DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, (c)2004

- Updated: September 23, 2003 -

Chapter 6: Solutions to Exercises

- With contributions by Elisardo Antelo and Fabrizio Lamberti -

Exercise 6.1

a) Radix-2, $s_{j} \in\{-1,0,1\}$, conventional (nonredundant) residual

We have $x=144 \times 2^{-8}=0.10010000$ and $\rho=1$. We choose $s_{0}=0$. Therefore the initialization is $w[0]=x-s_{0}=0.10010000$.
We use the result-digit selection function for redundant residual but we consider only 2 integer bits since the range of the residual estimate is smaller than in the redundant case.

$\begin{aligned} 2 w[0] & = \\ F_{1}[0] & = \end{aligned}$	$\begin{array}{r} 001.00100000 \\ 11.10000000 \\ \hline \end{array}$	$\begin{aligned} & \widehat{y}=1 \\ & F_{-1}[0]=11.10000000 \end{aligned}$	$s_{1}=1$
$w[1]=$	00.10100000		
$2 w[1]=$	001.01000000	$\widehat{y}=1$	$s_{2}=1$
$F_{1}[1]=$	10.11000000	$F_{-1}[1]=00.11000000$	
$w[2]=$	00.00000000		
$2 w[2]=$	000.00000000	$\widehat{y}=0$	$s_{3}=1$
$F_{1}[2]=$	10.01100000	$F_{-1}[2]=01.01100000$	
$w[3]=$	10.01100000		
$2 w[3]=$	100.11000000	$\widehat{y}=-4$	$s_{4}=-1$
$F_{-1}[3]=$	01.10110000	$F_{1}[3]=10.00110000$	
$w[4]=$	10.01110000		
$2 w[4]=$	100.11100000	$\widehat{y}=-4$	$s_{5}=-1$
$F_{-1}[4]=$	01.10011000	$F_{1}[4]=10.01011000$	
$w[5]=$	10.01111000		
$2 w[5]=$	100.11110000	$\widehat{y}=-4$	$s_{6}=-1$
$F_{-1}[5]=$	01.10001100	$F_{1}[5]=01.10001100$	
$w[6]=$	1110.01111100		

$$
\begin{array}{rrlrl}
2 w[6] & = & 100.11111000 & \widehat{y}=-4 & s_{7}=-1 \\
F_{-1}[6] & = & 01.10000110 & F_{1}[6]=10.01110110 & \\
\hline w[7] & = & 10.01111110 & & \\
& & & \\
2 w[7] & = & 100.11111100 & \widehat{y}=-4 & s_{8}=-1 \\
F_{-1}[7] & = & 01.10000011 & F_{1}[7]=10.01111011 & \\
\hline w[8] & & 10.01111111 & & \\
& & & \\
2 w[8] & = & 100.11111110 & \widehat{y}=-4 & s_{9}=-1 \\
F_{-1}[8] & & 01.10000001 & F_{1}[8]=10.01111101 & \\
\hline w[9] & & 10.01111111 & &
\end{array}
$$

We perform 9 iterations to compute the additional bit required for rounding. Since $w[9]<0$ the correction step has to be performed. Thus $s_{9}=-2$. The result is

$$
s=0.111 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{2}=(0.11000000)_{2}
$$

b) Radix-2, $s_{j} \in\{-1,0,1\}$, carry-save residual

$2 W S[0]=$	0001.00100000	$\widehat{y}=1$	$s_{1}=1$
$2 W C[0]=$	0000.00000000		
$F_{1}[0]=$	111.10000000	$F_{-1}[0]=111.10000000$	
WS [1] =	110.10100000		
$W C[1]=$	010.00000000		
$2 W S[1]=$	1101.01000000	$\widehat{y}=1$	$s_{2}=1$
$2 W C[1]=$	0100.00000000		
$F_{1}[1]=$	110.11000000	$F_{-1}[1]=000.11000000$	
$W S[2]=$	111.10000000		
$W C[2]=$	000.10000000		
$2 W S[2]=$	1111.00000000	$\widehat{y}=0$	$s_{3}=1$
$2 W C[2]=$	0001.00000000		
$F_{1}[2]=$	110.01100000	$F_{-1}[2]=001.01100000$	
$W S[3]=$	000.01100000		
$W C[3]=$	110.00000000		
$2 W S[3]=$	0000.11000000	$\widehat{y}=-4$	$s_{4}=-1$
$2 W C[3]=$	1100.00000000		
$F_{-1}[3]=$	001.10110000	$F_{1}[3]=110.00110000$	
$W S[4]=$	101.01110000		
$W C[4]=$	001.00000000		

$2 W S[4]=$	1010.11100000	$\widehat{y}=-4$	$s_{5}=-1$
$2 W C[4]=$	0010.00000000		
$F_{-1}[4]=$	001.10011000	$F_{1}[4]=110.01011000$	
$W S[5]=$	001.01111000		
$W C[5]=$	101.00000000		
$2 W S[5]=$	0010.11110000	$\widehat{y}=-4$	$s_{6}=-1$
$2 W C[5]=$	1010.00000000		
$F_{-1}[5]=$	001.10001100	$F_{1}[5]=001.10001100$	
$W S[6]=$	001.01111100		
$W C[6]=$	101.00000000		
$2 W S[6]=$	0010.11111000	$\widehat{y}=-4$	$s_{7}=-1$
$2 W C[6]=$	1010.00000000		
$F_{-1}[6]=$	001.10000110	$F_{1}[6]=110.01110110$	
$W S[7]=$	001.01111110		
$W C[7]=$	101.00000000		
$2 W S[7]=$	0010.11111100	$\widehat{y}=-4$	$s_{8}=-1$
$2 W C[7]=$	1010.00000000		
$F_{-1}[7]=$	001.10000011	$F_{1}[7]=110.01111011$	
$W S[8]=$	001.01111111		
$W C[8]=$	101.00000000		
$2 W S[8]=$	0010.11111110	$\widehat{y}=-4$	$s_{9}=-1$
$2 W C[8]=$	1010.00000000		
$F_{-1}[8]=$	001.10000001	$F_{1}[8]=110.01111101$	
$W S[9]=$	001.01111111		
$W C[9]=$	101.00000000		

We perform 9 iterations to compute the additional bit required for rounding. Since $w[9]<0$ the correction step has to be performed. Thus $s_{9}=-2$. The result is

$$
s=0.111 \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{2}=(0.11000000)_{2}
$$

c) Radix-4, $s_{j} \in\{-2,-1,0,1,2\}$, carry-save residual

Since $\rho=\frac{a}{r-1}=\frac{2}{3}<1, s_{0}$ should be 1. Therefore $w[0]=1-s_{0}=$ 111.10010000.

$4 W S[0]=$	1110.01000000	$\widehat{S}=1.0000$	S $[0]=1$
$4 W C[0]=$	0000.00000000	$\widehat{y}=1110.010$	$s_{1}=-1$
$F_{1}[0]=$	001.11000000		$S[1]=0.11$
$W S[1]=$	11.10000000		
$W C[1]=$	00.10000000		
$4 W S[1]=$	1110.00000000	$\widehat{S}=0.1100$	$s_{2}=0$
$4 W C[1]=$	0010.00000000	$\widehat{y}=0000.000$	$S[2]=0.1100$
$W S[2]=$	00.00000000		
$W C[2]=$	00.00000000		
$4 W S[2]=$	0000.00000000	$\widehat{S}=0.1100$	$s_{3}=0$
$4 W C[2]=$	0000.00000000	$\widehat{y}=0000.000$	$S[3]=0.110000$

Since $w=0$, the rest of the digits of S are 0 . We perform 4 iterations to take into account the generation of the additional bit required for rounding. The radix- 4 digits of the result are $s_{0}=1, s_{1}=-1, s_{2}=0, s_{3}=0$, $s_{4}=0$ and $s_{5}=0$. The result is

$$
s=(0.11000000)_{2}
$$

Exercise 6.3

a) Use $S[j]$ in its original signed digit form

In this case it is not necessary the on-the-fly conversion of $S[j]$ for implementing the recurrence. Neverthless the register $K[j]$ is stil necessary. $F[j]$ is computed as

$$
-S_{j+1}\left(2 S[j]+S_{j+1} r^{-(j+1)}\right)
$$

which requires a single concatenation of S_{j+1}, and a digit multiplication by S_{j+1}. Since $F[j]$ is represented in signed-digit form, the adder of the recurrence is more complex, that is, both operands are redundant.
b) Convert $S[j]$ to two's complement representation

The conversion is on-the-fly, and since this conversion is already necessary, it does not introduce additional complexity. The adder is simpler that in $a)$ since one operand is in nonredundant form. More specifically the term $-S_{j+1}\left(2 S[j]+S_{j+1} r^{-(j+1)}\right)$ is generated in nonredundant form as follows:
$-S_{j+1} \geq 0$
Concatenate S_{j+1} to $2 S[j]$ in position $j+1$. Set the most significant digit to one to have a negative operand (the weight of the most significant digit is negative). Then perform digit multiplication.
$-S_{j+1}<0$
In this case

$$
\left(2 S[j]+S_{j+1} r^{-(j+1)}\right)=2\left(S[j]-r^{-j}\right)+\left(2 r-S_{j+1}\right) r^{-(j+1)}
$$

The term $S[j]-r^{-j}$ is available from the on-the-fly conversion module. The term $2 r-S_{j+1}$ is precomputed for every digit and is concatenated to $2\left(S[j]-r^{-j}\right)$ in postion $j+1$. Finally, the digit multiplication is performed.

Exercise 6.5

a) Network for digit selection

Figure E6.5a shows the network for the selection of s_{j+1} and s_{j+2} in a radix- 2 square root implementation using two radix-2 overlapped stages.

Figure E6.5a: Network for digit selection.
b) Network to produce the next residual

In Figure E6.5b the network producing the next residual is illustrated.
c) Delay analysis

- Conventional implementation

Computing the delay in the critical path we have

$$
t_{c y c l e}=t_{S E L S Q R T}(4)+t_{b u f f}(1)+t_{m u x}(1)+t_{H A}(1)+t_{r e g}(2)=9 t_{g}
$$

The latency of the conventional implementation (8 fractional bits) can be computed as $8 \times t_{\text {cycle }}=8 \times 9 t_{g}=72 t_{g}$.

- Overlapped implementation

Computing the delay in the critical path we have that the delay to produce $W[j+1]$ (that is, the delay from $W[j]$ to $W[j+1])$ is

$$
t_{S E L S Q R T}(4)+t_{b u f f}(1)+t_{m u x}(1)+t_{H A}(1)=7 t_{g}
$$

Moreover, the delay to produce s_{j+2} (delay of CSA + delay of selection network + delay of 3-1 multiplexer) is

$$
t_{C S A}(2)+t_{S E L S Q R T}(4)+t_{m u x}(1)+t_{b u f f}(1)=8 t_{g}
$$

Figure E6.5b: Network to produce the next residual.

Finally, the delay to produce $W[j+2]$ (delay to produce $s_{j+2}+$ delay of buffer + delay of mux + delay of HA) can be computed as

$$
8 t_{g}+1 t_{g}+1 t_{g}+1 t_{g}=12 t_{g}
$$

Adding the register delay we get $t_{\text {cycle }}=11 t_{g}+2 t_{g}=13 t_{g}$. Computing the latency of the overlapped implementation (8 fractional bits) we get $4 \times t_{\text {cycle }}=4 \times 13 t_{g}=52 t_{g}$

Exercise 6.8

We compute the radix-4 square root of $x=(53)_{10}=(00110101)_{2}$. Since $n=8$, we perform a right-shift of $m=2$ bits and produce $x^{*}=.11010100$.

The number of bits of the integer result is $\frac{8-2}{2}=3$. Consequently, two radix4 iterations are necessary. We have $S[0]=1$ and $w[0]=x^{*}-1=11.11010100$.

Note that no alignment to digit boundary is needed, since the square root algorithm does not require to compute a remainder.

The iterations are as follows:

$$
\begin{array}{rrrlrl}
4 W S[0] & = & 1111.01010000 & & & \\
4 W C[0] & = & 0000.00000000 & \widehat{y}=1111.0101 & s_{1}=-1 & S[1]=0.11 \\
F_{-1}[0] & = & 001.11000000 & & & \\
\hline W S[1] & = & 10.10010000 & & & \\
W C[1] & = & 10.10000000 & & & \\
& & & & \\
4 W S[1] & = & 1010.01000000 & & & \\
4 W C[1] & = & 1010.00000000 & \widehat{y}=0100.0100 & s_{2}=2 & S[2]=0.1110
\end{array}
$$

We do not need to compute $w[2]$. Therefore the result is

$$
s=2^{3}(0.111)=111=(7)_{10}
$$

Exercise 6.13

We develop a radix- 4 selection function for $J=3, t=3$ and $\delta=4$.
$-k>0$

$$
\begin{gathered}
\min \left(U_{k-1}\left(I_{i}\right)\right)=2 \times\left(\frac{1}{2}+i \times 2^{-4}\right) \times\left(k-\frac{1}{3}\right) \\
\max \left(L_{k}\left(I_{i}\right)\right)=2 \times\left(\frac{1}{2}+(i+1) \times 2^{-4}\right) \times\left(k-\frac{2}{3}\right) \\
-k \leq 0 \\
\min \left(U_{k-1}\left(I_{i}\right)\right)=2 \times\left(\frac{1}{2}+(i+1) \times 2^{-4}\right) \times\left(k-\frac{1}{3}\right) \\
\max \left(L_{k}\left(I_{i}\right)\right)=2 \times\left(\frac{1}{2}+i \times 2^{-4}\right) \times\left(k-\frac{2}{3}\right)+\left(k-\frac{2}{3}\right)^{2} \times 4^{-4} \\
\widehat{L}_{k}=\max \left(\left\lceil L_{k}\left(I_{i}\right)\right\rceil_{3}\right) \leq m_{k}(i) \leq \min \left(\left\lfloor U_{k-1}\left(I_{i}\right)\right)-2^{-3}\right\rfloor_{3}=\widehat{U}_{k-1}
\end{gathered}
$$

To improve the presentation of results, we use a bound for $\max \left(L_{k}\left(I_{i}\right)\right)$. More specifically, we want an upper bound of the term $\left(k-\frac{2}{3}\right)^{2} \times 4^{-4}$. For $k=0$ we have $\frac{4}{9} \times 4^{-4}=\frac{1}{576}<\frac{1}{512}$. For $k=1$ we have $\left(-\frac{5}{3}\right)^{2} \times 4^{-4}=\frac{25}{2304}<\frac{1}{64}$.

The selection constants are presented in Table E6.13. Note that we give only half of the table (for $\widehat{S}[j]=8,9,10,11$) since there is an interval $\widehat{U}_{-2}-\widehat{L}_{-1}$ that is negative. Consequently, there is no selection function for $t=3$ and $\delta=4$.

$\widehat{S}[j]$	8	9	10	11
$\widehat{L}_{2}, \widehat{U}_{1}$	12,12	14,14	15,15	16,17
m_{2}	12	14	15	16
$\widehat{L}_{1}, \widehat{U}_{0}$	3,4	4,5	4,5	4,6
m_{1}	4	4	4	4
$\widehat{L}_{0}, \widehat{U}_{-1}$	$-5,-4$	$-5,-5$	$-6,-5$	$-7,-5$
m_{0}	-4	-5	-6	-6
$\widehat{L}_{-1}, \widehat{U}_{-2}$	$-13,-13$	$-14,-15$	$-16,-16$	$-18,-17$
m_{-1}	-13	X	-16	-18

Table E6.13: Selection interval and m_{k} constants.
$\widehat{S}[j]$: real value $=$ shown value $/ 16$.
$\widehat{L}_{k}, \widehat{U}_{k-1}$ and m_{k} : real value $=$ shown value $/ 8$.

