
1
RECIPROCAL, DIVISION, RECIPROCAL SQUARE ROOT AND SQUARE

ROOT BY ITERATIVE APPROXIMATION

• AN INITIAL APPROXIMATION OF A FUNCTION
ITERATIVELY IMPROVED

• BASED ON MULTIPLICATIONS AND ADDITIONS (vs. only additions and
shifts)

• CONVERGES TOWARDS THE RESULT WITH A QUADRATIC OR LINEAR
RATE

• QUOTIENT: RECIPROCAL OF THE DIVISOR × THE DIVIDEND

• SQUARE ROOT: INVERSE SQUARE ROOT × THE OPERAND

• ROUNDING HARDER THAN FOR THE DIGIT-RECURRENCE METHOD

• VARIATIONS TO OBTAIN DIRECTLY QUOTIENT AND SQUARE ROOT

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

2
NEWTON-RAPHSON’S METHOD FOR RECIPROCAL APPROXIMATION

• BASED ON A GENERAL METHOD TO OBTAIN THE ZERO OF A FUNC-
TION (THE VALUE OF x FOR WHICH f (x) = 0)

• x[j] AN APPROXIMATION OF THE ZERO

• A BETTER APPROXIMATION IS

x[j + 1] = x[j]−
f (x[j])

f ′(x[j])

f ′(x[j]) EVALUATED AT x[j]

• APPLY TO RECIPROCAL FUNCTION f (R) = 1/R− d
(whose zero is 1/d)

• RECURRENCE
R[j + 1] = R[j](2−R[j]d)

• INITIAL APPROXIMATION R[0]

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

3

R[j]

f(R[j])

R[0] R[1] R[2] R[3]

1/d

-d

tangent

(Initial approximation)

Figure 7.1: Newton-Raphson iteration for finding reciprocal.

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

4

RECIPROCAL (cont.)

• EACH ITERATION REQUIRES TWO MULTIPLICATIONS AND
ONE SUBTRACTION

• QUADRATIC CONVERGENCE

• RELATIVE ERROR ε[j]
ε[j] = 1− dR[j]

R[j + 1] = (
1− ε[j]

d
)(2− (1− ε[j]))

=
1− ε[j]2

d

=⇒

ε[j + 1] = 1− dR[j + 1] = ε[j]2

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

5

RECIPROCAL (cont.)

• NUMBER OF ITERATIONS DEPENDS ON INITIAL APPROXIMATION

ε[0] ≤ 2−k

• TO GET AN ERROR

ε[m] ≤ 2−n

THE NUMBER OF ITERATIONS IS

m = dlog2(
n

k
)e

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

6
EXAMPLE

RECIPROCAL OF d = 5/8

R[0] = 1

j R[j] dR[j] 2− dR[j] R[j + 1] ε[j + 1]

0 1 5× 2−3 11× 2−3 11× 2−3 0.14

1 11× 2−3 55× 2−6 73× 2−6 803× 2−9 = 1.5683594 0. 020

2 803× 2−9 4015× 2−12 4177× 2−12 3354131× 2−21 = 1.5993743... 0.00039

EXACT RESULT: 1/d = 8/5 = 1.6

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

7
MULTIPLICATIVE NORMALIZATION METHOD

• R = 1
d = 1

d
P [0]
P [0]

P [1]
P [1] . . .

P [m]
P [m] = R[m]

d[m]

R = R[m] if d[m] = 1

• DEFINE APPROXIMATION R[j] = ∏j
i=0 P [i] AND d[j] = dR[j]

• IMPROVE APPROXIMATION BY

R[j + 1] = R[j]P [j + 1]
d[j + 1] = d[j]P [j + 1]

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

8
MULTIPLICATIVE NORMALIZATION: RECIPROCAL

1/d

P[0]

1

Iteration j

1 2 3 4 5

R[j],d[j]

dP[0]

Figure 7.2: Illustration of iterations in the multiplicative normalization method.

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

9

DETERMINATION OF P [j] FOR QUADRATIC CONVERGENCE

• DEFINE

d[j] = d
j−1∏

i=0
P [i]

• OBTAIN THE RECURRENCE

d[j] = d[j − 1]P [j − 1]

• FOR QUADRATIC CONVERGENCE, IF

d[j − 1] = 1− ε[j − 1]

THEN
d[j] = 1− ε[j − 1]2

• CONSEQUENTLY,
P [j − 1] = 1 + ε[j − 1]

AND
d[j − 1] + P [j − 1] = 1− ε[i− 1] + 1 + ε[i− 1] = 2

SO THAT
P [j − 1] = 2− d[j − 1]

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

10
MULTIPLICATIVE ALGORITHM FOR RECIPROCAL

1. Obtain approximation P [0] to 1/d

2. d[0] = dP [0]; R[0] = P [0]

3. For j = 0, 1, 2, 3, ..., m− 2 do

P [j + 1] = 2− d[j]

d[j + 1] = d[j]P [j + 1]; R[j + 1] = R[j]P [j + 1]

4. P [m] = 2− d[m− 1]; R[m] = R[m− 1]P [m]

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

11

MUX MUX

MUX

Multiplier
Stage 1

(PP reduction)

Multiplier
Stage 2
(CPA)

IA
MODULE

2’s CMPL

1 d
{d}trunc

P[0]

P[j+1]

(Initial
 Approximation)

d[j]
or R[j]

d[j+1] or R[j+1]

dP[0]

d[0],P[1]

R[0]

R[0]

d[0]P[1]

d[1],P[2]

R[0]P[1]

R[1]

STAGE 1

STAGE 2

(R[m-1]P[m])

R[m]

cycle

(a)

(b)

(latched every
2nd clock)

INPUTS d
P[0]

1
P[0]

d[0]
P[1]

R[0]
P[1]

d[1]
P[2]

R[m-1]
P[m]

Figure 7.3: Multiplicative normalization for reciprocal: (a) Implementation with a 2-stage multiplier. (b) Timing diagram.

