DIGITAL ARITHMETIC Miloš D. Ercegovac and Tomás Lang Morgan Kaufmann Publishers, an imprint of Elsevier, ©2004

Chapter 3: Solutions to Selected Exercises

- with contributions by Elisardo Antelo -

Exercise 3.1

As explained in the text, for two's complement representation the mostsignificant bit of each operand is inverted and -m is added, with its leastsignificant bit aligned with the most-significant bit of the operands. For m = 7we add -7 = 1001. Moreover, to avoid an extra row, we evaluate $1001 + g'_0 = 10g'_0g_0$. The resulting matrix is

$a'_0.$	a_1	a_2	 a_n
$b'_0.$	b_1	b_2	 b_n
c'_0 .	c_1	c_2	 c_n
$d'_0.$	d_1	d_2	 d_n
$e'_0.$	e_1	e_2	 e_n
	f_1		 f_n
$10g'_0g_0.$	g_1	g_2	 g_n

Exercise 3.3

A [5:2] module is shown in Figure E3.3a. and an array of these modules to reduce five 8-bit operands in Figure E3.3b.

To determine the critical path we use the following delay model, simplified from the model given in Table 2.2:

	FA		HA	
from/to	c_{out}	s	c_{out}	s
(x,y)		2	0.7	1.2
x	2			
y	1.5			
c	1	1.2	-	-

where the delay is normalized to the delay t_{c-c} .

Figure E3.3a indicates the module delays using this model. Consequently, the critical path delay is $5t_{c-c}$. The implementation uses 22 FAs and 2 HAs.

For comparison, an array of [3:2] modules to reduce 5 8-bit operands is shown in Figure 3.3c.As shown, the critical path has a delay of $5.5t_{c-c}$. The network cost is cost 22 FAs and 3 HAs. We conclude that both networks have the same cost and that the network using [5:2] modules is somewhat faster than the network using [3:2] modules.

Digital Arithmetic - Ercegovac & Lang 2004

Chapter 3: Solutions to Exercises

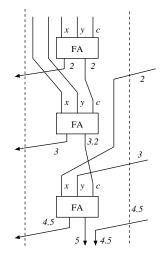


Figure E3.3a: The [5:2] module for Exercise 3.3.

To determine the critical path we use the following delay model, simplified from the model given in Table 2.2:

	FA		
from/to	c_{out}	s	
(x,y)		2	
x	2		
y	1.5		
c	1	1.2	

where the delay is normalized to the delay t_{c-c} .

A [9:2] module is shown in Figure E3.5. The delay in the critical path is $T = 8t_{c-c}$.

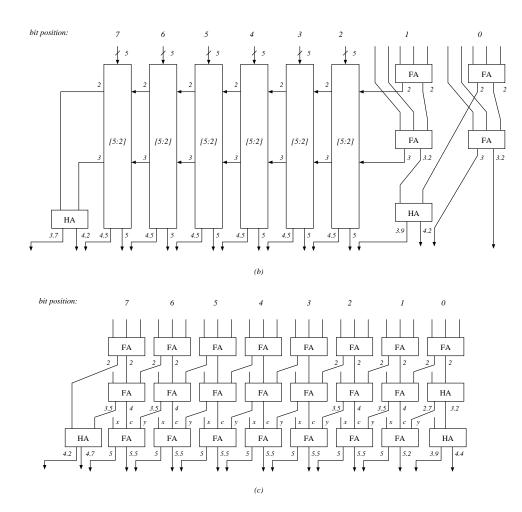


Figure E3.3: (b) Network of [5:2] modules to reduce 5 8-bit operands. (c) Network of [3:2] modules to reduce 5 8-bit operands.

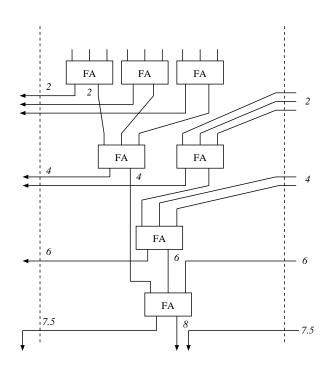


Figure E3.5: The network of FAs for Exercise 3.5.

A network of full-adders implementing a (15:4] counter is shown in Figure E3.8.

