
1

DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier, c©2004

Chapter 1: Solutions to Exercises

Exercise 1.1

(a) 1. 9 bits since 28 ≤ 297 ≤ 29

2. 3 radix-8 digits since 82 ≤ 297 ≤ 83

3. 3 radix-17 digits since 172 ≤ 297 ≤ 173

4. The weights are 120, 24, 6, 2, and 1. To represent 297, 5 mixed-radix
digits are needed: 2 × 120 + 2 × 24 + 1 × 6 + 1 × 2 + 1 × 1 = 297

(b) 1. xmax = 29 − 1 = 511

2. xmax = 83 − 1 = 511

3. xmax = 173 − 1 = 4912

4. xmax = 5 × 120 + 4 × 24 + 3 × 6 + 2 × 2 + 1 × 1 = 719

(c) 1. Binary representation uses 9 bits; E = 1

2. Radix-8 digits represented in binary with 3 bits per digit. Digit-
vector: 3 × 3 = 9 bits; E = 9/(3 × 3) = 1

3. Radix-17 digits represented in binary with 5 bits. Digit-vector: 3 ×
5 = 15 bits; E = 9/(3 × 5) = 0.6

4. The digit sets for the mixed-radix representation and their lengths
in binary representation of digits are

d0 1,0 1
d1 2,1,0 2
d2 3,2,1,0 2
d3 4,3,2,1,0 3
d4 5,4,3,2,1,0 3

Digit-vector: 3+3+2+2+1 = 11; E = 9/11 = 0.82

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

2

Exercise 1.2

XRNS - digit-vector in RNS representation;
XRNS−bin - bit-vector of XRNS ;

x XRNS XRNS−bin

0 (0 0 0 0) (000 000 00 0)
13 (6 3 1 1) (110 011 01 1)
15 (1 0 0 1) (001 000 00 1)
19 (5 4 1 1) (101 100 01 1)
22 (1 2 1 0) (001 010 01 0)

127 (1 2 1 1) (001 010 01 1)

To compute the efficiency need to determine the number of bits for the binary
representation. This number depends on the range of integers represented; we
consider two situations:

i) The largest integer is 127. In such a case, the number of bits is 7 and the
efficiency is

E = nr2/nRNS−bin = 7/9

ii) The largest integer is the maximum allowed by the moduli of the RNS
representation. This value is 7x5x3x2-1= 209. Consequently, 8 bits are needed
for the radix-2 representation, resulting in

E = 8/9

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

3

Exercise 1.3

If the moduli are not relatively prime, different values may have the same
representation. For example, if P = (4,2), x = 3 and x = 7 have the same RNS
digit-vector (3,1).

Exercise 1.4

1. 1 ≤ x ≤ 28+8 − 1, E = 1

2. 1 ≤ x ≤ 104 − 1, E = (104 − 1)/(216 − 1) = 0.152

3. 1 ≤ x ≤ 164 − 1 = 216 − 1, E = 1

Exercise 1.5

(a) Representation values

r xR

2 43
8 85 + 83 + 8 + 1 = 33289

10 105 + 103 + 10 + 1 = 101, 011
16 165 + 163 + 16 + 1 = 1, 052, 689

(b) Largest values for n = 6

r xRmax

2 63
10 106 − 1
16 166 − 1

Exercise 1.6

x C = 16 C = 15 C = 19 C = 127
6 0110 0110 00110 0000110
5 0101 0101 00101 0000101
4 0100 0100 00100 0000100
3 0011 0011 00011 0000011
2 0010 0010 00010 0000010
1 0001 0001 00001 0000001
0 0000 0000 00000 0000000
-0 - 1111 10011 1111111
-1 1111 1110 10010 1111110
-2 1110 1101 10001 1111101
-3 1101 1100 10000 1111100
-4 1100 1011 01111 1111011
-5 1011 1010 01110 1111010
-6 1010 1001 01101 1111001

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

4

Exercise 1.7

(a) For r = 2, xR = 1110. For r = 7, xR = 35110. For r = 16, xR = 411310.

