
1

DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

– Updated: December 22, 2003 –

Chapter 7: Solutions to Exercises

– With contributions by Elisardo Antelo –

Exercise 7.1

From

ε[j] = 1 − d · R[j]
ε[j + 1] = 1 − d · R[j + 1] = (ε[j])2 = (1 − d · R[j])2

we get

1 − d · R[j + 1] = 1 − 2d · R[j] + (d · R[j])2

d · R[j + 1] = 2d · R[j] − (d · R[j])2

R[j + 1] = 2R[j] − d · R[j]2 = R[j](2 − d · R[j])

Exercise 7.4

Find the reciprocal of d = 29/256 by the multiplicative normalization method.
For the maximum error less tha 2−12 ≈ 0.00024 in the range 1/2 ≤ d < 1 we
scale the input as follows:

1

d
=

1

29/256
=

1

29/32
× 23

and compute 1

29/32

P [0] = b2 − 29/32c4 = 1.00012 = 1.0625

j P [j] d[j] R[j] ε[j]
0 1.0625 0.962891 1.0625 0.037
1 1.037109 0.998623 1.101929 1.38 × 10−3

2 1.001377 0.999998 1.103446 1.9 × 10−6

3 1.000002 0.999999 1.103448 3.6 × 10−12

The answer is R[3]×23 = 8.827586... compared to 256/29 = 8.827586... with
an error less than 2−12. Three iterations are used to guarantee that the error is
smaller than 2−12 for 1/2 ≤ d < 1: for d = 1/2, ε[2] = 3.91 × 10−3 > 2−12 so
another iteration is needed.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 7: Solutions to Exercises

2

Exercise 7.6

Optimal 5-bit input, 4-bit output reciprocal table is shown below. The
actual input and output bits are underlined. The case 1.00000 produces the
same output as for 1.1111x and needs to be detected.

5-bit 4-bit 5-bit 4-bit
input output input output

1.00000 1.00000 1.10000 0.10101
1.00001 0.11111 1.10001 0.10101
1.00010 0.11110 1.10010 0.10100
1.00011 0.11101 1.10011 0.10100
1.00100 0.11100 1.10100 0.10100
1.00101 0.11011 1.10101 0.10011
1.00110 0.11011 1.10110 0.10011
1.00111 0.11010 1.10111 0.10010
1.01000 0.11001 1.11000 0.10010
1.01001 0.11001 1.11001 0.10010
1.01010 0.11000 1.11010 0.10010
1.01011 0.11000 1.11011 0.10001
1.01100 0.10111 1.11100 0.10001
1.01101 0.10111 1.11101 0.10001
1.01110 0.10110 1.11110 0.10000
1.01111 0.10110 1.11111 0.10000

Exercise 7.9

(a) With full multiplier (55 × 55 → 55, rounded)

– Rounding error of multiplication: ±2−56 (±1/2 ulp)

– Error due to ones’ complement: 2−55 (1 ulp)

We now determine the bound on the generated error εG[j] by incorporating
the bounds of errors associated with each iteration:

R[j + 1] = R[j](2 − (R[j]d ± 2−56) − 2−55) ± 2−56

= R[j](2 − R[j]d) ∓ R[j]2−56 − R[j]2−55 ± 2−56

= R[j](2 − R[j]d) − εG[j]

We assume that R[j] < 1 resulting in

−2−56 + 2−55 − 2−56 < εG[j] < 2−56 + 2−55 + 2−56

That is,

0 < εG[j] < 2−54

To get the final error, we use εT [j] = εT [j − 1] + εG[j]

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 7: Solutions to Exercises

3

−2−8 < εT [0] < 28

εT [1] < εT [0]2 + εG[0] = 2−16 + 2−54

εT [2] < (2−16 + 2−54)2 + 2−54

εT [3] < ((2−16 + 2−54)2 + 2−54)2 + 2−54

= (2−32 + 2−108 + 2−69 + 2−54)2 + 2−54 =

= 2−54 + 2−64 + O(2−86)

(b) With rectangular multiplier (55 × 16 → 55, rounded)

j=0

R[1] = R[0](2 − (R[0]d ∓ 2−56) − 2−55) ± 2−16

|εG[0]| ≤ 2−56 + 2−55 + 2−16

εT [1] = εT [0]2 + εG[0] = (2−8)2 + (2−56 + 2−55 + 2−16)