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

12
INITIAL APPROXIMATION

1. PERFORM A TABLE LOOK-UP BASED ON TRUNCATED d

• GOOD FOR RELATIVELY LOW PRECISION INITIAL APPROXIMA-
TION

• PIECEWISE LINEAR APPROXIMATION IF TABLE TOO LARGE

d = dt2
−k + dp2

−p + dr2
−n

MS k bits of d used to access the table to get coefficients a and b. Then

R[0] = a + bdp2
−p

• REQUIRES A TABLE LOOK-UP AND A SMALL MULTIPLICATION

2. BIPARTITE METHOD: OBTAIN TWO VALUES FROM TABLES AND PER-
FORM AN ADDITION

• USES LARGER TABLES AND ADDER

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

13
IMPLEMENTATION AND EXECUTION TIME

• MODULE TO COMPUTE THE INITIAL APPROXIMATION

• MULTIPLIER

• WIDTH OF PRODUCTS:

R[j] R[j]d R[j+1]= R[j](2-R[j]d)

j=0 a a+n 2a+n

j=1 2a+n 2a+2n 4a+3n

j=2 4a+3n 4a+4n 8a+7n

....

• AT ITERATION j APPROXIMATION HAS A PRECISION OF 2ja BITS

=⇒OK TO KEEP PRODUCTS AT THIS PRECISION

=⇒NEED NOT PERFORM MULTIPLICATIONS AT FULL PRECISION

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

14
ALTERNATIVES

1. USE A FLOATING-POINT MULTIPLIER PRODUCING A ROUNDED PROD-
UCT

2. USE A RECTANGULAR MULTIPLIER

• A SEQUENCE OF MULTIPLICATIONS AS PRECISION INCREASES

• RECTANGULAR MULTIPLIER SMALLER AND FASTER THAN THE
SQUARE MULTIPLIER

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

15
COMPARISON OF NUMBER OF CYCLES FOR FULL AND RECTANGULAR

MULTIPLIER ALTERNATIVES

• RECIPROCAL OF 54 BITS STARTING WITH r[0] ACCURATE TO 8 BITS

• MULTIPLIER IN SCHEME A STANDARD FLOATING-POINT MULTIPLIER

• MULTIPLIER IN SCHEME B A DEDICATED MULTIPLIER

• OPERATION REQUIRES AT LEAST THREE ITERATIONS

EACH CONSISTING OF TWO CONSECUTIVE MULTIPLICATIONS

IGNORE THE DELAY OF OBTAINING 2−R[i]d

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

16

COMPARISON OF ALTERNATIVES (cont.)

1. SCHEME A: Full multiplier 55× 55→ 55 (rounded);
3 cycles per multiply; total: 1 + 3 x 2 x 3 = 19 cycles

2. SCHEME B: Rectangular multiplier 55× 16→ 55;
1 cycle per multiply; total: 1+ 2 + 2 + 4 = 9 cycles

• R[1] = R[0](2− dR[0]) to 16 bits we use 55× 16 multiplier twice (2 cycles);

• R[2] = R[1](2− dR[1]) to 32 bits we use 55× 16 multiplier twice (2 cycles);

• R[3] = R[2](2 − dR[2]) to 54 bits we use 55 × 16 multiplier four times (4
cycles).

• A COMPLEMENTER (2’s OR 1s’)

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

17
DIVISION

• TO GET QUOTIENT

Q = R[m]x

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

18
EXAMPLE OF IMPLEMENTATION: AMD-K7 FLPT UNIT

• DIVISION (20 CYCLES) AND SQUARE ROOT (27 CYCLES)

• DOUBLE PRECISION (53 bits); INTERNAL PRECISION: 76 bits (FOR EX-
TENDED FORMAT)

• USES 4-STAGE PIPELINED MULTIPLIER: 76 × 76 PRODUCING 152 BITS

• RADIX-8 MULTIPLIER RECODING WITH {-4, ..., 4}

• INITIAL APPROXIMATION: BIPARTITE TABLE LOOKUP (69K BITS +
ADDER)

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

19

MUX MUX

3X GEN

MGENS

REC

TREE OF
[4:2] ADDERS

(4 levels)

[3:2] ADDER [3:2] ADDER

152-bit CPA 152-bit CPA

SB LOGIC

152-bit CPA

ROUNDING

Final Result

To local bypassingTo local bypassing

Local bypassingLocal bypassing

operand operand

Rounding
constant

(no overflow)
or dividend

Rounding
constant

(overflow)
or dividend

Stage
4

Stage
3

Stage
2

Stage
1

2x152

2x152 2x152 2x152

Figure 7.4: Block diagram of a division/square-root unit (Adapted from Oberman 1999)

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

20

1. [Initialize]

P [0]← RECIP (d̂)
d[0]← d; q[0]← x

2. [Iterate]
for j = 0, 1
d[j + 1]← d[j]× p[j]; q[j + 1]← q[j]× p[j]
p[j + 1] = CMPL(d[j + 1])

end for

3. [Terminate]
q[3]← q[2]× p[2]
REM ← d× q[3]− x
q ← ROUND(q[3], REM,mode)

where

• RECIP produces the initial approximation of 1/d in three cycles.

• CMPL(a) performs bit complementation of a.

• REM is a negated remainder.

• ROUND produces a quotient rounded according to the specified mode

Figure 7.5: Multiplicative division algorithm (double precision).

Digital Arithmetic – Ercegovac/Lang 2003 7 – Iterative Approximation