(b) For r = 2, xR = 11; for 2’s complement, C = 16; since xR > C/2 we have
x < 0 and x = 11 − 16 = −5.

For r = 4, xR = 69; for 1s’ complement, C = 44−1 = 255; since xR < C/2,
we have x > 0 and x = 69.

For r = 8, xR = 521; for 1s’ complement, C = 84 − 1 = 4095, since
xR < C/2, we have x > 0 and x = 521.

Exercise 1.8

Value x Value xR Digit vector X
(a) −3910 405710 3331214

(b) −4110 21510 11010111
(c) −310 2910 11101

Exercise 1.9

Number Radix No. of Digits Value x Value xR Digit-vector X
system r n

SM 10 4 -837 -837 1837
2’s compl. 2 6 -10 54 110110

RC 3 4 -37 44 11223

RC 8 3 -149 363 5518

1s’ compl. 2 8 -83 172 10101100
2’s compl. 2 7 -19/64 1+45/64 1.101101

DC 8 4 -681 3415 65278

1s’ compl. 2 7 -19/64 1+44/64 1.101100

Exercise 1.10

NRS xmax Xmax xmin Xmin

SM 3+15/16 011.1111 -(3+15/16) 111.1111
2’s 3+15/16 011.1111 -4 100.0000
1s’ 3+15/16 011.1111 -(3+15/16) 100.0000

Exercise 1.11

NRS integer fraction

SM -5 -5/16
2’s -11 -11/16
1s’ -10 -10/16

Exercise 1.12

(a) In the integer case, 2’s complement, x = −5. Extending to n = 6 produces
Xint−2 = (1, 1, 1, 0, 1, 1).

In the 1s’ complement system, x = −4, and the 6-bit vector is Xint−1 =
(1, 1, 1, 0, 1, 1).

Note that in the case of integers, the extended bit-vectors are the same
for 2’s complement and for 1s’ complement.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

5

(b) We suppose that ”Do not change the position of the radix point” means
that the extended value should also be a fraction (having only the ”sign
bit” as integer bit).

In the two’s complement fraction case x = −5/8. Extending to n = 6
produces Xfrac−2 = (1, 0, 1, 1, 0, 0).

In the 1s’ complement fraction case x = −4/8 and the extended bit-vector
is Xfrac−1 = (1, 0, 1, 1, 1, 1).

Note that in the fraction case the extended bit-vectors are different.

Exercise 1.13

Sign-and-magnitude

• x + y.

Since x < 0, we complement x (2’s complement) and add

101110

001001

1

111000

The result is negative (sgn=1). We complement to obtain magnitude
00111+1=01000.

• y − x.

Change sign of x and add. Both operands of addition are positive. Sign
of result sgn=0.

001001

010001

011010

• x − y.

Change sign of y and add. Both operands of addition are negative. Con-
sequently, add magnitudes and sign of result is sgn=1.

010001

001001

011010

• −x − y. This is −(x + y). So, perform (x + y) and change sign. Result is
sgn=0 and magnitude 01000.

• |x − y|. Perform x − y and make sgn=0. The magnitude is 11010.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

6

2’s complement and 1s’ complement

Consider the following table:

Operation 2’s Complement 1s’ Complement

x 101111 101110
y 001001 001001

111000 110111
cin/e-a-c 0 0

x + y 111000 110111

y 001001 001001
x̄ 010000 010001

cin/e-a-c 1 0
y − x 011010 011010

x 101111 101110
ȳ 110110 110110

cin/e-a-c 1 1
x − y 100110 100101

x̄ 010000 010001
ȳ 110110 110110

cin/e-a-c 1 1
000111 001000

1 -
−x − y 001000 001000

x 101111 101110
ȳ 110110 110110

cin/e-a-c 1 1
x − y 100110 100101
x − y 011001 011010

cin/e-a-c 1 -
|x − y| 011010 011010

Exercise 1.14

The effective operation to compute z = |x|−|y| in the 2’s complement system
as a function of the signs of the operands is shown in the following table:

x y |x| − |y|

+ + x − y
+ - x + y
- + −(x + y)
- - −x + y

The algorithm is

case of (sign(x), sign(y)):