= 2−15 + 2−55 + 2−56

j=1

R[2] = R[1](2 − (R[1]d ∓ 2−56) − 2−55) ± 2−32

|εG[1]| ≤ 2−56 + 2−55 + 2−32

εT [2] = εT [1]2 + εG[1] = (2−15 + 2−55 + 2−56)2 + 2−56 + 2−55 + 2−32

j=2

R[3] = R[2](2 − (R[2]d ∓ 2 × 2−56) − 2−55) ± 2 × 2−32

|εG[2]| ≤ 2 × 2−56 + 2−55 + 2 × 2−56 = 2−54 + 2−55

εT [3] = εT [2]2 + εG[2] = [(2−15 + 2−55 + 2−56)2 + 2−56 + 2−55 + 2−32]2

+ 2−54 + 2−55

= 2−54 + 2−55 + 2−60 + O(2−64)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 7: Solutions to Exercises

4

Exercise 7.13

x = 1310/4096 = 0.010100011110, d = 2883/4096 = 0.101101000011

The initial value: R[0] = 2.98− d = 1.100100101000. As indicated on p.373,
the maximum relative error is about 10−1. For an error of 2−12, two iterations
are sufficient.

a) Using Newton-Raphson method (results truncated to 12 fractional bits):

j R[j] ε[j]

0 1.100100101000 -0.107
1 1.011001111001 0.011
2 1.011010111010 1.3 × 10−4

The error in the computed quotient q = x × R[2] = 0.011101000100 is
smaller than 6 × 10−5 which is less than 2−12.

b) Using multiplicative method: P [0] = 2.98−2d = 1.5722 = 1.100100101000
(Results truncated to 12 bits)

– Step 1:

d[0] = d · P [0] = 1.000110110100; q[0] = x · P [0] = 0.100000001011

– Step 2:

P [1] = 2 − d[0] = 0.111001001011

d[1] = d[0]·P [1] = 0.1111111010001; q[1] = q[0]·P [1] = 0.011100110000

– Step 3:

P [2] = 2 − d[1] = 1.000000101110;

d[2] = d[1]·P [2] = 0.111111111111; q[2] = q[1]·P [2] = 0.011101000100

Again, the error in the computed quotient is less than 2−12.

The error in the quotient is 5.9 × 10−5.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 7: Solutions to Exercises

5

Exercise 7.17

The algorithm to implement is:

X[0] = x, S[0] = x, P [0] = A

where A is an approximation to 1/
√

x with an error less than 2−8.
for j = 0 to 3

P [j] = 1 + 1

2
(1 − X[j])

P2[j] = P [j]P [j]
X[j + 1] = X[j]P2[j]
S[j + 1] = S[j]P [j]

(a) Alternative with a full 55 × 55 multiplier, a 3-stage pipeline.

– P [0] = A – one cycle;

– Scheduling of an iteration in the pipelined multiplier is shown in
Figure E7.17. It takes 4 cycles to obtain S[j + 1]. An iteration takes
6 cycles.

– Latency:

1 cycle for initial approximation

3 full iterations, each 6 cycles for a total of 18 cycles

partial iteration to obtain S[4] in 4 cycles

total: 23 cycles

R[j]P[j]

1 2 3

1 2 3

R[j+1]

X[j+1]

P[j]P[j] P2[j]

X[j]P2[j]

1 2 3

Figure E7.17: Scheduling of one iteration

(b) With 55 × 16 rectangular multipliers (single stage)

– P [0] = A, a 9-bit approximation; 1 cycle

– First iteration:

x[1] = x[0] · P [0]; (55 × 9); 1 cycle

x[1] = x[1] · P [0]; (55 × 9); 1 cycle

S[1] = S[0] · P [0]; (55 × 9); 1 cycle

– Second iteration:

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 7: Solutions to Exercises

6

P [1] = 1 + 1

2
(1 − x[1]); rounded to 16 bits

x[2] = x[1] · P [1]; (55 × 16); 1 cycle

x[2] = x[2] · P [1]; (55 × 16); 1 cycle

S[2] = S[1] · P [1]; (55 × 16); 1 cycle

– Third iteration:

P [2] = 1 + 1

2
(1 − x[2]); rounded to 32 bits

x[3] = x[2] · P [2]; (55 × 32); 2 cycles

x[3] = x[3] · P [2]; (55 × 32); 2 cycles

S[3] = S[2] · P [2]; (55 × 32); 2 cycles

– Termination:

P [3] = 1 + 1

2
(1 − x[3]); rounded to 55 bits

S[4] = S[3] · P [3]; (55 × 55); 4 cycles

– Latency: 1+3+3+6+4 = 17 cycles. This can be reduced to 13 cycles
if two rectangular multipliers are used.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 7: Solutions to Exercises

