions, and remove those expired out of
the sliding window).

example, to computeRobs
before(ck) in Eq 11 for a task with

feature vector distributionp(~x), we need to know two sets
of values.
• The risk valueR(ci|~x) for feature vector~x can be

obtained from the underlying Bayesian classifier,
which computes an estimated posteriorP (ci|x) from

likelihoodP (x|ci) and priorP (ci) and estimates risk
accordingly[5].

• The movement distribution probabilityp(~x) for fea-
ture vector~x can be obtained from the Markov mod-
els. Suppose~x hask features, then the probability
for the full feature vector isp(~x) =

∏k
i=1 p(xi),

based on the assumption of feature movement inde-
pendence. Here eachp(xi) on an individual feature
is computed using the corresponding Markov model.
Suppose for featurexi, the feature distribution at
time t − 1 is pit−1 , then

pit
= pit−1K

whereK is the state transition matrix for the Markov
model of featurexi.

We then compute the Expected Observational Risk by
integrating over the domain of feature vector~x, which is
discussed next.

Numeric Integration Over Feature Space To compute
the Expected Observational Risk we need to integrate over
the entire feature space of a task. This is computationally
expensive if the task has a high dimension. To reduce the
computational complexity we useintegration by sampling
as validated in [4] and in our own experiments.

In short, based on the independence in movement as-
sumption, we perform 1-dimensional Monte Carlo sam-
pling [15] on each feature based on its predicted data dis-
tribution, and then assembled the results from all features
to form samples for the full feature vector, which can then
be used to compute the expected risk as an un-weighted
average. We will omit further details on this.

Markov Model Maintenance We separately maintain
one Markov chain for each feature. If a feature hasM dis-
tinct values, a matrix ofM × M counters is maintained
for the feature. Due to load shedding, we may not have
consecutive observations on a particular feature to fill up
the counters. We adopt an an-hoc method to force some
consecutive observations in order to fill the counters, as
used in [4], which will not be further discussed here. The
dynamic nature of the streaming environment can also be
addressed by building the Markov model on a sliding win-
dow of data, which we do not further discuss.

10
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Feature Set Pruning to avoid Qobs evaluation The
most expensive step in BFF is to compute the metricQobs

for each feature of each classification tasks, possibly re-
peatedly, as discussed below. To reduce the cost of the
algorithm, we apply some heuristics to avoid evaluating
the Qobs of some features. Primarily, two heuristics are
applied: 1) Avoid computingQobsj

metric (the gain of
observational risk given the expectation of featurej) for
features from tasks that have very low observational risk
values to begin with. A threshold risk value is adaptively
set, (e.g. the 20 percentile of the non-zeroQobs values
from the last window) and used to prune features from
such low-risk tasks. 2) Further, we prune features whose
Qobs in the last window was below the threshold, and the
overall risk value of the task has changed very little com-
pared to last window. That is, even if a task has a over-
all risk that makes the threshold, we avoid features in the
task whose observation is not likely to give rise to enough
risk gains. Although the worst case is not affected, these
heuristics effectively reduces the amortized average com-
putational complexity in our experiments.

Algorithm Cost Analysis The most expensive step in
BFF is to compute the metricQobs for each feature of each
classification tasks. Without using the feature set pruning
methods discussed above, suppose there aren tasks withk
dimensions each (therefore there are a total ofN = n× k

streams), and out of them we have the capacity to ob-
servem streams. Before we make any observation, we
will perform a total ofO(N) computation ofQobs met-
rics. Then after making each observation, we will only
need to update metric values forO(k) un-observed fea-
tures for the affected task, which makes the totalQobs

update cost to beO(m × k). Therefore, each round we
perform[O(N) + O(m × k)] computations of theQobs

metric. With feature set pruning, the amortized average
cost reduces a lot as confirmed by our experiments.

The sampling step ofQobs computation, as discussed
above for integration, only needs to be done once per time
unit. Suppose we obtainh samples on each feature, the
total cost of sampling is thenO(h × N). h is usually a
small number here, as 10-20 samples are usually enough
to give a very good estimation in our experiments.

Maintaining the Markov models for each feature re-
quireM × M space complexity, andM × M time com-

plexity for counter updates in each time unit. Therefore,
we have a total ofN ×M ×M updates for Markov model
maintenance.

4.3 A Lower-cost Hybrid

In this section we discuss an alternative approximation
algorithm that further reduces the cost of metric com-
putations complexity to the same level of task-based al-
gorithms, while performing better than task-based algo-
rithms.

Highest Variance of Worst Task (HVWT) Intuitively,
instead of completely operate on features, this algorithm
is a hybrid of task-based and feature-based algorithms, in
which we pick a task first before picking a feature from
the task. First, we pick theworst task that has the high-
est overall Observational Risk, by using Eq 11 which is
computed on tasks. Then, instead of observing all the fea-
tures in thisworsttask (as a task-based algorithm, such as
LoadStar [4], will do), we only pick onebestfeature (in
term of observation) from this task to observe. We then
update the task’s Observational Risk value after this ob-
servation, and start over again to pick theworst task and
a bestfeature, and repeat this process until the capacity is
reached.

To pick thebestfeature we utilize the following intu-
ition. Frequently, a feature with a high variance in terms
of movement destination will contribute more to the over-
all Observational Risk. For example in Figure 3, feature
X2 for task A has a high variance in movement, and ob-
serving which will result in a larger Observational Risk re-
duction than observing featureX1. Intuitively, the higher
the variance in movement, the more likely the destination
will run across decision boundary, and therefore the larger
its contribution to total Observational Risk. Of course a
high variance does not always lead to a larger Observa-
tional Risk, e.g. in Figure 2 it is the lower-variance feature
(X1) in task C that contributes more to the Observational
Risk, therefore we may not always be picking thebest
feature by this approximation.

Assuming feature movement patterns usually last for
some period of time, the variance of movement for each
feature can be computed once and reused in each time
unit, only to be re-evaluated periodically. Therefore here
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in each time unit we asymptotically avoid computing the
[O(N) + O(m × k)] Qobs metrics, and instead only do
O(n) computations of Expected Observational Risk for
each task.

5 Experiment Evaluation

We apply feature-based load shedding on both synthetic
and real-life data sets. Results indicate that the BFF algo-
rithm out-performs both the random-shedding algorithm
and the task-based shedding algorithm LoadStar[4] on
multi-source classification tasks. In addition, the lower-
cost hybrid HVWT algorithm appears to have a good
trade-off between complexity and error performance.

5.1 Experiment Setups

We implement the load shedding and classification algo-
rithms in Java. The experiments are carried out on a Linux
machine with a P4 2.8GHz processor and 1GB of main
memory. We use the Naı̈ve Bayesian classifier, which has
been shown to be highly effective in practice, as our base
classifier, and we use a 0/1 loss function for risk com-
putation. For ease of study we fix the number of input
streams for each time unit, and compare the classification
errors under different amount of load shedding. Because
of the 0/1 loss function, classification error is simply com-
puted as the percentage of mis-labeled data points. For the
Monte Carlo sampling we use 10 sample points for each
task.

5.2 Experiments on Synthetic Datasets

We generate data for 25 classification tasks each withK

features (i.e.K different streaming inputs), thus for a to-
tal of 25 ∗ K input streams. For ease of study, the tasks
share the same two-class classification model. Due to
the näıve assumption, the class models on each feature
are assigned independently. Half of theK features for
each task are assigned with the following class model:
p(x|+) ∼ N(0.3, 0.22), p(x|−) ∼ N(0.7, 0.22), where
N(µ, σ2) is Normal Distribution with meanµ and vari-
anceσ2. The other half features in each task are assigned
with the following class model:p(x|+) ∼ N(0.7, 0.22),

p(x|−) ∼ N(0.3, 0.22). Then thereal class of each gen-
erated point is assigned using the class with the higher
joint posterior probability.

For data point movements, we use a random walk
model:

xt = xt−1 + ε, whereε ∼ N(0, σ2)

To have a mixture of different movement variances, half
of theK features in each task are assigned with aσ value
of 0.3, and the other half are assigned with aσ value of
0.005. Therefore the features in the same task could have
very different movement variances.