(0,0): z = ADD(x, ȳ, 1);

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

7

(0,1): z = ADD(x, y, 0);

(1,0): z = ADD(0, (ADD(x, y, 0)), 1);

(1,1): z = ADD(x̄, y, 1);

Exercise 1.15

As discussed in this chapter, the change of sign operation in the 2’s comple-
ment system is performed as

zR = (2n − 1 − xR) + 1

which corresponds to inverting each bit and adding 1. Let

Xb = (Xk, Xk−1, . . . , X0) = (1, 0, . . . , 0)

and
Xa = (Xn−1, . . . , Xk+1)

.

1. After bit-inverting Xb and Xa we get

Xb = (0, 1, . . . , 1)
Xa = (X ′

n−1, . . . , X
′

k+1)

2. After adding 1, Xb is reverted to Xb, while Xa remains unaffected.

Since the algorithm produces Xb and Xa, it performs the change of sign
operation.

Exercise 1.16

(a) We show two proofs: in the first we consider all possible cases and in the
second we manipulate the expressions.

First proof:

xn−1 yn−1 sn−1 cn−1 cn overflow?
0 0 0 0 0 n
0 0 1 1 0 y
0 1 0 1 1 n
0 1 1 0 0 n
1 1 0 0 1 y
1 1 1 1 1 n

Second proof:

The overflow in addition may only happen if the operands are of the same
sign, i.e., xn−1 ⊕ yn−1 = 0 and, consequently, in this situation

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

8

sn−1 = xn−1 ⊕ yn−1 ⊕ cn−1 = cn−1

On the other hand,

cn ⊕ cn−1 = (xn−1yn−1 + xn−1cn−1 + yn−1cn−1) ⊕ cn−1

= xn−1yn−1c
′

n−1 + x′

n−1y
′

n−1cn−1

= xn−1yn−1s
′

n−1 + x′

n−1y
′

n−1sn−1

which is the expression for overflow.

(b) The overflow detection using cn and cn−1 does not work in the 1s’ com-
plement system since (−0) + (−2n−1 + 1) produces cn = 1 and cn−1 = 0
indicating an overflow which does not exist. For example,

x = −3 = 100, y = −0 = 111

x 100
y 111

1011 cn = 1, cn−1 = 0, cn ⊕ cn−1 = 1
Overflow

s 100 No overflow

Exercise 1.17

(a) 1. Signed integers

NRS Range

SM [−(215 − 1), 215 − 1]
2’s [−215, 215 − 1]
1s’ [−(215 − 1), 215 − 1]

2. Unsigned integers: [0, 216 − 1]

(b) 1. With 2’s complement adder and flags:

Case Adder Z SGN C0 OV F

unsigned add yes yes no yes no
unsigned sub yes yes no yes no

2. With 1s’ complement adder and flags:

Case Adder Z SGN C0 OV F

unsigned add no no no yes no
unsigned sub no no no yes no

(c) We consider here only the case for 2’s complement representation for
signed integers. The case for the other two representations can be de-
termined in a similar manner.

For the comparison of A and B we perform A − B and set the flags. The
three conditions are determined as follows:

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

9

– For signed integers in 2’s complement representation:

Equal Z = 1

SMALLER (OV F = 0 AND NEG = 1) OR (OV F = 1 AND
NEG = 0) (no overflow and negative or overflow and not negative)

GREATER (OV F = 0 AND NEG = 0) OR (OV F = 1 AND
NEG = 1) AND Z = 0 (not smaller and not zero)

– For unsigned:

Equal Z = 1

For the other cases we need to consider the effect of converting the
second operand to 2’s complement and adding. So the operation
A − B is performed as

D = A + (216 − B) = 216 + (A − B)

Consequently, the flag CO is set when A − B ≥ 0. So,

GREATER (CO = 1 AND Z = 0)

SMALLER CO = 0

From these expression we see that only the branch on equal can be the
same for both signed and unsigned integers.

Exercise 1.18

(a) Integers a and b represented by A and B:

C a b

104 -2638 3216
104 − 1 -2637 3216

(b) Extended to six digits:

A = (9, 9, 7, 3, 6, 2), B = (0, 0, 3, 2, 1, 6)

(c) d = 10a, e = a/10 (integer), with seven digits

D = (9, 9, 7, 3, 6, 2, 0), E = (9, 9, 9, 9, 7, 3, 6)

Exercise 1.19

For x ≥ 0 we have that zR = xR. Consequently, since Xn−1 = 0, the
algorithm is correct. For x < 0, zR = Cz − |x| and xR = Cx − |x| where Cz and
Cx are the corresponding complementation constants. Consequently,

zR = Cz − Cx + xR (1)

Since for both the 2’s and 1s’ complement systems

Cz − Cx = 2m − 2n (2)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

10

we obtain
zR = 2m − 2n + xR (3)

But 2m − 2n is represented by the vector

(1, 1, ..., 1, 0, 0, ..., 0)

Consequently,
Z = (1, 1, ..., 1, Xn−1, . . . , X0) (4)

which corresponds to the given algorithm.

Exercise 1.20

Left shift. By definition z = 2x. i) If x ≥ 0 the representation is the same as in the
sign-and-magnitude system and, therefore, the same algorithm holds.

ii) If x ≤ 0 then x = xR−C and z = zR−C. Therefore, zR−C = 2(xR−C)
and zR = 2xR − C. Moreover, since x ≤ 0 we have Xn−1 = 1 and

2xR = 2 · 1 · 2n−1 + 2Xn−22
n−2 + . . . + 2X0

In the 2’s complement system, since C = 2n we obtain

zR = 2xR − 2n

= 2 · 1 · 2n−1 + 2Xn−22
n−2 + . . . + 2X0 − 2n

= Xn−22
n−1 + Xn−32

n−2 + . . . + X02 + 0 · 20

From the last expression we infer the corresponding left-shift algorithm
for the 2’s complement system. Note that overflow occurs when Xn−2 6=
Xn−1.

In the 1s’ complement system C = 2n − 1 so that

zR = 2xR − (2n − 1)
= 2xR − 2n + 1

Using the expression for 2xR developed in the previous proof,

zR = Xn−22
n−1 + Xn−32

n−2 + . . . + X02 + 1 (5)

This corresponds to the indicated algorithm.

Right shift. By definition z = 2−1x − ε. If x ≥ 0, the same algorithm as in the
sign-and-magnitude case holds.

If x ≤ 0 then zR − C = 2−1(xR − C) − ε and zR = 2−1(xR − C) + C − ε.

For the 2’s complement system C = 2n, so

2−1(xR − C) = −2n−1 + Xn−12
n−2 + . . . + X12

0 + X02
−1 (6)

and

zR = 2n − 2n−1 + Xn−12
n−2 + . . . + X1 + X02

−1 − ε
= 2n−1 + Xn−12

n−2 + . . . + X1 + X02
−1 − ε

(7)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

11

Assuming ε = X02
−1 (this satisfies |ε| < 1), we obtain the corresponding

algorithm.

In the 1s’ complement system C = 2n − 1, so that

2−1(xR − C) = −2n−1 + Xn−12
n−2 + . . . + X12

0 + (X0 + 1)2−1 (8)

and

zR = 2n − 2n−1 + Xn−12
n−2 + . . . + X12

0 + (X0 + 1)2−1 − 1 − ε (9)

Assuming now ε = 1 − (X0 + 1)2−1 the same algorithm is obtained.

Exercise 1.21

2’s complement:

X 00101101 45
SL(X) 01011010 90
SR(X) 00010110 22

Y 11010110 -42
SL(Y) 10101100 -84
SR(Y) 11101011 -21

1s’ complement:

X 00101101 45
SL(X) 01011010 90
SR(X) 00010110 22

Y 11010110 -41
SL(Y) 10101101 -82
SR(Y) 11101011 -20

Exercise 1.22

Overflow happens in the arithmetic shift-left if

Xn−2 6= Xn−1

This is because in this case the sign would change by the shift.
Exercise 1.23

Given

A = 1101 (a = −3)
B = 110 (b = −2)
C = 0101 (c = 5)
D = 10101 (d = −21)

compute z = −3 + (−2) + 8 ∗ 5 − 2 ∗ (−21) = −7.

A 1111101
B 1111110
8C 0101000
2D 1101010
z 1111001

Exercise 1.24

The multiplication is shown in Figure E1.24.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

12

n = 5 x = 21 (X = 10101) y = 14 (Y = 01110)

p[0] 00000
25xY0 00000

00000
p[1] 00000 0
25xY1 10101

10101 0
p[2] 01010 10
25xY2 10101

11111 10
p[3] 01111 110
25xY3 10101

100100 110
p[4] 010010 0110
25xY4 00000
p[5] 10010 0110 = 294

Figure E1.24

Exercise 1.25

(a) The multiplication for 2’s complement representation is given in Fig.
E1.25a.

(b) The multiplication for 1s’ complement representation is in Fig. E1.25b.
Note that we complement the multiplier and then complement the result.

Exercise 1.26

The execution time of the basic multiplication scheme for n-bit non-negative
integers is

Tbasic = (tvd + tadd + treg) × n

The execution time can be reduced by using the multiplier as a radix-4
digit-vector to about Tbasic/2 as follows:

• Precompute 3X = 2X + X and store it in a register.

• In each iteration consider two bits of the multiplier as a radix-4 digit
zj ∈ {0, 1, 2, 3}. Select 0 × X, 1 × X, 2 × X (left shifted X produced
by wiring - no extra delay), or 3 × X (precomputed using shift and add)
depending on the value of zj using a multiplexer.

• Perform n/2 iterations.

Since n/2 iterations are performed and one additional cycle is required for
the precomputation of 3x, the reduced execution time is

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

13

n = 6 x = 21 (X = 010101) y = −17 (Y = 101111)

p[0] 0 000000
25xY0 0 010101

0 010101
p[1] 0 001010 1
25xY1 0 010101

0 011111 1
p[2] 0 001111 11
25xY2 0 010101

0 100100 11
p[3] 0 010010 011
25xY3 0 010101

0 100111 011
p[4] 0 010011 1011
25xY4 0 000000

0 010011 1011
p[5] 0 001001 11011
−25xY5 1 101011
p[6] 1 110100 11011 = xy = -357

Figure E1.25a 2’s complement multiplication.

n = 6 x = 21 (X = 010101) y = −17 (Y = 101110)
−y = 17 (010001)

p[0] 0 000000
25xY0 0 010101

0 010101
p[1] 0 001010 1
25xY1 0 000000

0 001010 1
p[2] 0 000101 01
25xY2 0 000000

0 000101 01
p[3] 0 000010 101
25xY3 0 000000

0 000010 101
p[4] 0 000001 0101
25xY4 0 010101

0 010110 0101
p[5] 0 001011 00101
complement
p[6] 1 110100 11010 = xy = -357

Figure E1.25b 1s’ complement multiplication.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

14

Treduced = (tMUX + tadd + treg) × (n/2 + 1)

Exercise 1.27

The recurrence for the left-to-right multiplication of non-negative integers is

p[0] = 0
p[j + 1] = rp[j] + xYn−1−j j = 0, 1, . . . , n − 1
p = p[n]

(10)

It can be shown by substitution that

p[j + 1] = rj+1p[0] + x

n−1
∑

k=n−1−j

Ykrk−(n−1−j)

so that
p[n] = rnp[0] + xy

The adder has 2n − 1 digits. The relative position of the operands in the
left-to-right recurrence is shown in Figure E1.27

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

15

shift left

Multiplicand

y
j

X

rp[j]

p[j+1]

xyj

multiplier Y
digit of

ADDER

vector - digit multiplier

rp[j+1]

Figure E1.27: Relative position of operands in left-to-right multiplication.

