UCLA C.S. Dept. Tech. Report TR060027 December 2006

Load Shedding in Classifying Multi-Source Streaming Data:
A Bayes Risk Approach

Yijian Bai Haixun Wang Carlo Zaniolo
UCLA IBM T. J. Watson UCLA
bai@cs.ucla.edu haixun@us.ibm.com zaniolo@cs.ucla.edu

Abstract lected by different types of sensors) arrive continuously
at a central processing site, which analyzes the data for
In many applications, we monitor data obtained from mutnowledge-based decision making. Typically, the cen-
tiple streaming sources for collective decision makingal site handles a multitude of such tasks at the same
The task presents several challenges. First, data in setigoe, which makes resource management a major issue
networks, satellite transmissions, and many other fielids many applications. In particular, under overloaded sit
are often of large volume, fast speed, and highly bursigtions, policies ofoad sheddingnust be developed for
nature. Second, because data are collected from mukeoming data streams so that the quality of decision mak-
ple sources, it is impossible to offload classification dedirg is least affected. In this paper, we develop principles
sions to individual data sources. Hence, the central cla$ioad shedding for multi-task, multi-source stream clas-
sifier responsible for decision making is constantly undsification applications.
overloaded situations. In this paper, we study intelligent . e
load shedding for classifying rﬁuﬁi-source da}[/a. We%iMUIt"taSk’ Multi-source Stream Classification. Con-
at maximizing classification quality under resource (CP"‘C'Jder a.central sever that handiemdependent_classmca-
and bandwidth) constraints. We use a Markov moqtéqntasks,where.each task processe;amulnple numberof
to predict the distribution of feature values over timdPut streams. Figure 1 shows a typ|_cal gqnflgurat|on of
Then, leveraging Bayesian decision theory, we use Ba g system, where, for presentation simplicity, we assume
risk analysis to model the variances among different d ‘Jj‘tasks havé input streams.
sources in their contributions to classification qualite W
adopt an Expected Observational Risk criterion to quan:__
tify the loss of classification quality due to load shed-:
ding, and propose a Best Feature First (BFF) algorithm
that greedily minimizes such a risk. We also introduce.u...
an approximate BFF algorithm that reduces computatiofu... cormren classtcations resuls
complexity. The effectiveness of the approach proposed.... z Classif
is confirmed by several experiments on both synthetic and
real-life data.

source i

source k input streams

1 Introduction
Figure 1: Multi-task, multi-source stream classification

Mining high-speed, large volume data streams introduces
new challenges for resource management[8, 11]. In manyOur problem is the followingSuppose at a given mo-
applications, data from multiple sources (e.g., data catent, the central classifier, which monitars< k streams

UCLA C.S. Dept. Tech. Report TR060027 December 2006

from n tasks, only has capacity to process m out of thee Cost of data preprocessing. Raw data from the

n x k input streams. Then, which of the input streams sources may have to be preprocessed before classi-

should be inspected so that the classification quality is fication algorithms can be applied. For example, for

least affected? video streams, extracting frames from a video and
extracting features from key frames can be a very
costly process.

e Cost of data transmission. Delivering large amount
of data from remote sources to the centralized server

We use the following two examples to illustrate situa-
tions that give rise to the problem.

1. A security application monitors many locations with

security cameras. At each location, multiple cam-
eras are set up at different viewing angles, since the
speed and direction of a moving object cannot be de-

may incur considerable cost.

Cost of data collection. Data may be costly to obtain
to begin with. This may limit the sampling rate of a
sensor, or its on-line time due to energy conservation

termined precisely if only one viewing angle is used.

As a result, each location generates multiple image

or video streams and sends them to the central serveffS @ concrete example, the central server in the above
for classification. In this case, data from differert€CUrity application may have to perform a two-step pro-

cameras are of the same type but they have differ€glure: @) the serveabservethe video stream, i.e. re-

semantics (different viewing angles). ceive the stream from the network, parse the video frame

2 . i itori wral classif images to determine the composition of objects and the
- N environment monttoring, - a central Classiligh, - a4qp of objects in the image. This step has a very high

makes decisions based on a set of factors, such 8ﬁ1putati0n cost in terms of data transmission and video

te!”nperature, humld!ty, -Wlnd-s.peed,.etc., each o arsing. b) the server runs a classification algorithm on
tained by sensors distributed in a wireless netwo

i hical reaion. In thi | e interpreted image to determine potential security. risk
over a wide geographical region. In this case, multi- - s reduced if high quality decisions can be made

p:ce_ (1ata S(:_urces for one task contains different YR%fh less amount of data. For example, if we can predict
ot information. the object locations in the video based previous data, then
. . we can avoid parsing incoming video frames. Granted,
An inherent challenge to the problem is that the ce 1ere might bepextra gverhead gssociated with maiiing
tral task of decision making cannot be easily offloaded%é)IIigentdecisions on load-shedding. However if the any

each data source, as classification depends on informa 10 e above costs are the dominant factors in the classi-

from all of thek sources. On the other hand, in most siE— : .)
ication process, it becomes worthwhile to pay a reason-

uations, it is safe to assume that at any given time, ther

. o e cost forintelligenceto avoid the full costs of data
exist only a small number of events of potential interes o . .

;) S . actquiring and observations. For example, the cost of si-
which means, even ifn < n x k, it is still possible to

. . .._multaneously receiving and interpreting streaming videos
monitor all the tasks and catch all events of interest if v¥e y L 9 . P 9 9
. . rom many monitoring video-cameras can become pro-
know how to intelligently shed loads.

Ubon receiving the data from multile sources. the Cerr1]i_lt)itively expensive. Therefore avoiding such data obser-
ral P f Wi ?h int inal L; P th tj ' ?tions by prediction has the potential to reduce the cen-
ral serveriuses them into a single form that 1S processagi§y cpy ‘and network load tremendously. In this paper,
by the classifier. For ease of discussion, we assumeq&/

e . . . L,
combined data is a vector, and each source provides gfﬁstudy this problem dhtelligentload-shedding in de-
as ondeatureof the vectot. '

The goal of intelligent load shedding is to reduce tHgtate-of-the-Art Approaches. Although stream classifi-
cost of the stream classification process while maintainiggtion has been a focus of recent study, none of the exist-
the quality of classification. The following factors mayng solutions fully address the challenges associated with
have significant implications on the overall cost. our problem.

LEach input stream may in fact contain one or mieuresfor the d Rar_1dom|y Shedding |_an o
classification algorithm. While dropping data indiscriminately and randomly

concerns.

UCLA C.S. Dept. Tech. Report TR060027

December 2006

from incoming data streams is an obvious choice [9,
3, 2], such methods lead to degradation of classifi-
cation quality. In many cases, not all incoming data
contribute equally to the overall quality of classifica-
tion. In overloaded situations, it is much more de-
sirable if we can somehow choose to drop data that
contributes the least to the quality.

Relying on static QoS metric functions 2
Static QoS specifications [9] assumes that the user
hasa priori knowledge about how data contributes
to the quality. In other words, a data source can ap-
ply a QoS metri¢f on a data iten® = (21, -+ , x,),

and the value of (¥) indicates to what extent drop-
ping ¥ negatively impacts the quality. Unfortunately,
stream applications operate in a dynamically chang-
ing environment, which meangis unlikely to stay
static. For example, data classification applications
must handle concept drifts, where the decision model
has to constantly evolve to adapt to the changing
data distribution [18]. The multi-source setting in-
troduces more restrictions in using such static QoS —
even if we have a metric for the collectize we may
not have metrics for each componentof Z, which
means sources still cannot drop the data.
Solving the special case bf= 1

LoadStar [4] focused on a special case of our prob-
lem. It assumes each classification task has only
one data sourcek(= 1). At any time, it decides
which task to work on. Thus, the load shedding de-
cisions are made on a task-by-task basis and it does
not take into consideration the fact that different fea-
tures of the data may contribute differently to the
overall quality. In fact, fork = 1, we can safely of-
fload classification tasks from the centralized server
to each data source, which already has complete in-
formation to make load shedding decisions. How-
ever, for multi-source classification tasks, load shed-
ding cannot be offloaded to the source, as only the
central server has complete information about each
task.

3.

This property enables us to build a model to predict
the content of the next incoming data. It then en-
ables us to predict the classification result in the near
future. If this can be done with high confidence, then
we can skip observing data sources that are compu-
tationally expensive to process (e.g. video streams).

. It is important to recognize that, at a given time,

multiple sources (features) of a task (e.g. multiple
cameras) may have different degree of impact on
the classification result. For example, an approach-
ing object may be caught by a camera at one angle
much earlier before being caught by another cam-
era. Thus, it is advantageous to perform feature-
based load shedding, which is the focus of this pa-
per, instead of task-based load shedding (as Load-
Star [4] performs). In other words, for a given task,
we should only observe those features that contribute
the most to classification accuracy. Then, among a
number of different classification tasks, we pick to
observe a combination of features across different
tasks to maximize the total classification quality.

In the Bayesian decision theoBayes Risks used

to measure the quality of classification, and prevent
the Bayesian classifier from certain types of errors
that are costly for a particular application [5] (e.g.
getting false alarms in a security application is usu-
ally more acceptable than missing alarms). In this
paper, we argue that it is only natural that the same
criteria should be considered on the data acquisition
level as well, i.e. if the classifier tries to prevent a
certain error, then the load-shedder for the classifier
must try to prevent the same error when making load
shedding decisions, instead of using another unre-
lated load-shedding criteria.

To achieve this, a simplistic method would use Bayes
Risk as the guideline for load shedding, i.e., greed-
ily observing those features that lead to the largest
reduction of expected Bayes Risk. In this paper,
we show that the optimal guideline is embodied by

Observations.In this paper, we introduce a quality-aware
load shedding mechanism based on the following obser-
vations.

1. Streaming data often exhibit strong temporal-locality
(e.g. videos showing objects’ movement over time).

part of the expected Bayes Risk (which we term ex-
pected Observational Risk) caused solely by the lack
of data observation. With this new optimization goal,
we achieve good classification quality in the pres-
ence of aggressive feature-based load shedding. The

UCLA C.S. Dept. Tech. Report TR060027 December 2006

adopted Expected Observational Risk precisely cap-
tures the portion of total Bayes Risk that are caused "
by the lack of data value observation, therefore is AOY

more effective as an optimization goal for load shed- \

ding than the full Bayes Risk.

L AMD (20

Contributions. To the best of our knowledge, this is
the first report in the literature that studies load shedding
for the general multi-source stream classification prob-
lem. Our paper makes the following contributions. (a)
We proposédeature-basedbad shedding for stream clas- Figure 2: Task Movement in the Feature Space
sification, using Observational Risk as the guideline for

load shedding. (b) We give a complete analysis of the

Bayes risk and a novel algorithm BFF that greedily min- Let p be the probability distribution of a point's posi-
imizes the expected Observational Risk on a feature-f${h at timet + 1 given its position at time. The exam-
feature basis. (c) We present an alternative algorithm tR& in Figure 2 illustratep as a normal distribution and
approximates the BFF algorithm, which trades some dei¢ialso assumes that the two featur€s and X, are in-
sion quality for reduced cost. (d) We present experimef@Pendent. It follows that the position of a point at time
on both synthetic data and real-life data to show the dd* 1 is within an elliptical boundary with high probabil-

vantage of our algorithm over random load shedding a4 Knowing the distributiorp enables us to form some
task-basedoad shedding methods. load shedding strategies, which can be used to guide our

Paper Organization. The rest of the paper is organizegata observation (e.g. feature extraction, video anglysis

as follows. Section 2 analyzes the general problem %tft'met +1.

multi-source stream classification, and motivates the ap® First, different tasks should be given different prior-
proach of using Markov model to predict data values for ities when we make data observation. For example,
load shedding. Section 3 analyzes Bayes risk and Ob- according top, the next position of3 is far away
servational Risk. Section 4 presents the feature-based from the decision boundary, so without making data
load shedding algorithm Best Feature First (BFF), and its ©Observation at time + 1, we can already classif§
lower-cost variant HVWT. Section 5 shows BFF’s gainin ~ With high confidence—no matter whefemoves to,

performance over random and task-based algorithms. its classification result will stay the same with high
confidence, thus we can safely predict its class la-

bel without any observation. This is not true fdr
2 Problem Analysis and the Markov andC, for which data observations are necessary for
Model better clas_sification accuracy. _

e Second, different features (streams) should be given
different priorities when we make data observation.
In Figure 3(a), we zoom in on task, where distribu-

Assume a classification task monitors two data sources tionp attimet+1 is represented by an elliptical con-

X, and X, for threats. Each of the sources sends a single fidence boundary. The question s, if we can only af-

feature stream. Thus, at any timehe state of a task can ford to make one observation, eitherX®f or of X5,

be modeled as a point in a two-dimensional feature space. which observation should we make? Suppose we

In Figure 2, we show states for three such tasks attime chooseX;, and the observed valug happens to be

which we denote asl(t), B(¢), andC(t). Furthermore, the mean. Then the elliptical region degenerates into

we assume the feature space is divided into two areas such a vertical line segment in Figure 3(b), representing
that points in the shaded area represent threats, and points the conditional distributiop(Xs|X; = z1). How-

in unshaded area represent non-threats. ever, this does not help us much — the conditional dis-

ToCt+1)

2.1 Problem Analysis

UCLA C.S. Dept. Tech. Report TR060027 December 2006

tribution runs across the decision boundary, and Wéarkov chain to model a point’'s movement as a stochastic
are still unable to classifyl with high confidence. process.
If we instead make observation 0¥, and again We also assume that features are independent to each
we assume the observed is the mean ofX5, the other with regard to points’ movement in the feature
resulting conditional distributiop(X;|X, = z2) space. This assumption allows us to build a Markov
will not run across the decision boundary, which emodel on each featute More specifically, letX be a
ables us to make a classification with a much highferature that has! distinct valued. Our goal is to learn a
confidence— i.e., with high confidence no mattestate transition matriX’ of size M x M, where entryi;;
what the value ofX, happens to be, the classificais the probability that featur& will take valuej at time
tion will be the same. t + 1 givenX = i at timet.
We deriveK through MLE (maximum likelihood esti-
mation). The MLE of the transition matrik’ is given by

P, X,) p(x), X,lx,=0bs;) Kij — M
? A®) '? p(x,, x,lx,=0bs,) Zk Nik
AOY ! A(t) i.e., the fraction of transitions frommto j among transi-
\ | \ tions fromj to k, for all possiblek. In other words, we
Y Doagel) 2T obs) Qs only need to use the number of observed state transitions
LA A(t+1)
N \ in the history to estimate the transition matfix To adapt
i g \ to potential concept shifts in the streaming data, i.e.l-to a
Y (x, = obs,) low for the change of behavior of a point's movement in
the feature space, we use a finite sliding window of recent
(@) (b) (© history for maximum likelihood estimation.

Figure 3: Joint and Conditional Distributions 3 Bayes Risk Analysis

In summary, fromp we derive the following guideline |n this section, we present a best-effort solution to the loa
for load shedding: for tasK, it is more beneficial to ob- shedding problem described in Section 1. We begin with
serve X, than Xy; for C, X; than Xy; for B, neither 3 greedy algorithm, which is based on a naive analysis
observation is critical for classification. These intuitso of the expected Bayes Risk over all classification tasks.
are explained analytically by the risk analysis in Sectiofhen, we argue that a portion of the expected Bayes Risk,
3. which we call the expecte@bservational Riskshould be

used as the metric for feature-based load shedding.

2.2 Markov Model for Movement Predic-
tion in the Feature Space 3.1 The Expected Bayes Risk

Itis clear from our discussion in the previous section thag Bayesian decision theory, we study the risk of misclas-
to make intelligent load shedding decisions at timeve sification by using a loss function. Létc;|c;) denote the
need to knowp, the distribution of a point's position atcost of predicting class; when the data is really of class
timet+1. In other words, we should capture the temporal;. Then, at a given point in the feature space, the risk
locality of the data, and model the movement of a point in

the feature space. 2Without the independence assumption, we need a multieariat
We make a simplifying assumption. a point's |0catiOHarkov model, which may requires us to estimate a very largest-
’ ion matrix.

?n the fe_ature s_pace at time+ 1 .iS SO'?'Y de_pendent_on SWe treat continuous values with the same model by discnetizi
its location at time.. We then build a finite discrete-timethem into a finite number of bins.

UCLA C.S. Dept. Tech. Report TR060027 December 2006

of our decision to labef as class; out of K classes is: Risk Before Feature Observation Without any data
K observation, our knowledge about a point’s next location
R(cil@) = 8(cile;) Pe;|7) (1) in the feature space is given by distributip(x). The ex-
j=1 pected risk for classifying a point as class;, can be
whereP(c;|Z) is the posterior probability that belongs represented by

to classc;. - NN o
One pjarticular loss function is the zero-one loss func- Bocjore(es) = BzlR(cil?)] = /iR(Clmp(x)dm ®
tion, which is given by 0 ifi_i which is an integration over the elliptical area in Figure
d(cilej) = { 'y ;]. 3(a). Notep(Z) is a shorthand fop;1 (&), which is de-
J rived from the current distribution and the state tranasitio

ggderwhich, the conditional risk in Eq 1 can be simplifieghatrix /£ of the Markov model.

. , pe+1(Z) = pe(Z) K
Rlei|7) =1 - Ple|7) 2) The optimal predictiomy, is the prediction that minimizes
Bayes risk is used to guide classifier training so that th expected risk:

learned classifier conforms with applications’ error re-
guirements. We can adjust the loss function to reflect our

different tolerance to different types of errors. Therefore the expected risk before any observation is
We argue that the same criterion must be adopted {gg risk of classifying the point as clagg, which is
load-shedding. In other words, if the underlying classifiquefor (

. A \ i . Ck)-
is tuned to minimize Bayes risk defined by a certain loss ‘
function, then it only makes sense that our load-shedd
mechanism is optimized under the same guideline.

k = argmin Rpe fore (i) = argmin Ez[R(c;|®)] (4)

Rk After Feature Observation Suppose we choose
to inspect one data stream, which supplies valuesipr

] After observingr; = obs;, the total risk for labeling this
3.2 Expected Bayes Risk and Feature Ob-partially observed data point as classomes t6:

servation

Intuiton We use Figure 3 to explain what we try to Bagter(cilobs;) Etate=obny) LRl

achieve. We do not know the exact positionzoht time :/ R(c;|Z)p(Z|obs;)da(5)

t 4+ 1, instead, we know the distribution of its position. | j=obs;

In Figure 3(6.‘)’ the_ e>_<pected risk of A 1) is integrated Clearly, Figure 3(b) and 3(c) correspond to Eq 5 with dif-
over the entire elliptical area. If, however, we choose f8rentj’s.

observe dimensioX, the integration area is reduced to
the dashed vertical line in Figure 3(b), as only dimension

X5 will have any remaining uncertainty in terms of th 'Sk. Reduction due_ to Opser_vatlon The benef|t O.f
exact location of A+ 1). making an observation af; is given by the reduction in

In other words, observations may reduce risk. But nt(p[e prected Bgyes Risk. Suppose alfter observation the
all observations are equal. In Figure 3, if we choose %edmted class ig,, then the expected risk after observa-

observeX, first, the variance oK is still very high, and 10N1S Rafier(ci|obs;), and we have

a large portion of the distribution is close to the decision

boundary (high risk area). Whereas if we obseXydirst, ~ Rairf(0bs;) = Riefore(Ck) — Rafter(cy|obs;)(6)

the remaining variance alf; is much smaller, the distri- _

bution is far away from and on the same side of the d&RUS. @ greedy method would pick the feature that leads

cision boundary. Therefore, observiag, gives a larger to the maximal reduction of risk for observation. In other
risk reduction. words, we should choose the feature that maximizes Eq 6

n t_he rest of thi_s section, we give a rigid analysis of the 4gometimes we uge(#|obs) to stand fop(] X; = obs,) for ease
intuition we described above. of presentation.

UCLA C.S. Dept. Tech. Report TR060027

December 2006

among all features from all classification takEhe best
feature to observe is given by Eq 7.

j° = argmaxRgisy(obs;) (7
J

Quality of Feature Observation Eq 6 provides a
guideline for feature observation in load shedding. How-
ever, in order to computBy; ¢ r by Eq 6, we need to know
the observed valugs;. This contradicts our purpose: we
want a metric to tell us what feature to observe.

To actually use Eq 6, we substitutls; by the expected
value of the featurefs[X;], as our best guess for the ob-
servation. This leads to the following Quality of Obser-
vation (QoO) metric definition. Th€ g,y.s in Eq 8 mea-
sures the quality of making an observation on feafXiye
which is conditioned upon the expected value of feature
X;.

QBayes(X;j) = Roefore(ck) = Ragter(ci|Elz;]) (8)

A generalized metric for making theth feature observa-
tion after already having observéd- 1 features can be
derived in a similar manner.

3.3 A Pitfall

The load shedding guideline developed in the previous
section is quite straightforward. However, as we demon-
strate in this section, there is a pitfall in using expected
Bayes risk for load shedding.

Dissecting the risk Let p(Cy|z) and p(Csz|x) be the
posterior distributions of two classé% andC,. With-
out loss of generality, Figure 4(a) shows the two dis-
tributions as two Bell curves. At pointy, we have
p(C1|z) = p(Cs|z). In other wordsz is the classifi-
cation boundary of’; andC,. We further assume feature
value X; of timet + 1 has a uniform distribution within
rangefa, b).

If we know X; = z; at timet¢ + 1, we can make an
optimal decision, which is to predict the class that has

5Note that the predicted class before any observatignin equa-
tion 6, is task-dependent. l.e., thsore(ck) should really be
Ryepore(cr; taskobsj), Wheretaskobsj is the task that observation
obs; belongs to. Therefore this value is shared by all obsematibs ;
for the same task, but different in different tasks. Samdieppo equa-
tion 8.

C1 X0 c2 Optimal Risk

Lower-bound

(a) The Optimal Risk Lower-bound of Fea-
ture X1 for timet + 1

(b) Risk Decomposition and Expected Risk
of Feature X1 for Time

C1 c2

(c) Risk Decomposition and Expected Risk
of Feature X2 for Time

Figure 4: Bayes Risk Composition

UCLA C.S. Dept. Tech. Report TR060027 December 2006

higher posterior probability at;. Assuming 0/1 loss, 3.4 The Expected Observational Risk
the optimal risk atz; is the value of the smaller posterior S o)))
probability. Therefore, given that, distributes uniformly The naive risk analysis in Section 3.2 failed to deliver an

within [a,], the expected optimal risk is the average Qptimal load shedding strategy because it tries to mini-
the shaded area in Figure 4(a). mize the entire Bayes Risk when making data observation

]]] choices. It does not realize that Bayes risk consists of two

This expected optimal risk cannot be further reduce@ s and only one part, the Observational Risk, can be
by improving the underlying classifier, or by any oth&ljiminated by making observations. The other part, the
means. In fact, it is the unavoidable, lowest risk, as it ¢§ptimal Risk, is unavoidable, and data observation can-
dictated by the nature of the class posterior probabilitie§at |ead to a risk lower than this lower bound.

Then, what will be the risk if we do not know the ex- As data observations can only reduce the Observational
act value ofX; at timet + 1? We still need to make aRisk portion of Bayes Risk, it makes sense to use Obser-
prediction, and suppose that we predist Then the to- vational Risk instead of the full Bayes Risk as our opti-
tal Bayes Risk is the shaded areas in Figure 4(b), and wization goal for load shedding.
can see the risk is not optimal at data points wh@te In this section, we propose a new metri@oys, to
should have been the optimal decision. Compared wghide data observation. The superiority @f,s over
the optimal risk, the increased portion, which we call th@ . is due to its focus on the reducible risks, and such
Observational Risk, is shown as the extra shaded areasuperiority is confirmed later in experiments in Section 5.
Figure 4(b).

The Qops Metric At each locationZ in the feature
space, there is an optimal decision given by the under-
lying classifier, suppose it is". Clearly,c* is given by:
The Pitfall The strategy we developed in the previous
section may not be optimal in risk reduction. To see this, ¢* = argmin R(¢;|7) (9)
we can compare the two featurdg and X shown in !
Figure 4(b) and Figure 4(c), where we want to deci
which feature to observe. As shown in the figué,
has a different distribution at time+ 1 (uniform within

Jhen, we can re-write the Expected Bayes Risk for un-
Observed tasks in Eq 3 into the following form, where we
assume the assigned class by the classifigr é&cording

[¢, d]) from X1, and consequently different expected valutg Eq 4.

E(X,) and different Observational Risk. Ryefore(ck) = Ez[R(ck|)] = ﬂR(Cklf)p(f)df
By observing the value of a feature, we can elimi- Optimal Risk Lower-bo:LEmd

nate the Observational Risk associated with that feature.

Clearly, we should choose to observe featliig because = / R(c*|Z)p(Z)dx

as shown in Figure 4, its area that corresponds to the Ob- Z

servational Risk is larger. +/[R(ck|f) — R(c*|Z)|p(%)dz (10)
However, based on the strategy developed in the last z

section, we would opt to observe featuk&, because Expected Observational Risk

it has a much lower risk value at its expected Iocatiopt is clear from Eq 10 that the expected risk for an un
E(X,), as shown in the figure. According to Eq 8, WE rved data poi?wt consists of twg parts

should choose the featusé such that the expected risk®
before observingX (in the figure, the average value of e Thefirstpart,[.. R(c*|Z)p(Z)dZ, is the expected Op-

the total shaded area) and after obsenin(jn the figure, timal Risk, which is the lowest possible risk that the
R(E[X])) has the largest difference. SinBE[X;]) is underlying classifier can achieve.

much larger thak(E[X]), the risk reductionmay infact 6.« i actually a function off. Herec* is used in place of*(Z) for
favor featureXs. representation simplicity.

UCLA C.S. Dept. Tech. Report TR060027 December 2006

e The second part/_[R(cx|Z) — R(c*|Z)]p(Z)dZ, is Therefore, the generalized metg,,, measures the
the expected risk increase over the lower boungijality of making thék,;;, observationy, which is condi-
which is caused by a non-optimal prediction due tioned on the feature values we have already observed so
classifier's lack of knowledge about the true datéar (obsy, 0bss, - - -, 0bsi_1), and the expected value of the
This is the portion that observation of data affecteaturex;, that we are about to observe.
the most — it is completely eliminated after the full
observation of all features. Qovs(Xi) = R%(cilobsi,... k1)

__ pobs ./
Therefore, we should first observe features that lead to R (cilobsy, ... k-1, Blzk]) (13)

the largest reduction of the second part of Bayes Risk, the = / R (ci|Z)p(Z|obsi,... k—1)dT

Observational Risk, which only apply to un-observed (or F|obs1,... j_1

partially observed) data. S o .
The expectation of the Observational Risk (which - 5\01@7(_40?1%2‘??(!%'()[)81"”’k_l’E[:Ek])dx

we will refer to asR°") for un-observed or partially- “r=Fle]

observed data is then: Obviously, Eq 12 is a special case of Equation 13 where
RS (c) = ﬁ[R(Ck|f) ~R(H|P)p(@)dE (1) the set of already-observed features is empty.

before

Intuitively, if the distribution has less overlap with the-d 4 The Best Feature First (BFF) Al-
cision boundary, then the Expected Observational Risk

will have a lower value—this explains the guidelines de- gorlthm
rived from intuitions in Section 2. .
Similarly, the risk after the first observatid®, f.,. in 4.1 The BFF Algorithm

Eq 6 can also be decomposed into two parts, in much g, gest Feature First (BFF) algorithm (shown in Algo-

same way as the decomposition of Eq 10 goes. Therefgfg, 1) is derived based on Eq 13. BFF is invoked once
the Observational Risk after observing features given ;. every time unit, which utilizes the metri@ops to re-

by: peatedly pick the nexbestfeature to observe until the
Ry er(chlobs;) = /ﬂ [R(c},|T) — R(c"|Z)]p(|obs;)dZ capacity for the time unit is consumed.
(#|zj=obs;) Intuitively, in Algorithm 1, at the beginning of each

Now, we can replacebs; with its expectation, and mod-time unit we firsf[compute the p_redicted distributions for
ify the Quality of Observation metri€) z,,.. defined in each feature using Markov chains, and then compute an
Eq 8 intoQoss, which measures the gain of Observationg§kPected decision for each task based on the predictions.
Risk after observing the featuré;. (Herecy is the pre- Then we repeatedly pick to observe thestunobserved

dicted class before the observation, apds the predicted feature over all tasks that leads to the largest reduction in
class after the observation.) Expected Observational Risk. By doing so, we greedily

obs obs minimize Expected Observational Risk over all tasks.
QObS (XJ): Zfore (Ck) - Ral}ter (C;c|E[xj]) (12) P

The above gives the guideline for picking the first feat.2 Implementation Issues and Cost Analy-
ture for observation. We can use similar procedures to gjg

maximize Expected Observational Risk reductions before

and after making thé;,, feature observation for a task While conceptually clear, the BFF algorithm has a few
Eventually, with full observation the risk is reduced to thEplementation and computation issues that require fur-
optimal risk at the observed locatiah,,s, which solely ther elaboration.

depends on the underlying classifier and the location it-

self, without any contribution from the data observaticd@omputing the Expected Risks: The BFF algorithm
error. requires computing the Expected Observational Risk. For

UCLA C.S. Dept. Tech. Report TR060027

December 2006

Algorithm 1 The Best Feature First (BFF) Algorithm

inputs: A total of n classification tasks, where each tgsthask
streaming data sources(features). For the current tinhesamhe

likelihood P(z|c;) and priorP(c;) and estimates risk
accordingly[5].
The movement distribution probabilipyZ) for fea-

or all of the N = n x k streams may have new data available.
outputs: Decisionss; (i € 1, -- -, n) for each of then tasks
static variables One next feature distribution vectp(x), and
one Markov modeK built on data in a sliding window, for each
of the N streams

how to use invoke once per load-shedding time unit

1: Compute the predicted feature distributipfir) for each
featurez, based on the previoygz) value and the Markov
model K.

2: Compute the predicted decision(: € 1,--- ,n) for each
of the n tasks, based on the predicted feature distribution
p(z) (Equation 4).

3: Apply heuristics to prune the set of all features, which re-
sults in candidate feature sBt,,q. (See discussion in Sec-
tion 4.2.)

. For all features:; € Frqna, cOmputeQoss(x;) by Eq 13

: For all featurescy, ¢ Feand, assignQops(zx) < 0

: observed_count «— 0

. while still data antbbserved_count < Capacity do

Pick the unobserved stream with the highest ops ()

value across all features of all tasks, and observe itslac

data value. Break tie randomly.

9: If the highestQoss(x;) equals to 0, randomly pick the

ture vectorr can be obtained from the Markov mod-
els. Supposé hask features, then the probability
for the full feature vector i9(Z) = Hlep(xi),
based on the assumption of feature movement inde-
pendence. Here eagliz;) on an individual feature

is computed using the corresponding Markov model.
Suppose for feature;, the feature distribution at
timet — 1isp,,_,,then

Diy = Diy_ KK

whereK is the state transition matrix for the Markov
model of featurer;.

We then compute the Expected Observational Risk by
integrating over the domain of feature vecirwhich is
discussed next.

o N o0

Numeric Integration Over Feature Space To compute
Hee Expected Observational Risk we need to integrate over
the entire feature space of a task. This is computationally

remaining Capacity—observed.count) number of fea- expensivg if the task ha_s a high dimen'_sion. To redqce the
tures to observe, and terminate the loop. computational complexity we usetegration by sampling
10: Update distributionp(z;) to a unit vector to reflect the as validated in [4] and in our own experiments.
observation made. In short, based on the independence in movement as-
11: Update the decision; for the taskT; that streamz; sumption, we perform 1-dimensional Monte Carlo sam-
belongs to, based on the new feature distribuji¢n;) pling [15] on each feature based on its predicted data dis-
(Equation 4). tribution, and then assembled the results from all features
12: Update theQoy, values for the remaining unobservedq form samples for the full feature vector, which can then
streams belonging to task (Equation 13). be used to compute the expected risk as an un-weighted

18 observed count « observed count + 1 average. We will omit further details on this.
14: end while

15: Update the Markov model for each stream based on obser-
vations made in this and previous time unit (add counts fdfarkov Model Maintenance We separately maintain
newly observed transitions, and remove those expired outasfe Markov chain for each feature. If a feature haslis-
the sliding window). tinct values, a matrix of\/ x M counters is maintained
for the feature. Due to load shedding, we may not have
consecutive observations on a particular feature to fill up
example, to computﬁgé’jo,‘e(cw in Eq 11 for a task with the counters. We adopt an an-hoc method to force some
feature vector distributiop(#), we need to know two setsconsecutive observations in order to fill the counters, as
of values. used in [4], which will not be further discussed here. The
e The risk valueR(c¢;|Z) for feature vectorr can be dynamic nature of the streaming environment can also be
obtained from the underlying Bayesian classifieaddressed by building the Markov model on a sliding win-
which computes an estimated posteditie;|x) from dow of data, which we do not further discuss.

10

UCLA C.S. Dept. Tech. Report TR060027 December 2006

Feature Set Pruning to avoid Q.,s evaluation The plexity for counter updates in each time unit. Therefore,
most expensive step in BFF is to compute the me&Qjg, we have a total oV x M x M updates for Markov model
for each feature of each classification tasks, possibly reaintenance.

peatedly, as discussed below. To reduce the cost of the

algorithm, we apply some heuristics to avoid evaluatin .

the Qs Of some features. Primarily, two heuristics a .3 A Lower-cost Hyb”d

applied: 1) Avoid computing).,.s, metric (the gain of |, s section we discuss an alternative approximation
observational risk given the expectation of featyydor algorithm that further reduces the cost of metric com-

features from tasks that have very low observational ri@btations complexity to the same level of task-based al-
o]

values to begin with. A threshold risk value is adaptive rithms, while performing better than task-based algo-
set, (e.g. the 20 percentile of the non-z€}g,, values rithms.

from the last window) and used to prune features from
such low-risk tasks. 2) Further, we prune features whose
Qs in the last window was below the threshold, and tHdighest Variance of Worst Task (HVWT) Intuitively,
overall risk value of the task has changed very little coriitstead of completely operate on features, this algorithm
pared to last window. That is, even if a task has a ovés-a hybrid of task-based and feature-based algorithms, in
all risk that makes the threshold, we avoid features in tiaich we pick a task first before picking a feature from
task whose observation is not likely to give rise to enoudfte task. First, we pick theorsttask that has the high-
risk gains. Although the worst case is not affected, thegst overall Observational Risk, by using Eq 11 which is
heuristics effectively reduces the amortized average copemputed on tasks. Then, instead of observing all the fea-
putational complexity in our experiments. tures in thisvorsttask (as a task-based algorithm, such as
LoadStar [4], will do), we only pick onbestfeature (in
term of observation) from this task to observe. We then
Algorithm Cost Analysis The most expensive step inupdate the task’s Observational Risk value after this ob-
BFF is to compute the metri@,, for each feature of eachservation, and start over again to pick thersttask and
classification tasks. Without using the feature set prunia@estfeature, and repeat this process until the capacity is
methods discussed above, suppose there @msks withk reached.
dimensions each (therefore there are atotaVof n x k& To pick thebestfeature we utilize the following intu-
streams), and out of them we have the capacity to gllon. Frequently, a feature with a high variance in terms
servem streams. Before we make any observation, W# movement destination will contribute more to the over-
will perform a total ofO(N) computation ofQ,,s met- all Observational Risk. For example in Figure 3, feature
rics. Then after making each observation, we will only, for task A has a high variance in movement, and ob-
need to update metric values fox(k) un-observed fea- serving which will result in a larger Observational Risk re-
tures for the affected task, which makes the t@#a}s duction than observing featusé; . Intuitively, the higher
update cost to b&(m x k). Therefore, each round wethe variance in movement, the more likely the destination
perform[O(N) + O(m x k)] computations of th€).ss will run across decision boundary, and therefore the larger
metric. With feature set pruning, the amortized averagg contribution to total Observational Risk. Of course a
cost reduces a lot as confirmed by our experiments. high variance does not always lead to a larger Observa-
The sampling step of),,s computation, as discussedional Risk, e.g. in Figure 2 it is the lower-variance featur
above for integration, only needs to be done once per tif3€,) in task C that contributes more to the Observational
unit. Suppose we obtaih samples on each feature, th®isk, therefore we may not always be picking thest
total cost of sampling is the®(h x N). his usually a feature by this approximation.
small number here, as 10-20 samples are usually enougAssuming feature movement patterns usually last for
to give a very good estimation in our experiments. some period of time, the variance of movement for each
Maintaining the Markov models for each feature rdeature can be computed once and reused in each time
quire M x M space complexity, an@i/ x M time com- unit, only to be re-evaluated periodically. Therefore here

11

UCLA C.S. Dept. Tech. Report TR060027 December 2006

in each time unit we asymptotically avoid computing the(x|—) ~ N(0.3,0.2%). Then thereal class of each gen-
[O(N) + O(m x k)] Qops Metrics, and instead only doerated point is assigned using the class with the higher
O(n) computations of Expected Observational Risk fgoint posterior probability.
each task. For data point movements, we use a random walk
model:
x¢ = x4—1 + €, Wheree ~ N (0, 02)

5 Expe”ment Evaluation To have a mixture of different movement variances, half

Wi v feature-based load sheddi both svnth&{dhe K features in each task are assigned with\alue
© apply ‘ea’llie-basec foad sneccing on bom Syn 10.3, and the other half are assigned with galue of

and real-life data sets. Results indicate that the BFF al 505, Theref he f in th K Idh
rithm out-performs both the random-shedding algorith - here ore the eature; In the same task could have
ery different movement variances.

d the task-based sheddi Igorithm LoadStar[4] %
an @ task-based shedding algorithm LoadStar(4] Data are generated for 10000 time units on all the

multi-source classification tasks. In addition, the lower- i : : -
cost hybrid HYWT algorithm appears to have a goosélreams, the first 5000 time units are used for training

trade-off between complexity and error performance. the classmer. and the Ma_\rkoy_modgls, and the rest are
used for testing. We omit sliding window management

for Markov models in our experiments, since its effec-
5.1 Experiment Setups tiveness in adapting to changing movement patterns un-

der this type of load shedding settings has already been
We implement the load shedding and classification algglidated elsewhere [4].

rithms in Java. The experiments are carried out on a Linux

machine with a P4 2.8GHz processor and 1GB of ma#) qjiy of Classification Figure 5 shows the quality
memory. We use the Naive Bayesian classifier, which hgsg|assification under different load shedding percent-
been shown to be highly effective in practice, as our baggaq tor |0ad-shedding algorithms with different quality
classifier, and we use a 0/1 loss function for risk COMhetrics(c=4, i.e. 4 features per task). Since random
putation. For ease of study we fix the number of inpufeqding does not use any intelligence in selecting fea-
streams for each time unit, and compare the classificatigfag for observation. we use random shedding as the
errors under different amount of load shedding. Becaygesejinefor comparison. The horizontal axis shows the
of the 0/1 loss function, classification error is simply Conb'ercentage of load that is shed from observation, and the

puted as the percentage of mis-labeled data points. FOrjAgic axis shows the relative error compared to the error

Monte Carlo sampling we use 10 sample points for eaSPrandom shedding (i Erroralgw“hm) We see that the

task "ErroTrandom, .
) feature-based greedy algorithm utilizing met€igqy e

(line C) performs better than the task-based load shedding
5.2 Experiments on Synthetic Datasets method LoadStar (line B), while the BFF algorithm (line

D), which is feature-based and specifically targeting the
We generate data for 25 classification tasks each WithObservational Risk, outperforms all other methods. The
features (i.e.K different streaming inputs), thus for a toBFF algorithm achieves more than 45% improvements
tal of 25 x K input streams. For ease of study, the taskser random load shedding when the amount of shedding
share the same two-class classification model. Dueig@bout 40% to 50%. When the amount of shedding fur-
the naive assumption, the class models on each featdher increases, the improvement drops as prediction be-
are assigned independently. Half of thefeatures for comes less accurate.
each task are assigned with the following class model:Figure 6 validates the hybrid algorithm HVWT (line
p(z|+) ~ N(0.3,0.22), p(x|—) ~ N(0.7,0.22), where E)’. This approximation algorithm outperforms LoadStar
N(p, 02) is Normal Distribution with mea and vari- "We try to keep the labeling of algorithms consistent acrdfsreint

ar_‘CGUQ- The of[her half features in each task are aSSigr\%‘Jres, therefore here we have kept the labels B and D, aretiddbel
with the following class modelp(z|+) ~ N(0.7,0.2%), E.

12

UCLA C.S. Dept. Tech. Report TR060027 December 2006

47 A~ Random Shedding As discussed in Section 1, our algorithm applies to the
114 i - oa_dS_tar(Task—based) . X . i X

oy Qpimize -Bayes (Fealure-based case when data observation is associated with high cost
104 % A (e.g. audio/video streams that have high feature extractio

cost, or sensor data that has a high communication cost).
Therefore, to simulate a realistic situation and study the
costs of the algorithms, in the experiments we assign an
observation cost to each data observation (i.e. It costs
¢ as in CPU time to observe a data source). In particu-
lar, in the experiments in Figures ¢,is set to 5 milli-
- seconds per data source observation. This observation
P eheddngpercentage cost is reasonable in many situations. For example, sup-
pose our algorithm detects alert situations by first tragkin
Figure 5: Comparison of Task-based and Feature- ballgymovement of objects in video frames, and then clas-
Methods on Synthetic Data sifying whether danger is present, depending on the ob-
ject position in the frame. The object recognition step for
the video frames thus becomes a pre-processing step for
while achieves classification error close to that of BFF. the danger classification. Such recognition process eas-
ily takes tens of milli-seconds in practice. As an example,

Relative Classification Error (over Random-Shedding)

) “aA-Randomsnedang suppose the object we are tracking is a human face, in [17]
T 114 —e—B-Loa r (Task-base: N h :
3 —v—E- HVWT (Feature-Basad) it is shown that using state-of-the-art technology, it take
5) —*—D - BFF (Feature-based e) .
£ 10 A 67 milli-seconds to recognize face on a 384x288 image.
5., (In comparison, in our experiments, it takes about 1 milli-
o 094 . .
g \ =Y second to randomly select a feature, and then predict its
2 0 \ ~ value and classify the corresponding task. Therefore, the
oo observation cost can be a much more significant cost com-
S \ __vE e .
@

- pared to classification.)
%06‘ 777/ /%D
@ . /X
(&} *—
o 05 T T T T T T
'g 0 10 20 30 40 50 70
g Shedding Percentage

Figure 6: The Approximation Algorithm HVWT on Syn-

thetic Data
Figure 7(a) K = 2, i.e., two-features per task) and

7(b) (K = 4, i.e., four-features per task) shows the effec-

tive CPU time savings under different load shedding con-
CPU Cost To study the cost of different algorithms, walitions. The result shows that LoadStar and HVWT in-
measure theeffective CPU time savingnder different troduce an overhead that is quite close to each other, with
load shedding conditions. Because of computation ovboith costs a little higher than random shedding. Never-
head, when we shed x% of data from observation, we #leeless, both of these two algorithms result in quite small
tually achieve a total CPU cost saving that is less than xéerheads. For example, if the data tuple shedding is
Therefore, we measure the total CPU time required ut%, the effective CPU time saving of these algorithms is
der load shedding, and divide it by the total CPU time r@ the range of (5-7)%. On the other hand, the BFF algo-
quired without load-shedding. This ratio is then #gffec- rithm shows a higher overhead, where CPU savings from
tive CPU time savin@chieved by load shedding. Therethe first 10% tuple shedding is basically consumed by the
fore, under a given load-shedding amount, the higher thigorithm overhead, i.e., a 20% tuple shedding roughly
ratio is, the less overhead is commanded by the algorithechieves a 10% CPU time saving for the BFF algorithm.

13

UCLA C.S. Dept. Tech. Report TR060027 December 2006

asin long traffic jamor not in long traffic jamaccording
Ae to this criteria, and used to train a separate Naive Bayes
b classifier for each highway segment. The idea is that, the
traffic conditions (e.g. average speed) on highways should
follow some stochastic process that can be reasonably pre-
dicted by a Markov model, and therefore we can perform
load shedding based on these predictions.
For the experiments, we select 4 highway segments (4
tasks), each task with a total of 64 features, including i)

704

—m— A - Random Shedding
60 —e— B - LoadStar (Task-based)
—v— E - HYWT (Feature-Based)
—*— D - BFF (Feature-based

50 4

404

304

204

Effective CPU Time Savings Percentage

o the traffic information at current time unit for this seg-
Data Shedding Percentage ment and the 2 segments before and 2 segments after this
segment. ii) the traffic condition on the these same 5 seg-
(8) Two-features per Task ments during the last 3 time units.

Out of the 64 features per task, only the 16 for the
current time unit needs to be modeled and predicted.
BE The other 48 features are historical data (for the last 3
time units) that are simply copied over from the obser-
vations/predictions at the previous time units. Therefore
under this setting we have 16 streams per task for load
shedding, with a total of 64 data streams overall for 4
tasks. We used 3-weeks worth of aggregated traffic data
(collected roughly once every 5 minutes) to train Naive
Bayes classifiers, and use one-week worth of data for test-
R ing. Thelong traffic jamprediction is rather successful

Pata Shedding Percentage under this setting, with a base error rate of about 4%.

Figure 8 shows the experiment comparing 4 load shed-
ding algorithms for the traffic prediction task. Very simi-
lar to synthetic data, we see that the BFF algorithm with

Figure 7: The CPU Cost of Algorithms metric Qo (line D) gives the best performance, while
the approximation algorithm HVWT outperforms Load-
Star and approaches the performance of the BFF algo-
5.3 Real Life Experiments: Traffic Jam rithm.

Prediction

704

—m— A - Random Shedding
60 —e— B - LoadStar (Task-based)
—v—E - HYWT (Feature-Based)

50 4

404

304

204

Effective CPU Time Savings Percentage

(b) Four-features per Task

For real-life data, we use datasets exported from Natiof@l Related Works

Center for Data Mining database of lllinois IDOT High-

way Sensors [1]. Aggregated traffic information of avefrhe task-based load shedding algorithm LoadStar [4]

age speed, volume etc, are collected by sensors locatedlies a special case of the stream classification prob-
along highways (readings about 5 minutes apart). We diem, where every task only has one input data stream. In

vise the following streaming application: based on theur paper, we focus on the more general case where each
hour of day, the traffic condition on a highway segmertgsk may have multiple input sources, and devise feature-
as well as the traffic conditions on the adjacent segmeititased metric and algorithms accordingly.

predict whether there will be bng traffic jamon this Load shedding mechanisms for data stream queries
segment. We simplistically define a long traffic jam dsas been studied for Data Stream Management Sys-
"average speed 15mph for a consecutive 30 minutes aiems (DSMS). These systems generally either employ

longer with no gaps”. Real traffic data are labeled eitharrandom-dropping mechanism [2, 9, 16], rely on user-

14

UCLA C.S. Dept. Tech. Report TR060027

December 2006

(1]

—u— A - Random Shedding
—e— B - LoadStar (Task-based)
—v—C - HYWT (Feature-based)

(2]

8 3]
R = 1

[4]

T T T T

T T
20 30 40 50 60 70

Shedding Percentage

T
0 10

Relative Classification Error (over Random-Shedding)

Figure 8: Comparison of Task-based and Feature-baskd
Methods on Traffic Prediction

(6]

provided static QoS metric [9], or build an adaptive feed
back loop for tuple latency based on control theory [10].
These methods do not address the quality requirements[
classification tasks, where the quality measures are non-
static and task-dependent. (]

Adapting classifiers for streaming data is another re-
lated area [18, 12, 13, 14], which usually studies one-p
incremental algorithms, builds data synopsis, or adapts
classifiers to concept-shifts. Our work instead focusesrlon
intelligently dropping, not approximating, input data urn-
der overloaded conditions.

Another related area is distributed data streams que[rlyz—]
ing [7, 6], which focuses on cost savings across a dis-
tributed network. Here we focus on a multi-source taiﬁ]
setting, where only the server has the full knowledge to

decide which data to drop. 14]

[15]

7 Conclusions
[16]

In this paper we adopt a Bayes Risk based approach to-
ward the multi-source classification problem. We per-
formed a full analysis of Bayes Risk and propose a ri
measure for load shedding - the Observational Risk. e]
devise the BFF algorithm for feature-based load shedding
and its lower-cost approximation algorithm HVWT, ani-®!
use both synthetic and real-life data to validate the perfor
mance of the algorithms.

References

The Pantheon Gateway Testbed

http://highway.lac.uic.edu.

B. Babcock, M. Datar, and R. Motwani. Load shedding
techniques for data stream systems, 2003.

project.

Brian Babcock, Mayur Datar, and Rajeev Motwani. Load
shedding for aggregation queries over data streams.
ICDE, 2004.

Yun Chi, Philip S. Yu, Haixun Wang, and Richard Muntz.
Loadstar: A load shedding scheme for classifying data
streams. II51AM DM, 2005.

R. O. Duda, P. E. Hart, and D. G. StorRattern Classifi-
cation Wiley-Interscience Publication, 2000.

In

Ankur Jain et. al. Adaptive stream resource management
using kalman filters. I8IGMOD, 2004.

C. Olston et. al. Adaptive filters for continuous queries
over distributed data streams. $iGMOD, 2003.

Mohamed M. Gaber et. al. Mining data streams: a review.
SIGMOD Reg.34(2), 2005.

N. Tatbul et. al. Load shedding in a data stream manager.
In VLDB, 2003.

Yi-Cheng Tu et. al. Control-based quality adaptatian i
data stream management system®DEXA 2005.

] Lukasz Golab and M. Tamédzsu. Issues in data stream

managementACM SIGMOD Record32(2):5-14, 2003.

Sudipto Guha and Nick Koudas. Approximating a data
stream for querying and estimation: Algorithms and per-
formance evaluationCDE, 2002.

Geoff Hulten, Laurie Spencer, and Pedro Domingos. Min-
ing time-changing data streams. KibD, 2001.

Rouming Jin and Gagan Agrawal. Efficient decision tree
construction on streaming data. KiDD, 2003.

J.S. Liu. Monte Carlo Strategies in Scientific Computing
Springer, 2001.

R. Motwani, J. Widom, A. Arasu, B. Babcock, M. Datar
S. Babu, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, approximation, and resource
management in a data stream management system.

Paul Viola and Michael J. Jones. Robust real-time face
detection.Int. J. Comput. Vision57(2):137-154, 2004.

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Min-
ing concept-drifting data streams using ensemble classi-
fiers. InSIGKDD, 2003.

15