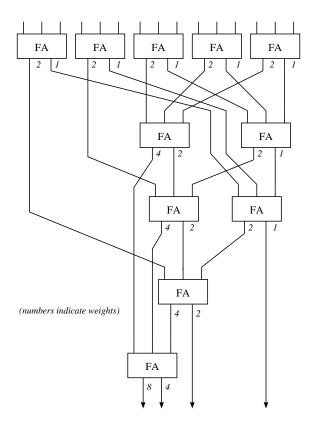


Figure E3.8: A network of FAs implementing (15:4] counter in Exercise 3.8.

Exercise 3.10

The maximum value of the sum is $S = 32 \times 127$. Since $2^{11} < S = 2^{12} - 2^5 < 2^{12}$, 12 bits are necessary.

- 1. The logic diagram of a bit-slice showing only CSA and registers is given in Figure E3.10(a).
- 2. The block diagram at the word level is shown in Figure E3.10(b).
- 3. The critical path delay: $t_s + t_{reg}$ where t_s is the delay of the sum output of a FA.
- 4. The latency: $32 \times (t_s + t_{reg}) + t_{CPA} = 32 \times (t_s + t_{reg}) + 11t_c + t_s$ where t_c is the delay of the carry output of a FA.
- 5. Use a CRA instead of the CSA. In this case the adder has 11 bits plus the carry-out. The critical path is $10t_c + t_s + t_{reg}$. Assume that $t_s = 2t_c$ and $t_{reg} = t_s$. Then the ratio of cycle times in the two alternatives is:

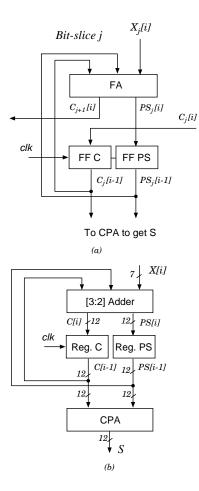


Figure E3.10: (a) Bit-slice of multi-operand adder. (b) Multi-operand adder of Exercise 3.10.

$$(10t_c + t_s + t_{reg})/(t_s + t_{reg}) = 7t_s/2t_s = 3.5$$

The latency of the alternative with CRA is $32 \times (10t_c + t_s + t_{reg})$ and the ratio of latencies is

$$(32 \times (10t_c + t_s + t_{reg})/(32 \times (t_s + t_{reg}) + 12t_c + t_s))$$
$$= (32 \times 7t_s)/(32 \times 2t_s + 6.5t_s) = 224/70.5 = 3.2$$

In terms of hardware, the alternative with CRA uses only one register and an 11-bit adder. The alternative with CSA uses two registers and two adders. This is roughly twice as much hardware.

Exercise 3.13

To determine the critical path we use the following delay model, simplified from the model given in Table 2.2:

	FA		HA	
from/to	c_{out}	s	c_{out}	s
(x,y)		2	0.7	1.2
x	2			
y	1.5			
c	1	1.2	-	-

where the delay is normalized to the delay t_{c-c} .

The [5:2] module shown in Fig. E3.13a has a critical path of $5t_{c-c}$.

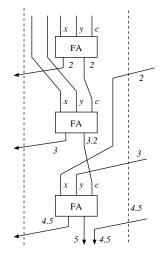


Figure E3.13a: [5:2] module.

To reduce the ten 4-bit operands we use an array of [5:2] modules (forming two adders of 5 inputs each) followed by a [4:2] adder, as shown in Figure E3.13b. The critical path delay is $8t_{c-c}$. The implementation uses 28 FAs and 6 HAs.

For comparison, Figure E3.13c shows an array of [3:2] adders to reduce 10 4-bit operands. At the full-adder level, this array is implemented as shown in Figure E3.13d. The corresponding critical path delay is $9.2t_{c-c}$.

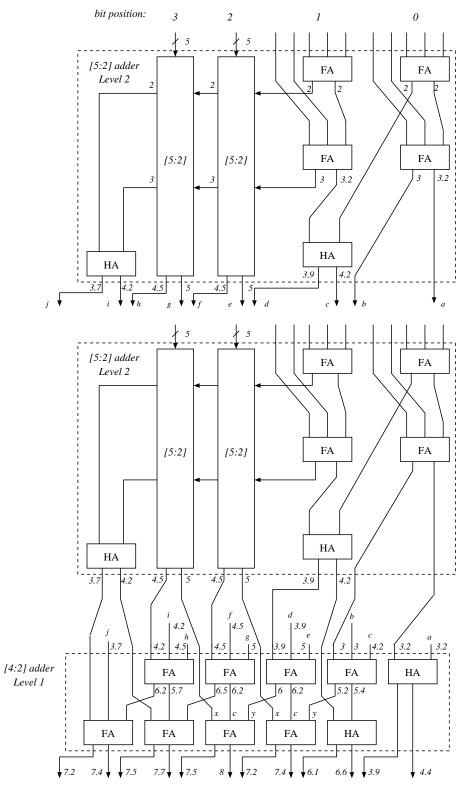


Figure E3.13b: Network of [5:2] and [4:2] modules to reduce 10 4-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004

Chapter 3: Solutions to Exercises

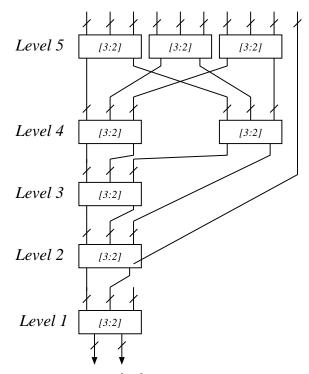


Figure E3.13c: Network of [3:2] adders to reduce 10 4-bit operands.

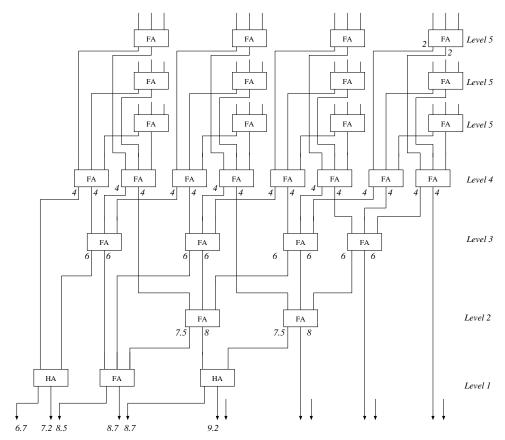


Figure E3.13d: Network of FAs and HAs to reduce 10 4-bit operands.

We use two [4:2] adders in the first level. Assuming that the range of each operand is -128,127 we get a range of the output of each [4:2] adder of -512,508 requiring a width of 10 bits. Note that the sign extension could be simplified, as done Section 3.1, reducing the width of the adders.

Performing the [4:2] addition using the modules of Figure 2.41, described by

$$t_{i+1} = MAJORITY(x_i, y_i, w_i)$$

$$c_{i+1} = \begin{cases} t_i & \text{if } (x_i + y_i + w_i + z_i) \mod 2 = 1\\ z_i & \text{otherwise} \end{cases}$$

$$s_i = (x_i + y_i + w_i + z_i + t_i) \mod 2$$

we get

73	0001001001	- 31	1111100001
- 52	1111001100	17	0000010001
22	0000010110	47	0000101111
-127	111000001	-80	1110110000
t	0010011000	t	0001000010
S	0010001010	s	0000101101
С	1100100010	С	1110100100

Now one second-level[4:2] adder. The range of the result is -1024,1016, requiring a width of 11 bits.

	00010001010
	11100100010
	00000101101
	11110100100
t	00001010100
s	00001110101
с	11100001000
	11101111101 = -131

a) From the Figures we see that the reduction by columns (Figure 3.21) has a CPA of 7 bits whereas the reduction by rows (Figure 3.27) has only 5 bits.

b) From the Figures, the critical path for reduction by columns is $4t_s + 5t_c + t_s = 5t_c + 5t_s$ and that for reduction by rows is $5t_s + 4t_c$.

c) Including the CPA, reduction by columns has 32 FA and 4 HA and reduction by rows has 32 FA and 3 HA.

Exercise 3.26

A pipelined linear array of adders is shown in Figure E3.26. For the final adder we use a CRA with four pipelined stages, each stage having a delay similar to a [4:2] adder.

```
Bit-matrix:
 XXXXXX
 xxxxxx Stage 1
 XXXXXX
 XXXXXX
 _____
 0000000
 000000
 xxxxxx Stage 2
 XXXXXX
 _____
0000000
 000000
oxxxxxx Stage 3
oxxxxxx
_____
00000000
         (CPA with 4 pipelined stages)
0000000
_____
```

m=8, n=6, [0,63]x8 = [0,504] --- 9 bits

SSSSSSSSS

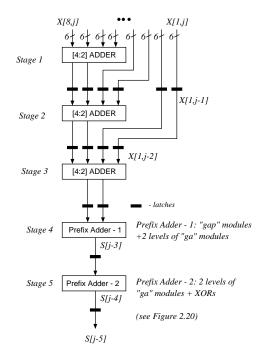


Figure E3.26: Pipelined linear array of [4:2] adders.

14