Data are generated for 10000 time units on all the
streams, the first 5000 time units are used for training
the classifier and the Markov models, and the rest are
used for testing. We omit sliding window management
for Markov models in our experiments, since its effec-
tiveness in adapting to changing movement patterns un-
der this type of load shedding settings has already been
validated elsewhere [4].

Quality of Classification Figure 5 shows the quality
of classification under different load shedding percent-
ages for load-shedding algorithms with different quality
metrics(K=4, i.e. 4 features per task). Since random
shedding does not use any intelligence in selecting fea-
tures for observation, we use random shedding as the
baselinefor comparison. The horizontal axis shows the
percentage of load that is shed from observation, and the
vertical axis shows the relative error compared to the error
of random-shedding (i.e.Erroralgorithm

Errorrandom
). We see that the

feature-based greedy algorithm utilizing metricQBayes

(line C) performs better than the task-based load shedding
method LoadStar (line B), while the BFF algorithm (line
D), which is feature-based and specifically targeting the
Observational Risk, outperforms all other methods. The
BFF algorithm achieves more than 45% improvements
over random load shedding when the amount of shedding
is about 40% to 50%. When the amount of shedding fur-
ther increases, the improvement drops as prediction be-
comes less accurate.

Figure 6 validates the hybrid algorithm HVWT (line
E)7. This approximation algorithm outperforms LoadStar

7We try to keep the labeling of algorithms consistent across different
figures, therefore here we have kept the labels B and D, and added label
E.
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Figure 5: Comparison of Task-based and Feature-based
Methods on Synthetic Data

while achieves classification error close to that of BFF.

Figure 6: The Approximation Algorithm HVWT on Syn-
thetic Data

CPU Cost To study the cost of different algorithms, we
measure theeffective CPU time savingunder different
load shedding conditions. Because of computation over-
head, when we shed x% of data from observation, we ac-
tually achieve a total CPU cost saving that is less than x%.
Therefore, we measure the total CPU time required un-
der load shedding, and divide it by the total CPU time re-
quired without load-shedding. This ratio is then theeffec-
tive CPU time savingachieved by load shedding. There-
fore, under a given load-shedding amount, the higher this
ratio is, the less overhead is commanded by the algorithm.

As discussed in Section 1, our algorithm applies to the
case when data observation is associated with high cost
(e.g. audio/video streams that have high feature extraction
cost, or sensor data that has a high communication cost).
Therefore, to simulate a realistic situation and study the
costs of the algorithms, in the experiments we assign an
observation costc to each data observation (i.e. It costs
c as in CPU time to observe a data source). In particu-
lar, in the experiments in Figures 7,c is set to 5 milli-
seconds per data source observation. This observation
cost is reasonable in many situations. For example, sup-
pose our algorithm detects alert situations by first tracking
the movement of objects in video frames, and then clas-
sifying whether danger is present, depending on the ob-
ject position in the frame. The object recognition step for
the video frames thus becomes a pre-processing step for
the danger classification. Such recognition process eas-
ily takes tens of milli-seconds in practice. As an example,
suppose the object we are tracking is a human face, in [17]
it is shown that using state-of-the-art technology, it takes
67 milli-seconds to recognize face on a 384x288 image.
(In comparison, in our experiments, it takes about 1 milli-
second to randomly select a feature, and then predict its
value and classify the corresponding task. Therefore, the
observation cost can be a much more significant cost com-
pared to classification.)

Figure 7(a) (K = 2, i.e., two-features per task) and
7(b) (K = 4, i.e., four-features per task) shows the effec-
tive CPU time savings under different load shedding con-
ditions. The result shows that LoadStar and HVWT in-
troduce an overhead that is quite close to each other, with
both costs a little higher than random shedding. Never-
theless, both of these two algorithms result in quite small
overheads. For example, if the data tuple shedding is
10%, the effective CPU time saving of these algorithms is
in the range of (5-7)%. On the other hand, the BFF algo-
rithm shows a higher overhead, where CPU savings from
the first 10% tuple shedding is basically consumed by the
algorithm overhead, i.e., a 20% tuple shedding roughly
achieves a 10% CPU time saving for the BFF algorithm.
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(a) Two-features per Task

(b) Four-features per Task

Figure 7: The CPU Cost of Algorithms

5.3 Real Life Experiments: Traffic Jam
Prediction

For real-life data, we use datasets exported from National
Center for Data Mining database of Illinois IDOT High-
way Sensors [1]. Aggregated traffic information of aver-
age speed, volume etc, are collected by sensors located
along highways (readings about 5 minutes apart). We de-
vise the following streaming application: based on the
hour of day, the traffic condition on a highway segment,
as well as the traffic conditions on the adjacent segments,
predict whether there will be along traffic jamon this
segment. We simplistically define a long traffic jam as
”average speed< 15mph for a consecutive 30 minutes or
longer with no gaps”. Real traffic data are labeled either

as in long traffic jamor not in long traffic jamaccording
to this criteria, and used to train a separate Naive Bayes
classifier for each highway segment. The idea is that, the
traffic conditions (e.g. average speed) on highways should
follow some stochastic process that can be reasonably pre-
dicted by a Markov model, and therefore we can perform
load shedding based on these predictions.

For the experiments, we select 4 highway segments (4
tasks), each task with a total of 64 features, including i)
the traffic information at current time unit for this seg-
ment and the 2 segments before and 2 segments after this
segment. ii) the traffic condition on the these same 5 seg-
ments during the last 3 time units.

Out of the 64 features per task, only the 16 for the
current time unit needs to be modeled and predicted.
The other 48 features are historical data (for the last 3
time units) that are simply copied over from the obser-
vations/predictions at the previous time units. Therefore,
under this setting we have 16 streams per task for load
shedding, with a total of 64 data streams overall for 4
tasks. We used 3-weeks worth of aggregated traffic data
(collected roughly once every 5 minutes) to train Naive
Bayes classifiers, and use one-week worth of data for test-
ing. The long traffic jamprediction is rather successful
under this setting, with a base error rate of about 4%.

Figure 8 shows the experiment comparing 4 load shed-
ding algorithms for the traffic prediction task. Very simi-
lar to synthetic data, we see that the BFF algorithm with
metric QObs (line D) gives the best performance, while
the approximation algorithm HVWT outperforms Load-
Star and approaches the performance of the BFF algo-
rithm.

6 Related Works

The task-based load shedding algorithm LoadStar [4]
studies a special case of the stream classification prob-
lem, where every task only has one input data stream. In
our paper, we focus on the more general case where each
task may have multiple input sources, and devise feature-
based metric and algorithms accordingly.

Load shedding mechanisms for data stream queries
has been studied for Data Stream Management Sys-
tems (DSMS). These systems generally either employ
a random-dropping mechanism [2, 9, 16], rely on user-
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Figure 8: Comparison of Task-based and Feature-based
Methods on Traffic Prediction

provided static QoS metric [9], or build an adaptive feed-
back loop for tuple latency based on control theory [10].
These methods do not address the quality requirements of
classification tasks, where the quality measures are non-
static and task-dependent.

Adapting classifiers for streaming data is another re-
lated area [18, 12, 13, 14], which usually studies one-pass
incremental algorithms, builds data synopsis, or adapts
classifiers to concept-shifts. Our work instead focuses on
intelligently dropping, not approximating, input data un-
der overloaded conditions.

Another related area is distributed data streams query-
ing [7, 6], which focuses on cost savings across a dis-
tributed network. Here we focus on a multi-source task
setting, where only the server has the full knowledge to
decide which data to drop.

7 Conclusions

In this paper we adopt a Bayes Risk based approach to-
ward the multi-source classification problem. We per-
formed a full analysis of Bayes Risk and propose a risk
measure for load shedding - the Observational Risk. We
devise the BFF algorithm for feature-based load shedding
and its lower-cost approximation algorithm HVWT, and
use both synthetic and real-life data to validate the perfor-
mance of the algorithms.
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