
1

DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

– Updated: September 9, 2003 –

Chapter 5: Solutions to Selected Exercises

– With contributions by Elisardo Antelo and Fabrizio Lamberti –

Exercise 5.2

In the following, two iterations of the division recurrence using a radix-16
implementation with two overlapped radix-4 stages for x = 0.1001001110100101
and d = 0.110 are shown.

• First iteration

4WS[0] = 000.1001001110100101
4WC[0] = 000.0000000000000001∗ ŷ [0] = 9

16 q1 = 1
−q1d = 111.0011111111111111

WS[1] = 111.1010110001011011
WC[1] = 000.0010011101001010

Speculative computations

– Case a) q1 = 2

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−2 × d) 001.11111

011.1011
000.1001
100.0100 ŷ [1] = −60/16 q̂2 = −2 (tentative)

– Case b) q1 = 1

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−1 × d) 100.11111

110.1011
000.1001
111.0100 ŷ [1] = −12/16 q̂2 = −1 (tentative)

– Case c) q1 = 0

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

2

42ŴS [0] 010.0100

42ŴC [0] 000.0000
010.0100 ŷ [1] = 36/16 q̂2 = 2 (tentative)

– Case d) q1 = −1

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−1 × d) 011.00000

001.0100
100.0000
101.0100 ŷ [1] = −44/16 q̂2 = −2 (tentative)

– Case e) q1 = −2

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−2 × d) 110.00000

100.0100
100.0000
000.0100 ŷ [1] = 4/16 q̂2 = 0 (tentative)

Since q1 = 1, we select case b). Therefore we have q2 = −1. We can
complete the first iteration as follows:

4WS[1] = 110.1011000101101100
4WC[1] = 000.1001110100101000

−q2d = 000.1100000000000000
WS[2] = 110.1110110001000100
WC[2] = 001.0010001001010000

• Second iteration

4WS[2] = 011.1011000100010000
4WC[2] = 100.1000100101000000 ŷ [2] = 3

16 q3 = 0
−q3d = 000.0000000000000000

WS[3] = 111.0011100001010000
WC[3] = 001.0000001000000000

Speculative computations

– Case a) q3 = 2

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−2 × d) 001.11111

101.0001
101.1100
010.1101 ŷ [3] = 45/16 q̂4 = 2 (tentative)

– Case b) q3 = 1

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

3

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−1 × d) 100.11111

000.0001
101.1100
101.1101 ŷ [3] = −35/16 q̂4 = −2 (tentative)

– Case c) q3 = 0

42ŴS [2] 110.1100

42ŴC [2] 010.0010
000.1110 ŷ [3] = 14/16 q̂4 = 1 (tentative)

– Case d) q3 = −1

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−1 × d) 011.00000

111.1110
100.0000
011.1110 ŷ [3] = 62/16 q̂4 = 2 (tentative)

– Case e) q3 = −2

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−2 × d) 110.00000

010.1110
100.0000
110.1110 ŷ [3] = −18/16 q̂4 = −1 (tentative)

Since q3 = 0 we select case c). Therefore we have q4 = 1. We can complete
the second iteration as follows:

4WS[3] = 100.1110000101000000
4WC[3] = 100.0000100000000001∗

−q4d = 111.0011111111111111
WS[4] = 111.1101011010111110
WC[4] = 000.0101001010000010

The digits of the result are q1 = 1, q2 = −1, q3 = 0 and q4 = 1. Therefore,
we have q = 00110001.

Exercise 5.5

Let Q [j] be the digit vector of the converted quotient consisting of the j
most-significant digits, that is

Q [j] =

j∑

i=1

qir
−i

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

4

We have Q [j + 1] = Q [j] + qj+1r
−(j+1) . Since we are considering a radix-2

positive redundant representation with qi ∈ {0, 1, 2} , we can use the following
algorithm for the addition:

Q [j + 1] =

{
Q [j] + qj+12

−(j+1) if qj+1 ≤ 1
Q [j] + 2−j if qj+1 = 2

This algorithm has the disadvantage that the addition Q [j] + 2−j requires
the propagation of a carry and therefore it is slow. To avoid this propagation
we define QP [j] with value

QP [j] = Q [j] + 2−j

Using this second form, the conversion algorithm is

Q [j + 1] =

{
Q [j] + qj+12

−(j+1) if qj+1 ≤ 1
QP [j] if qj+1 = 2

It is necessary to update also the form QP [j], as follows:

QP [j + 1] = Q [j + 1] + 2−(j+1) =





Q [j] + 2−(j+1) if qj+1 = 0
Q [j] + (1 + qj+1) 2−(j+1) if qj+1 = 1
QP [j] + 2−(j+1) if qj+1 = 2

Using the definition of QP [j], the expression for QP [j + 1] when qj+1 = 1
can be rewritten as follows:

Q [j] + (1 + qj+1) 2−(j+1) = Q [j] + 2−j = QP [j]

Therefore, the expression QP [j + 1] when qj+1 = 1 and qj+1 = 2 can be
condensed as follows:

QP [j + 1] = QP [j] + (qj+1 − 1) 2−(j+1) if qj+1 ≥ 1

In conclusion, the algorithm for QP [j + 1] can be rewritten as follows:

QP [j + 1] =

{
Q [j] + 2−(j+1) if qj+1 = 0

QP [j] + (qj+1 − 1) 2−(j+1) if qj+1 ≥ 1

All the additions are now expressed by means of concatenations and no carry
is propagated. In terms of concatenations, the on-the-fly conversion algorithm
for a radix-2 positive redundant representation with digit set {0, 1, 2} is

Q [j + 1] =

{
(Q [j] , qj+1) if qj+1 ≤ 1
(QP [j] , 0) if qj+1 = 2

QP [j + 1] =

{
(Q [j] , 1) if qj+1 = 0
(QP [j] , qj+1 − 1) if qj+1 ≥ 1

with the initial conditions Q [0] = 0 and QP [0] = 1 .
As an example, consider the conversion into conventional representation of

the result 10211202.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

5

j qj Q [j] QP [j]

0 0 1
1 1 0.1 1.0
2 0 0.10 0.11
3 2 0.110 0.111
4 1 0.1101 0.1110
5 1 0.11011 0.11100
6 2 0.111000 0.111001
7 0 0.1110000 0.1110001
8 2 0.11100010 0.11100011

Exercise 5.7

a) Implementation

An implementation of the retimed digit recurrence division (radix-4 with
carry-save adder) is illustrated in Figure E5.7a. Details regarding the size
of the most significant slice are presented in Figure E5.7b.

FMUX SMUX

FCSA SCSA

Divisor d

qSEL

qj+1

q

y

d

Registers

Figure E5.7a: Retimed implementation.

b) Delay analysis

– Conventional design

Computing the delay in the critical path we have (from Figure 5.4)

tcycle = tqsel(10.8) + tbuff (1.8) + tmux(1.8) + tHA(2.2) + treg(4).

Therefore, tcycle = 21tnand2. The number of iteration for IEEE dou-
ble precision operands (ρ < 1) is

⌈
53+1+2

2

⌉
= 28. The latency of the

conventional implementation can be computed as (28 + 1)× tcycle =
29 × 21tnand2 = 609tnand2.

– Retimed version

Computing the delay in the critical path (fast part) we have

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

6

x x x . x x x x x x x x xq d.

rw[j]
S

rw[j]
C

x . x x x x x x x x x x

x x x . x x x x x x x x x

x x x . x x x x x x x x x

x . x x x x x x x x x x

bits used for digit selection

Figure E5.7b: Size of the most significant part of the path (size of FCSA is 7
bits, size of FMUX is 8 bits).

tcycle = tbuff (1.8) × 40
100+

+(tmux(1.8) + tHA(2.2)) × 80
100 + tqsel(10.8) + treg(4)

Therefore, tcycle = 19tnand2. Computing the latency of the retimed
version we get (28 + 1 + 1) × tcycle = 30 × 19tnand2 = 570tnand2.

Exercise 5.10

We normalize d to produce d∗ = 10010000 = 2md with m = 4. We define
df = d∗ × 2−n, where n = 8 is the number of bits of the operands. Assum-
ing a redundant quotient digit-set with qi ∈ {−2,−1, 0, 1, 2}, the redundancy
factor is ρ = a

r−1 = 2
3 . Since ρ < 1, we have v = 2. In order to obtain

a correct remainder, the last digit of the quotient has to be aligned with a
radix-4 boundary. For this, it must be (m + v + s) mod k = 0. Therefore we
have (4 + 2 + s) mod 2 = 0 (with k = 2 and m = 4) and s = 0. We define
xf = x × 2−n (as for the divisor). To achieve the required alignment, we shift
xf right by v + s = 2 bits. The initial condition is therefore

w [0] =
xf

4
= .0001111000

Moreover, since the truncated divisor d̂ = 0.1001 = 9
16 , we can compute

i = 16d̂ = 9. The corresponding selection constants are given by the following
table:

i 8 9 10 11 12 13 14 15
m2(i)

+ 12 14 15 16 18 20 20 24
m1(i)

+ 4 4 4 4 6 6 8 8
m0(i)

+ -4 -6 -6 -6 -8 -8 -8 -8
m−1(i)

+ -13 -15 -16 -18 -20 -20 -22 -24

Finally, we can compute the number of iteration, N =
⌈

m+v
k

⌉
. Here k = 2

(since r = 2k where r is the radix of the quotient digit as produced by the
division algorithm) and we get N =

⌈
4+2
2

⌉
= 3.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

7

4WS [0] = 000.01111000
4WC [0] = 000.00000001∗ ŷ [0] = 000.0111 = 7

16 q1 = 1
−df = 111.01101111

WS [1] = 111.00010110
WC [1] = 000.11010010

4WS [1] = 100.01011000
4WC [1] = 011.01001000 ŷ [1] = 111.1001 = − 7

16 q2 = 1
+df = 000.10010000

WS [2] = 111.10000000
WC [2] = 000.10110000

4WS [2] = 110.00000000
4WC [2] = 010.11000001∗ ŷ [2] = 000.1100 = 12

16 q3 = 1
−df = 111.01101111

WS [3] = 011.10101110
WC [3] = 100.10000010

Since w [3] > 0 the correction step is not needed. The quotient and the
remainder are

q = 111 = (13)10

rem = w [3] × 2n log
2
2−m = w [3] × 24 = 11 = (3)10

Exercise 5.12

For signed-digit representation of the residual we get

εmin = −2−t + ulp emax = 2−t + ulp

and
L∗

k = Lk − emin = Lk + 2−t − ulp

Uk = Uk − emax = Uk − 2−t + ulp

resulting in
Ûk−1 = bU∗

k−1 + 2−tct = bUk−1ct

L̂k = dL∗

ket = dLk + 2−tet

For a necessary condition on δ and t (for k > 0) we get

Uk−1(di) − Lk(di+1 + 2−t ≥ 0

that is,
(k − 1 + ρ)di − ((k − ρ)(di + 2−δ) + 2−t) ≥ 0

The worst case is for k = a and di = 1/2 resulting in

2ρ − 1

2
− (a − ρ)2−δ ≥ 2−t

which is the same as for carry-save representation of the residual (expression
5.101). For radix 2 (ρ = a = 1 we get t ≥ 1 and it is possible to use the same
constant for the whole range of the divisor. We use t = 1 and obtain

Û0(1/2) = 1/2 Û−1(1) = 0

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

8

L̂1(1) = 1/2 L̂0(1/2) = 0

Consequently, we get m1 = 1/2 and m0 = 0.
The range of the estimate ŷ is

b−rρ − (2−t − ulp)ct ≤ rρ + 2−t − ulpct

which for r = 2 and ρ = 1 results in

−2 ≤ ŷ ≤ 2

The selection function is then

qj+1 =





1 if 1/2 ≤ ŷ ≤ 2
0 if ŷ = 0
−1 if − 2 ≤ ŷ ≤ −1/2

The execution for x = 128 × 2−8 and d = 6 × 2−3 is as follows:

2W [0] = 0.10000000 ŷ[0] = 0.5 q1 = 1
−q1d = 0.1̄1̄000000

2W [1] = 0.1̄000000 ŷ[1] = −0.5 q2 = −1
−q2d = 0.11000000

2W [2] = 0.10000000 ŷ[2] = 0.5 q3 = 1
−q3d = 0.1̄1̄000000

2W [3] = 0.1̄0000000 ŷ[3] = −0.5 q4 = −1

Since the pattern is periodic (and final residual is negative) we get

q = 2(0.11̄11̄11̄11̄0 = 0.10101010

Exercise 5.14

From expression 5.100, we obtain the lower bound for t and δ by requiring

Uk−1 (di) − 2−t − Lk(di+1) ≥ 0

Using the definitions of Lk and Uk and considering the worst case condition
di = 63

64 (for a range of the divisor restricted to
[
63
64 , 1

)
) and k = a = 2 (since

ρ = 2
3) we get

2−δ ≤
3

4
×

(
21

64
− 2−t

)

If we try t = 2 we get 2−δ ≤ 15
256 . We can use δ ≥ 5. In this case, if we use

δ = 5 we don’t have dependence on d in the selection function since the interval
of d is of width 2−6.

We compute the selection intervals for t = 2. For k = 2 we get L̂2 = dL2e2
and Û1 = b(U1 − 2−t)c2. Since L2 =

(
2 − 2

3

)
× 1 = 4

3 and U1 =
(
1 + 2

3

)
× 63

64 =
5
3 × 63

64 we get L̂2 = 6
4 and Û1 = 5

4 . Being L̂2 ≥ Û1, t = 2 is not a possible
solution.

We select t = 3. The corresponding selection intervals and selection contants
are presented in Table E5.14.

Only one fractional bit of ŷ is necessary for the selection function. A possible
implementation is presented in Figure E5.14.
Exercise 5.17

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

9

[di, di+1)
[
63
64 , 1

)

L̂2 (di+1) , Û1 (di)
+

11, 12
m2 (i) 12

L̂1 (di+1) , Û0 (di)
+

3, 4
m1 (i) 4

L̂0 (di+1) , Û−1 (di)
+

−5,−4
m0 (i) −4

L̂−1 (di+1) , Û−2 (di)
+

−13,−12
m−1 (i) −12

Table E5.14: Selection interval and mk constants. Note: +: real value= shown
value/8

qSEL

qj+1

xxx.xxx
y

CPA

xxx.xxx

xxx.x

Figure E5.14: Implementation of the digit selection block.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

10

a) Range of the divisor

From expression 5.16 we have

w [j + 1] = rw [j] − qj+1d = rw [j] − qj+1 − qj+1 (d − 1)

Since |qj+1| ≤ a we get

−a (d − 1) ≤ −qj+1 (d − 1) ≤ a (d − 1)

From the expression for quotient digit selection

qj+1 = integer (rw [j] + 0.5) ≤ a

we have

−
1

2
< rw [j] − qj+1 <

1

2

From expression 5.15 we have

|rw [j]| ≤ rρd

We obtain the following bounds on the shifted residual

max

(
−a +

1

2
,−rρd

)
< rw [j] < min

(
a −

1

2
, rρd

)

Since the most critical restriction is the positive bound, we get

1

2
+ a |(1 − d)| < min

(
2a − 1

2r
, ρd

)

In this case, since d > 1, we have

1

2
+ a (d − 1) <

2a − 1

2r

Solving for d we get

d < 1 +
2a − r − 1

2ar

and therefore for convergence it must be

β <
1

r
−

(r + 1)

2ar

b) Possible implementation

An implementation of a high radix digit recurrence division with scal-
ing and selection by rounding for nonredundant residuals is presented in
Figure E5.17.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

11

Module
M

M

d

M
U
X

Round &
Recode

Md; Mx; 512w -qz

MULTIPLIER-
ACCUMULATOR

*
+

MUX

ADDER

+

scale/iterate

x

z

M ; qj+1

W

WS[j+1] WS[j+1]

W[j]

(Initialization not shown)

Figure E5.17: Implementation of a high radix division unit with scaling and
selection by rounding (nonredundant residuals).

The hardware cost is higher in the high radix unit with respect to other
low radix implementations due to the MAC block, additional registers and
the module to compute the prescaling factor M. In the high radix unit,
the number of cycles is reduced but tcycle is larger. In the proposed imple-
mentation the speed-up with respect to other low radix implementations
is limited by the nonredundant adder required to handle nonredundant
residuals. To achieve a higher speed-up, we should consider a redundant
representation of the residuals and a faster adder (see Chapter 5 for a fast
implementation of a radix-512 division unit with residuals in carry-save
form).

c) Example of execution for r = 100, x = 0.83703960 and d = 1.00827040

In the following we illustrate the method by finding the first three radix-r
quotient digits. The recurrence is as follows:

w [j + 1] = 100 × w [j] − qj+1d

The expression for quotient digit selection (for residuals in two’s comple-
ment form) is

qj+1 = integer (100 × w [j] + 0.5)

From a) we get

β <
1

r
−

(r + 1)

2ar

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

12

In this case, using a = r − 1 = 99 we get β < 0.004899. For convergence,
it must be

1 ≤ d ≤ 1.004899

We compute the scaling constant M = 1/1.005 ≈ 0.995. We scale the
divisor thus obtaining z = M × d = 1.00322904. We compute M × x and
initialize w [0] = M × x = 0.83285440.

w [0] = 0.83285440 → q1 = round(83.285440) = 83

w [1] = 100 × 0.83285440 − 83 × 1.00322904 =
= 0.01742968→q2 = round(1.742968) = 2

w [2] = 100 × (0.01742968) − 2 × 1.00322904 =
= −0.26349008→q3 = round(−26.349008) = −26

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 5: Solutions to Exercises

