## DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, © 2004
COMMENTS AND ERRATA
Updated: March 14, 2005

## Chapter 1

page 36 , line 14 and 16: replace $\tilde{w}[j]$ with $\tilde{w}[j+1]$
page 39 , lines 8,10 , and -4 : Replace $q_{n-1-j}$ with $q_{n-j}$
page 39, in Algorithm NRD, move endfor before Step 4.
page 39 , line 17: replace "fractions" with "integers"
page 45: Exercise 1.22: replace "right" with "left"
page 46, line -5: replace "Hennessay" with "Hennessy"

## Chapter 2

page 64, line -2: replace $T_{S R A}$ with $T_{S C R A}$
page 64 , line -1 : after "... buffers required" insert "for"
page 65 , line 4: replace $"(2.21) "$ with $"(2.22) "$
page 70, line 1 in Section 2.5.2: (2.30) should be (2.31)
Comment on delay calculation for Carry-lookahead adder (CLA): Because of the implementation of the CLG module shown in Figure 2.14, in delay expressions $2.43,2.48$, and 2.52 the term $t_{c l g}$ corresponds to the delay between module input $c_{0}$ and module output $c_{i}, i \neq 0$.
page 82, line -11: Change "The number of cells is the same as for the basic scheme." to "The number of cells is reduced by two compared to the basic scheme."
page 89: include the delay of buffers $t_{b u f f}$ in the expression (2.72).
page 115: Exercise 2.2: replace "Table 2.4" with "Table 2.2"

## Chapter 3

page 154, in Figure 3.13, add to the caption: (for $p=3$ )
page 155, in Figure 3.14, line 13: replace "d xxxx" with "d xxx" (only 3 x's)
page 156 , line -11: replace $T_{[4: 2]}<2 T_{[3: 2]}$ with $t_{[4: 2]}<2 t_{[3: 2]}$

## Chapter 4

page 183, line 1: insert "multiplying" between "for" and "magnitudes".
page 186, Figure 4.3: eliminate "Stage 3 " in the top left corner.
page 193, line -9: replace "page 286 " with "page 198 "
page 196, Figure $4.9(\mathrm{~b}, \mathrm{c})$, column 4, row 4: replace $x_{l}$ with $x_{1}$
page 216, expression (4.41): put parentheses around superscripts in the rightmost term.

Comment on Figure 4.26 (page 220): The figure is generic: it does not imply that for a 8 -bit result $k=6$. The references cited on pages 236-237 should be consulted for details about determining truncation precision.
page 227, line -7: replace with "For the design exercises use the circuit data from Table 2.4 and Figure 5.4. Note also that the delays in Figure 5.4 are given in $t_{N A N D 2}$ units, whereas those in Table 2.4 are in nanoseconds. It might be best to report the results of the exercises in $t_{N A N D 2}$ units.
page 229, in Exercise 4.8, replace "Exercise 4.7" with "Figure 4.7"

## Chapter 5

page 264, line 2: replace " $p s+p c>0$ " with " $p s+p c<0$ "
page 264: in "Radix-4 division algorithm with the residual in carry-save form" there are some additional differences with respect to the radix-2 algorithm in Figure 5.6 which should be considered. Namely,
a) In the recurrence step, the number of iterations is $N=\left\lceil\frac{n+2+1}{2}\right\rceil$ (because of the initialization step and the guard bit) where $n$ is the number of bits of the operands.
b) In the termination step, instead of the radix-2 expression

$$
q=2\left(\operatorname{CONVERT}\left(Q[n+1], q_{n+2}-1\right)\right)
$$

use the corresponding radix-4 expression

$$
q=4\left(C O N V E R T\left(Q[N-1], q_{N}-1\right)\right)
$$

and instead of the expression

$$
q=2\left(C O N V E R T\left(Q[n+1], q_{n+2}\right)\right)
$$

use

$$
q=4\left(C O N V E R T\left(Q[N-1], q_{N}\right)\right)
$$

page 266 , Figure 5.6: The fact that $\hat{y}$ is represented by three integer bits and one fractional bit, does not imply that its range is [-4, 3.5]. The range of $\hat{y}$ in the selection function is obtained from expression (5.102) and determined by expression (5.107) for radix-2 division with carry-save adder.
page 268, Figure 5.8: the output of the module "SZ; Convert" should be $q$.
page 270, Figure 5.9, line 14: the least significant bit of $4 W C[2]$ should be 0 , eliminate *
page 270, Figure 5.9, line 16: the least significant bit of $w[3]$ should be 0
page 278: line -4 , replace $" 0 \leq d \leq r^{n}-1 "$ with " $0<d \leq r^{n}-1$ "
page 278: In Table 5.8 footnote replace "Correction" by "Termination step"
page 278: In Section 5.4 there is ambiguity because of the use of $r$ (radix) for two different purposes:

- On page 278 lines -5 and -4 , the $r$ refers to the radix in the representation of the operands. Usually, this radix will be 2 . This also corresponds to the $r$ in expression 5.46, 5.47, and 5.49.
- On page 279, line after expression 5.45 , the $r=2^{k}$ refers to the radix of the quotient-digit, as produced by the division algorithm. That, is for example in a radix- 4 division algorithm, this radix would be 4 .

To avoid this ambiguity, the caption of Figure 5.15 should say $n=8$ bits, instead of $n=4$ (radix- 4 digits), since the operands are in radix 2 .
page 279: Expression 5.44: replace the term " $\ldots=2^{m}\left\lfloor x / d^{*}\right\rfloor$ " with

$$
\ldots=\left\lfloor 2^{m} \times\left(x / d^{*}\right)\right\rfloor
$$

page 279: replace expression 5.48 with

$$
N=\lceil(m+v) / k\rceil
$$

That is, the +1 is incorrect and the $k$ is missing. The argument for eliminating the +1 is based on the fact that the quotient obtained by a fractional division algorithm is $1 / 2 \leq q<2$, as indicated in item 2 of the same page.
page 280: Example 5.1: replace the expression for $N$ with

$$
N=\lceil(m+v) / 2\rceil=4
$$

page 282: expression 5.53 should be $|w[j]| \leq \rho d$.
page 284: Figure 5.16(b): the label on X-axis should be $d$.
page 288: line 14: replace $\{r[w]\}_{c}$ with $\{r w[j]\}_{c}$
page 297: Figure 5.25 , number the $m_{k}$ constants beginning from $m_{2}(0)$ to $m_{2}(7)$.
page 311: Exercise 5.8: line -11: Remove sentence "Show all details.".
page 312: Exercise 5.15: line -9: Replace sentence "Draw the corresponding P-D diagrams (first quadrant only)." with "Draw the corresponding P-D diagrams (give the portion for $k=6$, first quadrant only)."
page 313: Exercise 5.17: line 8: Expression $q_{j+1}=\operatorname{integer}(r w[j]+0.5)$ is valid if $w[j]$ is expressed in two's complement. When considering a sign and magnitude representation for the residuals, the expression has to be replaced by $q_{j+1}=\operatorname{round}(r w[j])$.
page 313: Exercise 5.17: line 14: Replace "a fast radix-2 division algorithm." with "other low radix division algorithms."

## Chapter 6

page 352: line 15: replace sentence $" \max \left(L_{k}\left(I_{i}\right)\right) j$ is positive" with $" \max \left(L_{k}\left(I_{i}\right)\right)$ the term depending on $j$ is positive".
page 358: Exercise 6.5, line 16: the expression for $t_{\text {cycle }}$ is

$$
t_{c y c l e}=t_{S E L_{S Q R T}}+t_{b u f f}+t_{m u x}+t_{H A}+t_{\text {reg }}=4+1+1+1+2=9 t_{g}
$$

page 359: Exercise 6.8, line 6: replace sentence "Perform the integer division algorithm for radix 4 with residual in carry-save representation for $x=53$ and $d=9$." with "Perform the integer square root algorithm for radix 4 with residual in carry-save representation for $x=53$."

## Chapter 7

page 371, expression (7.11): replace $P[j]$ with $R[j]$
page 382 , line 11: replace $R[j]$ with $S[j]$
page 388: Exercise 7.6: $a$ and $b$ are defined in Exercise 7.5.

## Chapter 8

page 407, line 9: replace "are not representable in the floating-point system" with "do not correspond to real numbers"
page 420, footnote No. 14: replace "bised" with "biased"
page 427, line 9: replace "put" with "plus".
page 427, line 9, line -2: replace "complemented" with "negated" (two instances)
page 428: In Figure 8.8 the Exponent Update module should have also an input to update when the significand is shifted after the adder.
page 434, Paragraph 3, line 4: replace "significants" with "significands".

## Chapter 9

pages 499 and 501, Figure 9.6 and 9.7: Replace "Shift-Reg WC" with "Reg WC"; replace "Shift-Reg WS" with "Reg WS"; replace " $2 \mathrm{w}[\mathrm{j}]$ with "w[j]"
page 510 , line 6: eliminate one "the"
page 516, Table 9.4, row for $r=2$ : replace 6 with 3 . Add to caption: The initial number of bits/operand is $\log _{2} r \times \delta$.
page 535: In Exercise 9.3 the initial conditions are $x[-1]=y[-1]=$ $w[-1]=0$. In the illustration of the input sequence, replace $x[j]$ and $y[j]$ with $x_{j}$ and $y_{j}$, respectively.

## Chapter 10

page 572: in the expression for the $S E L$ digit selection function, replace the left-hand side with $d k_{j+1}$, and in the part with "-1", replace $\widehat{w k[j]}$ with $\widehat{v k[j]}$

## Chapter 11

page 620: The sequence of scaling iterations is incorrect. A suitable sequence is $(-1)(+2)(-5)(+8)(-10)(+15)(-17)(-19)$. Note that the scaling $(-1)$ corresponds to a multiplication by $2^{-1}$, so no scaling iteration is required. The sequence of scalings plus repetitions is correct. However, it assumes that the CORDIC iterations begin at $j=1$. This is acceptable because the repetitions make the convergence range as large as that without repetitions beginning at $j=0$.
page 627: Table 11.4. For clarity and consistency the initial values $x_{i}, y_{i}$, and $z_{i}$ should be denoted with $x_{i n}, y_{i n}$, and $z_{i n}$, respectively.
page 628: row 7 , last column of Table 11.5 should read: $z_{R}=0.5 \ln (4 a)$
page 629 , line 16: replace "hight" by "high"
page 629, last line: add "(See Exercise 11.4)"
page 630 , replace lines -6 to -3 by: It has been shown that when $m$ digits are used for the estimation of the sign, the distance between repetitions is $m-2$ iterations for the rotation mode and $m-5$ iterations for the vectoring mode.

More specifically, in iteration $j$ the following digits are inspected:

- For rotation inspect digits with weights from $2^{-(j-1)}$ to $2^{-(j+m-2)}$.
- For vectoring inspect digits with weights from $2^{-(j-2)}$ to $2^{-(j+m-3)}$.
page 635: Exercise 11.1. Interpret "a precision of seven bits" as "perform the minimum number of iterations required to reduce the angle to 0 with the given data-path width". With respect to part c) we have not found a systematic solution.
page 636: Exercise 11.2. Perform the minimum number of iterations required to reduce the angle to 0 with the given datapath width. With respect to part c) we have not found a systematic solution.
page 636: Exercise 11.3. Perform the minimum number of iterations to reduce $y$ to 0 with the given datapath width. With respect to part c) we have not found a systematic solution.
page 636: Exercise 11.4. The sequence $\alpha_{i}$ should be a decreasing sequence. That is, the relation between $\alpha_{i}$ and $\alpha_{i+1}$ should be

$$
\alpha_{i+1}<\alpha_{i} \leq 2 \alpha_{i+1}
$$

page 637: Exercise 11.15 According to the Errata for page 630 replace "Use a selection function with an estimate of the sign with two digits..." by "... with four digits..."
page 637: Exercise 11.16 According to the Errata for page 630 use an estimate of seven digits.