Since the adder is twice as wide as in the right-to-left (basic) multiplication,
the execution time is significantly increased.

Exercise 1.28

From Algorithm NRD for integer division of 2n-bit dividend x and n-bit
divisor d we have:

d∗ = d2n w[0] = x

For j = 0, w[1] = 2w[0] − qn−1d
∗

For j = 1, w[2] = 2w[1] − qn−2d
∗ = 22w[0] − (2qn−1 + qn−2)d

∗

For j = n − 1, w[n] = 2nw[0] − (2n−1qn−1 + 2n−2qn−2 + . . . + 2q1 + q0)d
∗

The last scaled remainder (corrected if negative) is

2−nw[n] = w[0] − (
n−1
∑

j=0

qj2
j)d∗2−n = x − q · d

since w[0] = x and q =
∑n−1

j=0 qj2
j . Therefore,

x = q · d + w

Since the quotient-digit selection function guarantees bounded residuals |w[j]| <
d∗, the algorithm is correct.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

16

Exercise 1.29

Perform non-restoring integer division for the following operands.

Dividend x = 1410 = (00001110)2, divisor d = 3 = (0011)2

w[0] = 0 0000 1110
2w[0] = 0 0001 1100
−d∗ = 1 1101
w[1] = 1 1110 1100 q3 = 0

2w[1] = 1 1101 1000
+d∗ = 0 0011
w[2] = 0 0000 1000 q2 = 1

2w[2] = 0 0001 0000
−d∗ = 1 1101
w[3] = 1 1110 0000 q1 = 0

2w[3] = 1 1100 0000
+d∗ = 0 0011
w[4] = 1 1111 0000 q0 = 0
w[4] = 0 0010 (corrected)

Quotient q = (0100)2 = 4, remainder w = (0010)2 = 2. Check: 14 = 3 × 4 + 2.

Exercise 1.30

We consider the alternative with quotient-digit set {−1,+1}. If the divisor
is signed, the quotient-digit selection depends on the sign of the divisor. To
have a bounded residual, the selection function is

qn−j =

{

1 if sign(w[j]) = sign(d)
−1 if sign(w[j]) 6= sign(d)

We also want the quotient to be in 2’s complement representation. This is
accomplished by making the quotient

q = P + N

where P is the weighted sum of all digits having value 1 and N is the weighted
sum of all digits with value -1. Consequently, the 2’s complement representation
is obtained by adding P and N (2’s complement addition). For this, N (which
is negative) should be represented in 2’s complement.

It is also possible to do the conversion considering only P as follows. Since
all bits of q are either 1 or -1 we get

P − N = 2n − 1

and
(P + N) + (P − N) = 2P = q + 2n − 1

so that
q = −2n + 2P + 1

Morover, since the maximum absolute value of the quotient is 2n−1−1 (remem-
ber the the n − th bit is the ”sign bit”), The two most-significant signed digits

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

17

of q cannot be of the same sign. Consequently, in P the most-significant two
bits are either 10 (positive quotient) or 01 (negative quotient). Therefore, when
subtraction 2n from 2P , we get a 2’s complement representation, as follows:

P=10... then 2P −2n = 0... (that is, bit n−1 is 0 and the result is positive)
P=01... then 2P −2n = 1....(that is, bit n−1 is 1 and the result is negative)
This can be implemented during the iterations by

• Replacing -1’s with 0’s

• Shifting the resulting vector one position to the left

• Inverting the quotient bit in position n − 1 and inserting 1 in the least-
significant position. If quotient correction is needed, 0 is inserted in its
least-significant position.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises

