
1

DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

– Updated: February 13, 2004 –

Chapter 4: Solutions to Selected Exercises

– With contributions by Elisardo Antelo –

Exercise 4.1

x= 30 X = 011110
y = -25 Y = 100111 Z= (-2)2(-1)

CSA shifted out
PS[0] 00000000
SC[0] 00000000

xZ0 11100001
4PS[1] 11100001
4SC[1] 00000001

PS[1] 11111000 10
SC[1] 00000000

xZ1 00111100
4PS[2] 11000100
4SC[2] 01110000

PS[2] 11110001 0010
SC[2] 00011100

xZ2 11000011
4PS[3] 00101110
4SC[3] 10100011

PS[3] 00001011 010010 (cin=1)
SC[3] 11101000

P 110100 010010 = -750

From Figure 4.4 we determine that the number of cycles to obtain PS[3], PC[3]
is 6 (including one cycle to load X and Y).

In the last pass through the pipeline the register values are :
Register X = 011110 Register Y =10 Register C=0
Register XY = 11000100
Register SCH = 11101000 Register PSH=00001011
Register CS[1,0]=(10,11) Register PL = 0010

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

2

Exercise 4.3

To reduce the effect on the cycle time, the outputs of the carry-save adder
are latched before being used as inputs to the converter. The input/output
arithmetic relation is

2(PS1[j − 1] + SC1[j − 1]) + (PS0[j − 1] + SC0[j − 1] + w0[j − 1])

= 4w0[j] + 2p2j+1 + p2j

where w[0] is the state. Since 0 ≤ 2(PS1[j − 1] + SC1[j − 1]) + (PS0[j − 1] +
SC0[j − 1] ≤ 6 and 0 ≤ 2p2j+1 + p2j ≤ 3 we get 0 ≤ w0 ≤ 1.

This is implemented with a 2-bit adder with w0[j − 1] as the carry-in and
w0[j] as the carry-out. The corresponding delay is Tconv = tab−c + tc−c which
is somewhat larger than tab−s of the CS adder.

To keep the cycle time at tab−s as determined by the CSA, the scheme
requires additional pipelining. The latency of the converter pipeline should not
exceed the latency of the CPA used to obtain the MS bits of the product.

Exercise 4.5

A two’s complement sequential multiplier with operands X and Y of 16 bits
is designed similarly to the sequential multiplier in Figure 4.3. Note that the
scheme in Figure 4.3 uses positive n-bit operands. This requires extension by
two bits to handle negative multiples in radix 4. In this exercise, the operands
are in the two’s complement, thus one bit extension is suffucient. To reduce the
cycle time, the design is pipelined (Figure E4.5a).

The delay and area of components are obtained with respect to NAND-2
using Tables 2.4 and 5.4 and summarized next

delay area

NOT 0.7 1
NAND-3 1.2 2
NOR-3 1.7 2
NOR-2 1.1 1
XOR 1.7 3
buffer 1.8 2.6
MUX-2 1.4 3
FA 4.2 6.7
flip-flop 4 4

The modules are

• Stage 1: Radix-4 recoder

The sequential recoder for magnitudes described on p.185 and imple-
mented in Fig. 4.5 produces radix-4 digits in the set {-1,0,1,2}. Since
the multiplier in this exercise is in the two’s complement system, the most
significant radix-4 digit

z7 = −2y15 + y14 + c7

is in the set {-2,-1,0,1,2}.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

3

Reg X

SELECTOR

Reg XY

CARRY-SAVE
ADDER

to CPA
(most significant part)

X

X

multiple of X

shifted PS

STAGE 1

STAGE 2

STAGE 3

FINAL STEP

(register control signals not shown)

2X

14

shifted SC
18 18 18

17

18

(SC1,PS1)

Product
(least significant part)

CONV
2

Reg PL

16

(Register PL could be
 merged with register M)

(SC0,PS0)

(SC1,PS1) (SC0,PS0)

2 2

2 22 2

Reg CS[1,0]

14 (lower)

Reg SCH Reg PSH

cShift-Reg M

Recoder

Reg

Y

one

neg

zero

carry

1 0

18

sign-extended

cin

16 16

Figure E4.5a: 16-bit two’s complement sequential multiplier. (Exercise 4.5)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

4

The recoder of Fig. 4.5 is modified to produce a (-2) when M1 = 1,
M0 = 0 and C = 0 in the cycle when z7 is produced (last = 1). This
results in a modified expression for neg while one, zero, and Cnext remain
unchanged:

neg = M1C M1M0 last · M1M0′C ′ = M1(C M0 last · M0′C ′)

= M1(C M0 last)

The modified recoder is shown in Figure E4.5b.

M
1

M
0

C

one zeroneg

Cnext

last

C

C

Figure E4.5b: Radix-4 recoder. (Exercise 4.5)

The delay and area of the recoder are:

delay area

1 XOR 1.7 3
2 NAND-3 1.2 4
2 NAND-2 1 2
1 NOR-3 1.7 2
1 NOR-2 1.1 1
3 NOT 0.7 3
4 FF 4 16
Total 2.9 +4 31

• Stage 2: Multiple generator

The multiples ±2×X, ±1×X, and 0×X are obtained as shown in Figure
E4.5c.

The delay and area of the multiple generator are:

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

5

negBIT-INVERTER

multiplicand X

2X X
one

 X, 2X2X, X, bit-vector

non-inverting buffer

inverting buffer

implemented
with MUX-2

Figure E4.5c: Multiple generator. (Exercise 4.5)

delay area

3 BUFF 1.8 7.8
18 MUX-2 1.4 54
18 XOR 1.7 54
18 FF 4 72
Total 4.9+4 ≈ 188

• Stage 3: CSA

The CSA adder consists of 19 FAs. The carry and sum are stored in two
19-bit registers SCH and PSH. The delay and area are:

delay area

19 FA 4.2 127.3
2x19 FF 4 152
Total 4.2+4 ≈ 280

The converter uses two FAs. To reduce the critical path, the 2-bit adder
is pipelined so that only one FA is in the critical path. Four extra FFs are
needed for pipelining. There is also a 16-bit register PL which stores the
least-significant 16 bits of the product. The cycle time of the converter is
4.2 +4 = 8.2. Its area is 2 × 6.7 + 8 × 4 ≈ 45. For PL register the area is
16 × 4 = 64.

The cycle time of the multiplier is determined by the delay of Stage 2: 8.9
NAND-2 delays. To reduce this delay, a faster multiple generator could be
designed using a 4-to-1 multiplexer to select ±2 and ±1 multiples. This
would also require a change in the recoder design. The total area uses 544
equivalent gates.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

6

Exercise 4.8

• The cycle time of a radix-2 multiplier is

t2 = tbuf + tNAND + tc−s + treg

Using the values from Figure 5.4 we get

t2 = 1.8 + 1 + 2.2 + 4 = 9tNAND

• To reduce the cycle time of the radix-16 implementation we pipeline as
shown for radix 4 in Figure 4.3. The cycle time is the maximum of the
critical paths of the three stages. We assume it is the adder, implemented
as a [4:2] adder (Figure 2.41). Consequently, the cycle time is

t16 = t[4:2] + treg

Using the values from Figure 5.4 we get

t16 = 6 + 4 = 10tNAND

• The total delay corresponds to the iterations (n for radix 2 and n/4 for
radix 16) plus the two pipeline cycles for radix 16, plus the delay of the
final adder). The speedup is

S =
t2 × n + tCPA

t16 × (2 + n/4) + tCPA

=
36n + 4tCPA

10n + 80 + 4tCPA

• As seen in the expression, the speedup depends on n. This is because of
the two additional cycles in radix 16 and of the carry-propagate adder.

For instance, for n = 16 and using a carry-ripple adder we get

S =
36 × 16 + 4(2.0 × 16

10 × 16 + 80 + 128
= 1.9

Exercise 4.11

a) Radix-4 bit-matrix for multiplication of magnitudes with x = 67 and
y = 76 is shown next. The recoded radix-4 multiplier is (11(-1)0).

