## DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, (c)2004

- Updated: December 22, 2003 -


## Chapter 7: Solutions to Exercises

- With contributions by Elisardo Antelo -


## Exercise 7.1

From

$$
\begin{aligned}
\epsilon[j] & =1-d \cdot R[j] \\
\epsilon[j+1] & =1-d \cdot R[j+1]=(\epsilon[j])^{2}=(1-d \cdot R[j])^{2}
\end{aligned}
$$

we get

$$
\begin{aligned}
1-d \cdot R[j+1] & =1-2 d \cdot R[j]+(d \cdot R[j])^{2} \\
d \cdot R[j+1] & =2 d \cdot R[j]-(d \cdot R[j])^{2} \\
R[j+1] & =2 R[j]-d \cdot R[j]^{2}=R[j](2-d \cdot R[j])
\end{aligned}
$$

## Exercise 7.4

Find the reciprocal of $d=29 / 256$ by the multiplicative normalization method. For the maximum error less tha $2^{-12} \approx 0.00024$ in the range $1 / 2 \leq d<1$ we scale the input as follows:

$$
\frac{1}{d}=\frac{1}{29 / 256}=\frac{1}{29 / 32} \times 2^{3}
$$

and compute $\frac{1}{29 / 32}$

$$
P[0]=\lfloor 2-29 / 32\rfloor_{4}=1.0001_{2}=1.0625
$$

| $j$ | $P[j]$ | $d[j]$ | $R[j]$ | $\epsilon[j]$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1.0625 | 0.962891 | 1.0625 | 0.037 |
| 1 | 1.037109 | 0.998623 | 1.101929 | $1.38 \times 10^{-3}$ |
| 2 | 1.001377 | 0.999998 | 1.103446 | $1.9 \times 10^{-6}$ |
| 3 | 1.000002 | 0.999999 | 1.103448 | $3.6 \times 10^{-12}$ |

The answer is $R[3] \times 2^{3}=8.827586 \ldots$ compared to $256 / 29=8.827586 \ldots$ with an error less than $2^{-12}$. Three iterations are used to guarantee that the error is smaller than $2^{-12}$ for $1 / 2 \leq d<1$ : for $d=1 / 2, \epsilon[2]=3.91 \times 10^{-3}>2^{-12}$ so another iteration is needed.

## Exercise 7.6

Optimal 5-bit input, 4-bit output reciprocal table is shown below. The actual input and output bits are underlined. The case 1.00000 produces the same output as for 1.1111x and needs to be detected.

| 5-bit input | 4-bit output | $\begin{aligned} & \hline 5 \text {-bit } \\ & \text { input } \end{aligned}$ | $\begin{gathered} \text { 4-bit } \\ \text { output } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1.00000 | 1.00000 | 1.10000 | 0.10101 |
| 1.00001 | 0.11111 | 1.10001 | 0.10101 |
| 1.00010 | 0.11110 | 1.10010 | 0.10100 |
| 1.00011 | 0.11101 | 1.10011 | 0.10100 |
| 1.00100 | 0.11100 | 1.10100 | 0.10100 |
| 1.00101 | 0.11011 | 1.10101 | 0.10011 |
| 1.00110 | 0.11011 | 1.10110 | 0.10011 |
| 1.00111 | 0.11010 | 1.10111 | 0.10010 |
| 1.01000 | 0.11001 | 1.11000 | 0.10010 |
| 1.01001 | 0.11001 | 1.11001 | 0.10010 |
| 1.01010 | 0.11000 | 1.11010 | $0.1 \underline{0010}$ |
| 1.01011 | 0.11000 | 1.11011 | 0.10001 |
| 1.01100 | 0.10111 | 1.11100 | 0.10001 |
| 1.01101 | 0.10111 | 1.11101 | 0.10001 |
| 1.01110 | 0.10110 | 1.11110 | 0.10000 |
| 1.01111 | 0.10110 | 1.11111 | 0.10000 |

## Exercise 7.9

(a) With full multiplier $(55 \times 55 \rightarrow 55$, rounded)

- Rounding error of multiplication: $\pm 2^{-56}$ ( $\pm 1 / 2 \mathrm{ulp}$ )
- Error due to ones' complement: $2^{-55}$ (1 ulp)

We now determine the bound on the generated error $\epsilon_{G}[j]$ by incorporating the bounds of errors associated with each iteration:

$$
\begin{gathered}
R[j+1]=R[j]\left(2-\left(R[j] d \pm 2^{-56}\right)-2^{-55}\right) \pm 2^{-56} \\
=R[j](2-R[j] d) \mp R[j] 2^{-56}-R[j] 2^{-55} \pm 2^{-56} \\
=R[j](2-R[j] d)-\epsilon_{G}[j]
\end{gathered}
$$

We assume that $R[j]<1$ resulting in

$$
-2^{-56}+2^{-55}-2^{-56}<\epsilon_{G}[j]<2^{-56}+2^{-55}+2^{-56}
$$

That is,

$$
0<\epsilon_{G}[j]<2^{-54}
$$

To get the final error, we use $\epsilon_{T}[j]=\epsilon_{T}[j-1]+\epsilon_{G}[j]$

$$
\begin{aligned}
-2^{-8} & <\epsilon_{T}[0]<2^{8} \\
\epsilon_{T}[1] & <\epsilon_{T}[0]^{2}+\epsilon_{G}[0]=2^{-16}+2^{-54} \\
\epsilon_{T}[2] & <\left(2^{-16}+2^{-54}\right)^{2}+2^{-54} \\
\epsilon_{T}[3] & <\left(\left(2^{-16}+2^{-54}\right)^{2}+2^{-54}\right)^{2}+2^{-54} \\
& =\left(2^{-32}+2^{-108}+2^{-69}+2^{-54}\right)^{2}+2^{-54}= \\
& =2^{-54}+2^{-64}+O\left(2^{-86}\right)
\end{aligned}
$$

(b) With rectangular multiplier $(55 \times 16 \rightarrow 55$, rounded) $\mathrm{j}=0$

$$
\begin{aligned}
R[1] & =R[0]\left(2-\left(R[0] d \mp 2^{-56}\right)-2^{-55}\right) \pm 2^{-16} \\
\left|\epsilon_{G}[0]\right| & \leq 2^{-56}+2^{-55}+2^{-16} \\
\epsilon_{T}[1] & =\epsilon_{T}[0]^{2}+\epsilon_{G}[0]=\left(2^{-8}\right)^{2}+\left(2^{-56}+2^{-55}+2^{-16}\right) \\
& =2^{-15}+2^{-55}+2^{-56}
\end{aligned}
$$

$$
\mathrm{j}=1
$$

$$
R[2]=R[1]\left(2-\left(R[1] d \mp 2^{-56}\right)-2^{-55}\right) \pm 2^{-32}
$$

$$
\left|\epsilon_{G}[1]\right| \leq 2^{-56}+2^{-55}+2^{-32}
$$

$$
\epsilon_{T}[2]=\epsilon_{T}[1]^{2}+\epsilon_{G}[1]=\left(2^{-15}+2^{-55}+2^{-56}\right)^{2}+2^{-56}+2^{-55}+2^{-32}
$$

$$
\mathrm{j}=2
$$

$$
\begin{aligned}
R[3] & =R[2]\left(2-\left(R[2] d \mp 2 \times 2^{-56}\right)-2^{-55}\right) \pm 2 \times 2^{-32} \\
\left|\epsilon_{G}[2]\right| & \leq 2 \times 2^{-56}+2^{-55}+2 \times 2^{-56}=2^{-54}+2^{-55} \\
\epsilon_{T}[3] & =\epsilon_{T}[2]^{2}+\epsilon_{G}[2]=\left[\left(2^{-15}+2^{-55}+2^{-56}\right)^{2}+2^{-56}+2^{-55}+2^{-32}\right]^{2} \\
& +2^{-54}+2^{-55} \\
& =2^{-54}+2^{-55}+2^{-60}+O\left(2^{-64}\right)
\end{aligned}
$$

## Exercise 7.13

$x=1310 / 4096=0.010100011110, d=2883 / 4096=0.101101000011$
The initial value: $R[0]=2.98-d=1.100100101000$. As indicated on p.373, the maximum relative error is about $10^{-1}$. For an error of $2^{-12}$, two iterations are sufficient.
a) Using Newton-Raphson method (results truncated to 12 fractional bits):

| $j$ | $R[j]$ | $\epsilon[j]$ |
| :--- | :--- | :--- |
| 0 | 1.100100101000 | -0.107 |
| 1 | 1.011001111001 | 0.011 |
| 2 | 1.011010111010 | $1.3 \times 10^{-4}$ |

The error in the computed quotient $q=x \times R[2]=0.011101000100$ is smaller than $6 \times 10^{-5}$ which is less than $2^{-12}$.
b) Using multiplicative method: $P[0]=2.98-2 d=1.5722=1.100100101000$ (Results truncated to 12 bits)

- Step 1:
$d[0]=d \cdot P[0]=1.000110110100 ; q[0]=x \cdot P[0]=0.100000001011$
- Step 2:
$P[1]=2-d[0]=0.111001001011$
$d[1]=d[0] \cdot P[1]=0.1111111010001 ; q[1]=q[0] \cdot P[1]=0.011100110000$
- Step 3:
$P[2]=2-d[1]=1.000000101110 ;$
$d[2]=d[1] \cdot P[2]=0.111111111111 ; q[2]=q[1] \cdot P[2]=0.011101000100$
Again, the error in the computed quotient is less than $2^{-12}$.
The error in the quotient is $5.9 \times 10^{-5}$.


## Exercise 7.17

The algorithm to implement is:

$$
X[0]=x, \quad S[0]=x, \quad P[0]=A
$$

where $A$ is an approximation to $1 / \sqrt{x}$ with an error less than $2^{-8}$.

$$
\begin{aligned}
& \text { for } j=0 \text { to } 3 \\
& \quad P[j]=1+\frac{1}{2}(1-X[j]) \\
& P 2[j]=P[j] P[j] \\
& X[j+1]=X[j] P 2[j] \\
& S[j+1]=S[j] P[j]
\end{aligned}
$$

(a) Alternative with a full $55 \times 55$ multiplier, a 3 -stage pipeline.
$-P[0]=A$ - one cycle;

- Scheduling of an iteration in the pipelined multiplier is shown in Figure E7.17. It takes 4 cycles to obtain $S[j+1]$. An iteration takes 6 cycles.
- Latency:

1 cycle for initial approximation
3 full iterations, each 6 cycles for a total of 18 cycles partial iteration to obtain $S[4]$ in 4 cycles
total: 23 cycles


Figure E7.17: Scheduling of one iteration
(b) With $55 \times 16$ rectangular multipliers (single stage)
$-P[0]=A$, a 9 -bit approximation; 1 cycle

- First iteration:

$$
\begin{aligned}
& x[1]=x[0] \cdot P[0] ;(55 \times 9) ; 1 \text { cycle } \\
& x[1]=x[1] \cdot P[0] ;(55 \times 9) ; 1 \text { cycle } \\
& S[1]=S[0] \cdot P[0] ;(55 \times 9) ; 1 \text { cycle }
\end{aligned}
$$

- Second iteration:

$$
\begin{aligned}
& P[1]=1+\frac{1}{2}(1-x[1]) ; \text { rounded to } 16 \text { bits } \\
& x[2]=x[1] \cdot P[1] ;(55 \times 16) ; 1 \text { cycle } \\
& x[2]=x[2] \cdot P[1] ;(55 \times 16) ; 1 \text { cycle } \\
& S[2]=S[1] \cdot P[1] ;(55 \times 16) ; 1 \text { cycle }
\end{aligned}
$$

- Third iteration:

$$
\begin{aligned}
& P[2]=1+\frac{1}{2}(1-x[2]) ; \text { rounded to } 32 \text { bits } \\
& x[3]=x[2] \cdot P[2] ;(55 \times 32) ; 2 \text { cycles } \\
& x[3]=x[3] \cdot P[2] ;(55 \times 32) ; 2 \text { cycles } \\
& S[3]=S[2] \cdot P[2] ;(55 \times 32) ; 2 \text { cycles }
\end{aligned}
$$

- Termination:

$$
\begin{aligned}
& P[3]=1+\frac{1}{2}(1-x[3]) ; \text { rounded to } 55 \text { bits } \\
& S[4]=S[3] \cdot P[3] ;(55 \times 55) ; 4 \text { cycles }
\end{aligned}
$$

- Latency: $1+3+3+6+4=17$ cycles. This can be reduced to 13 cycles if two rectangular multipliers are used.

