DIGITAL ARITHMETIC Miloš D. Ercegovac and Tomás Lang Morgan Kaufmann Publishers, an imprint of Elsevier Science, ©2004 – Updated: December 22, 2003 –

Chapter 7: Solutions to Exercises

- With contributions by Elisardo Antelo -

Exercise 7.1

From

$$\begin{aligned} \epsilon[j] &= 1 - d \cdot R[j] \\ \epsilon[j+1] &= 1 - d \cdot R[j+1] = (\epsilon[j])^2 = (1 - d \cdot R[j])^2 \end{aligned}$$

we get

$$\begin{array}{rcl} 1 - d \cdot R[j+1] &=& 1 - 2d \cdot R[j] + (d \cdot R[j])^2 \\ d \cdot R[j+1] &=& 2d \cdot R[j] - (d \cdot R[j])^2 \\ R[j+1] &=& 2R[j] - d \cdot R[j]^2 = R[j](2 - d \cdot R[j]) \end{array}$$

Exercise 7.4

Find the reciprocal of d = 29/256 by the multiplicative normalization method. For the maximum error less tha $2^{-12} \approx 0.00024$ in the range $1/2 \leq d < 1$ we scale the input as follows:

$$\frac{1}{d} = \frac{1}{29/256} = \frac{1}{29/32} \times 2^3$$

and compute $\frac{1}{29/32}$

$$P[0] = |2 - 29/32|_4 = 1.0001_2 = 1.0625$$

j	P[j]	d[j]	R[j]	$\epsilon[j]$
0	1.0625	0.962891	1.0625	0.037
1	1.037109	0.998623	1.101929	$1.38 imes 10^{-3}$
2	1.001377	0.999998	1.103446	$1.9 imes 10^{-6}$
3	1.000002	0.999999	1.103448	3.6×10^{-12}

The answer is $R[3] \times 2^3 = 8.827586...$ compared to 256/29 = 8.827586... with an error less than 2^{-12} . Three iterations are used to guarantee that the error is smaller than 2^{-12} for $1/2 \le d < 1$: for d = 1/2, $\epsilon[2] = 3.91 \times 10^{-3} > 2^{-12}$ so another iteration is needed.

Digital Arithmetic - Ercegovac & Lang 2004

Chapter 7: Solutions to Exercises

Exercise 7.6

Optimal 5-bit input, 4-bit output reciprocal table is shown below. The actual input and output bits are underlined. The case 1.00000 produces the same output as for 1.1111x and needs to be detected.

5-bit	4-bit	5-bit	4-bit
input	output	input	output
1. <u>00000</u>	1.0 <u>0000</u>	1. <u>10000</u>	0.1 <u>0101</u>
1. <u>00001</u>	0.1 <u>1111</u>	1. <u>10001</u>	0.1 <u>0101</u>
1. <u>00010</u>	0.1 <u>1110</u>	1. <u>10010</u>	0.1 <u>0100</u>
1. <u>00011</u>	0.1 <u>1101</u>	1. <u>10011</u>	0.1 <u>0100</u>
1. <u>00100</u>	0.1 <u>1100</u>	1. <u>10100</u>	0.1 <u>0100</u>
1. <u>00101</u>	0.1 <u>1011</u>	1. <u>10101</u>	0.1 <u>0011</u>
1. <u>00110</u>	0.1 <u>1011</u>	1. <u>10110</u>	0.1 <u>0011</u>
1. <u>00111</u>	0.1 <u>1010</u>	1. <u>10111</u>	0.1 <u>0010</u>
1. <u>01000</u>	0.1 <u>1001</u>	1. <u>11000</u>	0.1 <u>0010</u>
1. <u>01001</u>	0.1 <u>1001</u>	1. <u>11001</u>	0.1 <u>0010</u>
1. <u>01010</u>	0.1 <u>1000</u>	1. <u>11010</u>	0.1 <u>0010</u>
1. <u>01011</u>	0.1 <u>1000</u>	1. <u>11011</u>	0.1 <u>0001</u>
1. <u>01100</u>	0.1 <u>0111</u>	1. <u>11100</u>	0.1 <u>0001</u>
1. <u>01101</u>	0.1 <u>0111</u>	1. <u>11101</u>	0.1 <u>0001</u>
1. <u>01110</u>	0.1 <u>0110</u>	1. <u>11110</u>	0.1 <u>0000</u>
1. <u>01111</u>	0.1 <u>0110</u>	1. <u>11111</u>	0.1 <u>0000</u>

Exercise 7.9

(a) With full multiplier $(55 \times 55 \rightarrow 55, \text{ rounded})$

- Rounding error of multiplication: $\pm 2^{-56}$ ($\pm 1/2$ ulp)
- Error due to ones' complement: 2^{-55} (1 ulp)

We now determine the bound on the generated error $\epsilon_G[j]$ by incorporating the bounds of errors associated with each iteration:

$$R[j+1] = R[j](2 - (R[j]d \pm 2^{-56}) - 2^{-55}) \pm 2^{-56}$$
$$= R[j](2 - R[j]d) \mp R[j]2^{-56} - R[j]2^{-55} \pm 2^{-56}$$
$$= R[j](2 - R[j]d) - \epsilon_G[j]$$

We assume that R[j] < 1 resulting in

$$-2^{-56} + 2^{-55} - 2^{-56} < \epsilon_G[j] < 2^{-56} + 2^{-55} + 2^{-56}$$

That is,

$$0 < \epsilon_G[j] < 2^{-54}$$

To get the final error, we use $\epsilon_T[j] = \epsilon_T[j-1] + \epsilon_G[j]$

$$\begin{aligned} -2^{-8} &< \epsilon_T[0] < 2^8 \\ \epsilon_T[1] &< \epsilon_T[0]^2 + \epsilon_G[0] = 2^{-16} + 2^{-54} \\ \epsilon_T[2] &< (2^{-16} + 2^{-54})^2 + 2^{-54} \\ \epsilon_T[3] &< ((2^{-16} + 2^{-54})^2 + 2^{-54})^2 + 2^{-54} \\ &= (2^{-32} + 2^{-108} + 2^{-69} + 2^{-54})^2 + 2^{-54} \\ &= 2^{-54} + 2^{-64} + O(2^{-86}) \end{aligned}$$

(b) With rectangular multiplier $(55 \times 16 \rightarrow 55, \text{ rounded})$

j=0

$$R[1] = R[0](2 - (R[0]d \mp 2^{-56}) - 2^{-55}) \pm 2^{-16}$$

$$|\epsilon_G[0]| \leq 2^{-56} + 2^{-55} + 2^{-16}$$

$$\epsilon_T[1] = \epsilon_T[0]^2 + \epsilon_G[0] = (2^{-8})^2 + (2^{-56} + 2^{-55} + 2^{-16})$$

$$= 2^{-15} + 2^{-55} + 2^{-56}$$

j=1

$$R[2] = R[1](2 - (R[1]d \mp 2^{-56}) - 2^{-55}) \pm 2^{-32}$$

$$|\epsilon_G[1]| \leq 2^{-56} + 2^{-55} + 2^{-32}$$

$$\epsilon_T[2] = \epsilon_T[1]^2 + \epsilon_G[1] = (2^{-15} + 2^{-55} + 2^{-56})^2 + 2^{-56} + 2^{-55} + 2^{-32}$$

j=2

$$\begin{split} R[3] &= R[2](2 - (R[2]d \mp 2 \times 2^{-56}) - 2^{-55}) \pm 2 \times 2^{-32} \\ |\epsilon_G[2]| &\leq 2 \times 2^{-56} + 2^{-55} + 2 \times 2^{-56} = 2^{-54} + 2^{-55} \\ \epsilon_T[3] &= \epsilon_T[2]^2 + \epsilon_G[2] = [(2^{-15} + 2^{-55} + 2^{-56})^2 + 2^{-56} + 2^{-55} + 2^{-32}]^2 \\ &+ 2^{-54} + 2^{-55} \\ &= 2^{-54} + 2^{-55} + 2^{-60} + O(2^{-64}) \end{split}$$

Exercise 7.13

x = 1310/4096 = 0.010100011110, d = 2883/4096 = 0.101101000011

The initial value: R[0] = 2.98 - d = 1.1001001010000. As indicated on p.373, the maximum relative error is about 10^{-1} . For an error of 2^{-12} , two iterations are sufficient.

a) Using Newton-Raphson method (results truncated to 12 fractional bits):

j	R[j]	$\epsilon[j]$
0	1.100100101000	-0.107
1	1.011001111001	0.011
2	1.011010111010	$1.3 imes 10^{-4}$

The error in the computed quotient $q = x \times R[2] = 0.011101000100$ is smaller than 6×10^{-5} which is less than 2^{-12} .

- b) Using multiplicative method: P[0] = 2.98 2d = 1.5722 = 1.100100101000 (Results truncated to 12 bits)
 - Step 1: $d[0] = d \cdot P[0] = 1.000110110100; q[0] = x \cdot P[0] = 0.100000001011$ - Step 2: P[1] = 2 - d[0] = 0.111001001011 $d[1] = d[0] \cdot P[1] = 0.1111111010001; q[1] = q[0] \cdot P[1] = 0.011100110000$ - Step 3: P[2] = 2 - d[1] = 1.000000101110; $d[2] = d[1] \cdot P[2] = 0.11111111111; q[2] = q[1] \cdot P[2] = 0.011101000100$ Again, the error in the computed quotient is less than 2^{-12} .

The error in the quotient is 5.9×10^{-5} .

Exercise 7.17

The algorithm to implement is:

$$X[0] = x, \quad S[0] = x, \quad P[0] = A$$

where A is an approximation to $1/\sqrt{x}$ with an error less than 2^{-8} .

for j = 0 to 3 $P[j] = 1 + \frac{1}{2}(1 - X[j])$ P2[j] = P[j]P[j] X[j+1] = X[j]P2[j]S[j+1] = S[j]P[j]

- (a) Alternative with a full 55×55 multiplier, a 3-stage pipeline.
 - P[0] = A one cycle;
 - Scheduling of an iteration in the pipelined multiplier is shown in Figure E7.17. It takes 4 cycles to obtain S[j+1]. An iteration takes 6 cycles.
 - Latency:

1 cycle for initial approximation

3 full iterations, each 6 cycles for a total of 18 cycles partial iteration to obtain S[4] in 4 cycles total: 23 cycles

Figure E7.17: Scheduling of one iteration

(b) With 55×16 rectangular multipliers (single stage)

- P[0] = A, a 9-bit approximation; 1 cycle

- First iteration: $x[1] = x[0] \cdot P[0]; (55 \times 9); 1$ cycle $x[1] = x[1] \cdot P[0]; (55 \times 9); 1$ cycle $S[1] = S[0] \cdot P[0]; (55 \times 9); 1$ cycle
$$\begin{split} P[1] &= 1 + \frac{1}{2}(1 - x[1]); \text{ rounded to 16 bits} \\ x[2] &= x[1] \cdot P[1]; (55 \times 16); 1 \text{ cycle} \\ x[2] &= x[2] \cdot P[1]; (55 \times 16); 1 \text{ cycle} \\ S[2] &= S[1] \cdot P[1]; (55 \times 16); 1 \text{ cycle} \end{split}$$

- Third iteration:

$$\begin{split} P[2] &= 1 + \frac{1}{2}(1 - x[2]); \text{ rounded to } 32 \text{ bits} \\ x[3] &= x[2] \cdot P[2]; \ (55 \times 32); \ 2 \text{ cycles} \\ x[3] &= x[3] \cdot P[2]; \ (55 \times 32); \ 2 \text{ cycles} \end{split}$$

 $S[3] = S[2] \cdot P[2]; (55 \times 32); 2$ cycles

- Termination:

 $P[3] = 1 + \frac{1}{2}(1 - x[3])$; rounded to 55 bits $S[4] = S[3] \cdot P[3]$; (55 × 55); 4 cycles

- Latency: 1+3+3+6+4 = 17 cycles. This can be reduced to 13 cycles if two rectangular multipliers are used.