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1 0
0 1 0 0 1 1 1 1 1 0 0 1 0 0

The result checks: x × y = 5092.
b) Radix-4 bit-matrix for multiplication of 2’s complement operands x =

−67 and y = −76. The recoded radix-4 multiplier is ((-1)(-1)10).

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 1 0
1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 1
1

0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0

The result checks: x × y = 5092.

Exercise 4.13

The reduced bit-matrix for radix-4 multiplication of magnitudes with n = 12,
corresponding to Figure 4.14(b) is shown in Figure E4.13(a). The linear array
has three stages.

• Stage 1 consists of a [4:2] adder and converter K1. The inputs to the
converter in Stage 1 are denoted with ”k”.

• Stage 2 also has a [4:2] adder and converter K2.

• Stage 3 uses a [3:2] adder and a converter.

The partial inputs to Stage 2 and Stage 3 are shown in Figure E4.13(b) and (c),
respectively. Each converter produces a conventional radix-4 digit ({0,1,2,3})
and a carry.

• Converter K1 consists of two HAs and its delay is clearly shorter than that
of a [4:2] adder.

• Converter K2 uses one FA and one HA, again having a delay not greater
than that of a [4:2] adder.

• Converter in Stage 3 could also use one FA and one HA. However, its delay
would be longer than t[3:2] = tFA. To reduce its delay, bits denoted with
”c” are used to produce two conditional 3-bit results (carry + 2 sum bits)
in Stage 2. The delay of a 2-bit conditional adder (CA) is not larger than
the delay of [4:2] adder. The correct sum is obtained using a MUX in Stage
3 based on the carry produced by converter K2 in Stage 2. This MUX has
a shorter delay than a FA. Therefore, conversion of the least-significant
radix-4 redundant digits does not increase the delay in the critical path.

Since in each stage two bits of the product are obtained, the final adder has 24
- 6 = 18 bits.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

8

[4:2] K1

___ ____

1 1 1 1 1 s’ s s x x x x x x x x x x| k k

s’ x x x x x x x x x x x x| k

s’ x x x x x x x x x x x x x|

s’ x x x x x x x x x x x x x ___|

s’ x x x x x x x x x x x x x

s’ x x x x x x x x x x x x x

x x x x x x x x x x x x x

(a)

[4:2] CA K2

___ ____ ____

. . . . x x x x x x| c c x x p p

. . . . x x x x x x| c c x k

. x x x x x|

. x x x ___|

(b)

[3:2]

. x x x x| x p p p p

. . . . x x x x x| k| MUX control

. x x x ___| c c c| MUX data

c c c| MUX data

MUX

(c)

CPA

. . . . x x x x x x p p p p p p

. . . . x x x x x c

(d)

Figure E4.13: A linear array of [4:2] and [3:2] adders for 12 × 12 multiplication
of magnitudes: (a) Reduced bit-matrix. (b) Inputs to Stage 2. (c) Inputs to

Stage 3. (d) Inputs to CPA.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

9

Exercise 4.15

Tables to determine the number of full and half adders in column reduction
for multiplication of 8-bit operands for the following cases are:

(a) Radix-2 operands in two’s complement representation, n = 8

Bit-matrix:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 (x′

7y7)
′(x7y6)

′(x7y5)
′(x7y4)

′(x7y3)
′(x7y2)

′(x7y1)
′(x7y0)

′x6y0x5y0x4y0x3y0x2y0x1y0x0y0

x′

6y7 x6y6 x6y5 x6y4 x6y3 x6y2 x6y1 x5y1x4y1x3y1x2y1x1y1x0y1

x′

5y7 x5y6 x5y5 x5y4 x5y3 x5y2 x4y2x3y2x2y2x1y2x0y2

x′

4y7 x4y6 x4y5 x4y4 x4y3 x3y3x2y3x1y3x0y3

x′

3y7 x3y6 x3y5 x3y4 x2y4x1y4x0y4

x′

2y7 x2y6 x2y5 x1y5x0y5

x′

1y7 x1y6 x0y6

y7 (x0y7)
′

Reduction table:

i
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 4
ei 1 1 2 3 4 5 6 8 8 7 6 5 4 3 2 1
m3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
hi 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
fi 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0
l = 3
ei 1 1 2 3 4 6 6 6 6 6 6 5 4 3 2 1
m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0
l = 2
ei 1 1 2 4 4 4 4 4 4 4 4 4 4 3 2 1
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
l = 1
ei 1 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
fi 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

ei is the number of inputs in column i; fi is the number of FAs; hi is the
number of HAs; mj is the number of operands in the next level in the

reduction sequence.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

10

(b) Radix 4, magnitudes, multiplier recoding, n = 7

Bit-matrix:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 s′g 1 s′e se se e e e e e e e e
h h g s′f f f f f f f f f ce

h g g g g g g g cf

h h h h h cg

Reduction table:

i
13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 2
ei 2 2 3 4 4 4 4 4 3 4 2 3 1 2
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 1 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 1 1 1 1 0 0 0 0 0 0
l = 1
ei 2 3 3 3 3 3 3 3 3 3 2 3 1 2
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 1 0 0 0 0 0 0 0 0 0 1 1 0 0
fi 0 1 1 1 1 1 1 1 1 1 0 0 0 0
CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

11

(c) Radix 4, two’s complement, multiplier recoding, n = 8

Bit-matrix:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 s′h 1 s′g 1 s′e se se e e e e e e e e

h h g s′f f f f f f f f f ce

h g g g g g g g cf

h h h h h cg

ch

Reduction table:

i
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 3
ei 1 1 2 2 3 4 4 4 4 5 3 4 2 3 1 2
m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
hi 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
fi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l = 2
ei 1 1 2 2 4 4 4 4 4 4 3 4 2 3 1 2
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
l = 1
ei 1 1 2 3 3 3 3 3 3 3 3 3 2 3 1 2
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Exercise 4.20

(a) The precision of S is 18 because 217 < 1272 ∗ 16 < 218.

(b) Since one pair of elements is available per cycle, a suitable algorithm is

S[i] = S[i − 1] + A[i]B[i]

with S = S[16] and S[0] = 0.

The recoding of B[i] produces radix-4 digits. The resulting pipelined linear
array with [3:2] adders is shown in Figure E4.20b.

(c) The cycle time is tcycle−b = max(tREC + tbuf + tmux, 2tFA)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

12

- latches

S

[3:2]

[3:2]

[3:2]

[3:2]

CPA

RECODER &
MULTIPLE
GENERATOR

B[i+1]

A[i]

A[i+1]

B[i]
Stage 1

Stage 2

Stage 3

Stage 4

Figure E4.20b: A linear array of [3:2] adders for Exercise 4.20(b).

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

13

(d)
1 2 3 4 5 6 19 20

|-----|-----|-----|-----|-----|-----| |-----|-----|

compute S[1] S[2] S[3] S[16]

output S[1] S[2] . . . S[16]

The latency is T = 3 + 16 + 1 = 20 clock cycles.

(e) A pipelined linear array with[4:2] adders is shown in Figure E4.20e.

- latches

RECODER &
MULTIPLE
GENERATOR

B[i+1]

A[i]

A[i+1]

B[i]
Stage 1

Stage 2

Stage 3

Stage 4

[4:2]

[4:2]

S

CPA

Figure E4.20e: A linear array of [4:2] adders for Exercise 4.20(e).

tcycle−e = max(tREC + tbuf + tmux, t4−2)

Comparing with the linear array of part (b): The cycle time is the same if
tcycle−e = tREC + tbuf + tmux. Otherwise it depends on implementation of
the [4:2] adder. If implemented with two [3:2] adders, there is no difference.
If a gate network is used in implementing [4:2] module with a delay smaller
than 2tFA, this implementation would have a shorter cycle time.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

14

Exercise 4.26

The constant C = 2925 = 0101101101101 requires 8 additions.
Using canonical recoding we get C as 2925 = 101̄001̄001̄01̄01 which requires

6 additions/subtractions.
Using factoring we get C as 2925 = (4 + 1)(8 + 1)(64 + 1) = (22 + 1)(23 +

1)(26 + 1) which requires 3 additions.
We use the factoring approach. The two designs are shown in Figure E4.26.

X

CRA-1

CRA-2

45X

SL2

SL3

SLk - shift left k positions (wired)

4X

5X

40X

CRA-3

SL6
2880X

m m+2

m+3

m+6

m+6

m+12

X

[3:2] -1

SL2

SL6

m m+2

m+5

SL3 SL3

[3:2] -2

[3:2] -3

[3:2] -4

SL6

PREFIX ADDER

2925X

m+12

2925X

m+12

m+3

m+3

m+5

m+11

m+11

m+11

m+11

(a)

(b)

bit-vector output of SLk shifter has k trailing 0s

Figure E4.26: Constant multiplier networks: (a) With CRAs. (b) With [3:2]
and prefix adder. (Exercise 4.26).

• Implementation with CRAs. To determine delay consider the following
input/output diagram. FA and HA are denoted with ”f” and ”h”. All
delays are in terms of tFA, and tHA = 0.5tFA (same for sum and carry
outputs). We show m = 8 in the diagram and generalize the result to
arbitrary m.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

15

xxxxxxxx

xxxxxxxx

CRA-1 hhfffffh

xxxxxxxxxxx

xxxxxxxxxxx

CRA-2 hhhfffffffh

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

CRA-3 hhhhhhfffffffh

xxxxxxxxxxxxxxxxxxxx

The critical path is: h+f+h+f+f+f+h+(fx(m-1))+h+h+h+h+h+h re-
sulting in

TCRA = 9tHA + (m + 3)tFA = (m + 7.5)tFA

The equivalent number of full adders is:

CCRA = (m − 3)FA + 3HA + (m − 1)FA + 4HA + (m − 1)FA + 7HA

= 14HA + (3m − 2)FA ≈ (3m + 5)FA

• Implementation with [3:2] adders and prefix adder.

We determine the delay in the critical path and the cost as in the case
with CRAs. To reduce the precision of the final adder, we apply [2:1]
reduction where applicable.

xxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-1 hhfffffh

xxxxxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-2 fffffhhh

xxxxxxxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-3 hhffhhhhhh

xxxxxxxxxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxxxxx

[3:2]-4 hhhffffffffhh

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxx

PA ==============

xxxxxxxxxxxxxxxxxxxx

The precision of the PA adder is m+7 - reduced from m+12 by 5 positions.
Using expression (2.61) the delay of the prefix adder is estimated as

TPA(m) = tga + log2(m)tcell + tXOR ≈ 0.5tFA + log2(m)×0.6tFA +0.5tFA

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

16

= [1 + 0.6 × log2(m)]tFA

Using expression (2.62), we get the equivalent number of full adders

CPA(m) ≈ m × FA + (m/2)log2(m) × 0.5FA

The critical path is: f+f+f+f+PA(m+7) resulting in

T[3:2]+PA = 4tFA + TPA(m + 7) < TCRA

The equivalent number of full adders is:

C[3:2]+PA = (m−3)FA+3HA+(m−3)FA+3HA+(m−6)FA+8HA+mFA+5HA+C(PA)

= (4m − 12)FA + 19HA + (m + 7)FA + 0.25(m + 7)log2(m + 7)FA

≈ [5m + 0.25(m + 7)log2(m + 7)]FA > CCRA

Without reducing the precision of the final adder, the input/output dia-
gram is

xxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-1 hhfffff

xxxxxxxxxxx

xxxxxxx x

xxxxxxxx

[3:2]-2 fffff

xxxxxxxxxxxxx

xxxxx xx x

xxxxxxx x

[3:2]-3 hhf

xxxxxxxxxxxxxxxxx

xxx xxxx xx x

xxxxxxxxxxxxx

[3:2]-4 hhhffffffff

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxx xx x

PA ===================

xxxxxxxxxxxxxxxxxxxx

Calculation of the delay and cost is left to the reader.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises

