
An Investigation of Xen and PTLsim
for Exploring Latency Constraints of

Co-Processing Units

Grant Jenks - jenks@cs.ucla.edu
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

ABSTRACT
 What follows is a description that can

hopefully act as a guide for researchers who

are interested in using Xen with PTLsim to de-

velop and analyze systems. This paper focuses

on a specific set of systems that are intended to

model a multiprocessing computer in which

processing units, in addition to the main CPU

and main memory, can assist in general com-

putations. Particular depth is described in the

methodology section in which a tremendous

number of successes and failures are related to

the reader in the hopes that they’re research

may be expedited through the process of set-

ting up the initial environment. The environ-

ment used in this research involves an Intel

processor with Virtualization Technology, Xen

3.0, Linux Kernel 2.6.20 and PTLsim rev 219.

The results of three variations on systems are

reported and some analysis is considered. The

conclusion focuses on the future of Virtualiza-

tion Technology and what contribution it may

make in being able to accurately simulate hard-

ware models of virtual machines.

INTRODUCTION
 Most computers do not fully utilize all

the PCI card slots that are available on the

motherboard. This under-utilization provides

an opportunity for improvement. The goal of

this project will be to investigate the potential

of a coprocessor which would reside on a PCI

card. This coprocessor could handle some of

the workload of the main CPU. Envisioned is a

PCI card with appropriate features to offer the

computer more parallel processing power and

more memory. Some specific research has al-

ready been explored regarding the use of

graphics cards as specialized processing units.

The goal of this project is to understand what

obstacles face a general processing unit.

 The research will be carried out using

cutting edge technology that has only recently

become available in the consumer marketplace.

Though machine virtualization has long been

available for advanced servers and mainframe

computers, recent advances in both hardware

and software allow many options for the same

virtualization on desktop computers. Used in

this research will be a processor with Intel Vir-

tualization Technology, a virtual machine plat-

form from Xen, and a research platform from

PTLsim. By utilizing the specialized hardware,

Xen can run unmodified guests in virtual ma-

chine spaces. This virtual machine normally

runs natively on the hardware in the desktop.

Theorized Computer

Main Processor

Main Memory

Computer Peripherals

PCI

Bus Co-Processing Unit

with Own Processor

and Memory

ROUGH DRAFT—Needs revising: more technical language, less

story telling, more diagrams, display results appropriately

PTLsim allows the desktop machine hardware

to be further virtualized so that cycle accurate

measurements can be carried out. With the en-

vironment properly set up, the analysis is car-

ried out using the PTLsim architecture for

hardware simulation which has previously

demonstrated accurate measurements.

 The research is pursued in three steps.

The first step involves demonstrating a need

for offloading execution on a co-processing

unit. Once this is fitfully demonstrated, the

execution profiles of a variety of programs will

be gathered when run natively on the unmodi-

fied machine. These profiles will be compared

with subsequent profiles that are determined by

running the programs on the simulated hard-

ware. The comparison will yield results that

can determine the overall usefulness of imple-

menting the co-processing units that are mod-

eled.

MOTIVATION
 PCI card slots allow a plethora of pe-

ripherals to be added to machines without

modification or upgrade of the motherboard.

The number of PCI slots that are generally pro-

vided on a motherboard are often greater than

the actual number of peripherals that are

needed. The remaining peripheral spots may be

used for various redundant or specialized ap-

plications. No known application however ex-

ists for general co-processing. Some designs

currently devote these peripheral slots to

graphics, networking, or even real-time phys-

ics processing but these applications are spe-

cific and the boards are tailored to their pur-

pose. The real desire in this research is to have

boards that can serve to offload the processing

done by the main processor in any setting. A

specific example of this involves offloading

the cycles that run for programs in the systray

of Windows clients so that the start up of pro-

grams may conceivably be accelerated with a

processor that is less burdened.

PRIOR WORK

 Much prior work has focused on using

the peripherals attached to the motherboard for

specialized processing techniques. A lot of pa-

pers have focused on ways to use the graphics

cards in computers for computation intensive

problems including many problems in linear

algebra. A current manufacturer named Ageia

has also produced a specialized card which is

designed for physics processing of objects in

games. These technologies are closely related

to the exploration considered in this research.

Many of the papers have been quite successful

in demonstrating not only the usefulness of

applying specialized hardware to various prob-

lems but also the efficiency. The purpose of

this paper is different from other papers in this

way. It is not intended for any specialized

hardware to be included in the co-processing

unit. While graphics cards have an enhanced

capacity to do floating point calculations and

other boards may specifically be optimized for

power, the approach here is fundamentally dif-

ferent. To a certain degree, the idea presented

here involves putting a computer within a com-

puter. This statement holds true since the co-

processing board will, just as any computer, be

generally able to do any kind of processing.

The drawback to this design is the same as that

for any computer in which the ability to do cal-

culations for a wide range of problems in-

volves sacrificing the efficiency of solving spe-

cific, well understood problems. The reason for

this design is, as stated previously, so that any

program could be run on the co-processing

system.

APPROACH
 As the research is broken into three

parts, each part has its own approach. The first

part involves demonstrating some need for ad-

ditional processing resources within a com-

puter. This problem is solved using Intel’s

Vtune program to gather runtime profiles of

the computer under different loads. The com-

puter which is used for this purpose in the re-

search has a processor with Intel Hyperthread-

ing technology. Therefore, runtime profiles

with Intel Hyperthreading on and off are gath-

ered and the results are described in a later sec-

tion.

 The second part of the research deter-

mines specific runtime profiles of programs

run within the PTLsim simulation which can

later be compared with profiles gathered from

full simulation. This is carried out using

PTLsim classic which has the limitation of

only being able to monitor 32-bit programs in a

cycle-accurate setting. This limitation will af-

fect later work in which the programs run in

full simulation must also be 32-bit as they are

identical programs. This limitation is tolerable

as many desktop machines are still running 32-

bit operating systems.

 The final and by far most complicated

part of the research involves setting up PTLsim

with Xen so that the hardware may be simu-

lated in a cycle-accurate environment. This

simulation will allow runtime profiles to be

developed which can be compared to the previ-

ous runtime profiles gathered in PTLsim clas-

sic. This approach requires four key things.

The first requirement is relatively new hard-

ware. PTLsim requires a 64-bit processor and

Xen requires a processor with virtualization

technology support in order to run guest virtual

machines unmodified. On top of the hardware,

a modified version of Xen must be run which

has the appropriate patches for PTLsim to in-

terface with it. In order to start virtual ma-

chines, a Xen compatible Linux kernel ma-

chine must run on top of the Xen platform as

domain 0. Once this is set up, PTLsim must be

built appropriately so that advantage can be

taken of the underlying Xen technology. The

methodology section will speak at length about

the many different configurations that were

tried before a working environment could be

set up. The final setup is shown in the figure

below.

METHODOLOGY
 The process of preparing the environ-

ments for each of the three stages of research

has ranged from simply to very challenging.

Each phase is described here with particular

attention paid to the third stage was has the

greatest associated difficulty and most useful

capacity. Recall, the initial phase of the re-

search sought to demonstrate a need for more

processing power in today’s computers.

 The runtime profiles of the test ma-

chine used in this research were initially col-

lected using Intel’s Vtune software. Setup was

easy and consisted of simply installing the pro-

gram which can be acquired from Intel. Learn-

ing to use the program is aided with a detailed

walk through guide that is provided with the

software. The details of what programs were

run and what the observed loads were on the

machine are displayed in the results section of

this paper.

 Having acquired the runtime profiles of

the system under different loads, the second

part of the research involved collecting specific

profiles of programs when run on the PTLsim

virtual systems. This process involves install-

ing PTLsim in classic mode and learning it

well enough to collect data that can later be

compared to data collected from the PTLsim/

Xen environment. The steps involved in this

are not much more challenging than before ex-

cept that the sources for PTLsim must be

downloaded from the online site and compiled

and installed. With the necessary tools already

installed, this requires only typing a few com-

mands in the shell. Learning PTLsim is also

not challenging as an extensive manual is pro-

vided with it that details not only its design and

implementation of the simulated hardware but

Linux with Patches

for Compatibility

(Dom0)

Unmodified Linux

Guest (DomU)

Xen with PTLsim Patches

64-bit Computer with Virtualization Support

PTLsim for Xen

also its usage. The results of the software pro-

files that were gathered are detailed later in the

results section.

 Implementing the third stage of the re-

search was considerably challenging. These

challenges are described here in detail. The

first challenge is acquiring hardware that will

be compatible with the simulation environ-

ment. PTLsim specifies that it only needs a 64-

bit computer to meet its hardware require-

ments. Xen is more demanding and requires a

processor with virtualization technology in or-

der to run unmodified guests under full virtual-

ization. This is most popular for running Win-

dows clients on virtual machines. PTLsim does

not work with fully virtualized guests and so

this requirement is not necessary for it. Xen

will generally warn during an installation if the

computer lacks virtualization technologies.

Two machines were tried for the Xen environ-

ment. First an AMD 64-bit processor without

virtualization technology computer was tested

without much success. Though Xen would

install and a Dom0 guest could be run on top

of it, the system was buggy and limited in that

Xen could not load unmodified systems and so

could not be extensively tested. The second

machine used had an Intel 5300 series 64-bit

processor with Virtualization Technology. This

machine worked very well with the newest

version of Xen but warned when older versions

of Xen were installed that the CPU microcode

was not recognizable. This problem may be

attributed simply to the hardware being ahead

of the software. By using online updates to

patch this problem, the issue was overcome.

 With the proper hardware acquired, the

next problem is to install Xen, modify it appro-

priately with PTLsim patches, and then modify

the Dom0 operating system so that it is com-

patible with the setup. This challenge is not

easily solved and is very time consuming. The

experiences that I have gone through in this

part are described individually and only in ret-

rospect are they seen for the many dead ends

that they are. Whatever parallels you can see

with your own thinking, take heed that my ex-

periences are presented so that yours are not

the same.

 It is the recommendation of PTLsim to

use an operating system from one of the major

distributors that has a considerable plethora of

features. The one that they presently use is

OpenSuse 10.2. They use the kernel from this

operating system in both Dom0 and DomU. In

my attempts I have used OpenSuse 10.2 and

10.1, Fedora 6, Xen 3.0, CentOS 5, and Ub-

untu 6. The operating system that finally

worked for the environment was OpenSuse

10.2 and I would recommend it just as much as

PTLsim does.

 When I began, I installed OpenSuse

10.2 on the machine without virtualization

technology. OpenSuse has a wonderful operat-

ing system installer called Yast that makes it

very easy to set up the operating system with

Xen installed. After several installations it be-

came clear to me that a simple partition table is

much more easily managed in this situations

than a normal one. Dividing each main folder

onto its own partition is a standard Linux

method for securing data but in this environ-

ment I’ve generally found it makes things

needlessly complicated.

 A word about partition setups before

continuing. The latest and greatest file system

will not make this process easy. Use ext2 or

ext3 and remember to be sure that support for

that file system is in whatever kernel is loaded

at boot. This must be true of both the Dom0

virtual machine that is run and all guest virtual

machines. Configuring guest properly can also

be tricky with file systems. Xen tries hard to

prevent the user from doing something foolish

but is not always successful. A number of

times, I have accidentally tried to boot Dom0

from its disk in a virtual machine as DomU

while Dom0 is running. This is an almost guar-

anteed way to corrupt data on the disk. An all

too frustrating thing occurs when after install-

ing an operating system and all needed

patches, the disk is corrupted in a few minutes

and the process has to be started again.

 Installing the patched version of the

Xen kernel and tools in OpenSuse required

only following the instructions provided on the

web site. A very challenging error occurred

however when trying to get the PTLsim demo

machine to run. The error was a kernel panic

error in which the booting virtual machine

could not mount the disks to load the virtual

file system. This error is difficult since the ab-

straction of the disks should be handled by Xen

and the needed files for Xen were certainly

available on the machine. While struggling

with this error for a while, I learned the loca-

tion of two important folders. The first location

is /etc/xen. This folder contains Xen configura-

tion files, most notably xensys.config and vir-

tual machine configuration scripts. The second

folder is /var/xen/log. This folder contains Xen

and Qemu log files which can aid considerably

in determining problems. Before I could re-

solve the kernel panic error, I got better hard-

ware and decided to implement the environ-

ment on that hardware instead.

 The second machine used in the re-

search was a server that had two processors

with four cores each, two gigabit Ethernet

ports, and a raid controller. In describing the

process of getting the environment to work, we

will see how each of these aspects complicated

things. I must also admit that I had never

worked with a server before and so have

learned a number of system administration

tasks. Now, a few notes about the server before

continuing. Make sure the BIOS and other

firmware in the machine is up to date. A cou-

ple of errors that I have seen involved invalid

microcode being read by the kernel. I don’t

exactly know how this affects an operating

system but having everything up to date is es-

pecially important to Xen. Another mistake

would be to implement a raid. It’s not that it’s

not possible. Rather, it is best to become fluent

in installing the environment before trying to

speed everything up. It is noteworthy however

to say that a Raid may be particularly useful in

some environments since Xen can become

overly burdened and even crash in very I/O

intensive tasks. This will effect the results in

your environment since Xen/PTLsim will not

abstract properties of the disk that may be

changed.

 After updating and tuning the server as

necessary, I tried installing OpenSuse. Installa-

tion failed repeatedly for me. While investigat-

ing this I determined the problem was similar

to another person’s who had recognized the

problem to be a segmentation fault that oc-

curred when reading the disk meta-data that

was written by the Raid controller. Unfortu-

nately, no one determined a solution for sev-

eral weeks and so I meanwhile decided to try

other operating systems. The first operating

system that I tried was OpenSuse 10.1. I do not

suggest using the older operating system for

virtualization. Kernel improvements have been

extremely important and so recent changes

must be included in the distribution that is

used. OpenSuse 10.1 had the same problems as

10.2 and never got past the installation phase.

 The second distribution I tried was Fe-

dora Core 6. This distribution is fundamentally

different in that it derives from the Red Hat

code base. Installation of Fedora is relatively

simple and facilitated by its Anaconda in-

staller. Installing Fedora with Xen automati-

cally installs all the Xen libraries which in-

clude modified glib libraries. PTLsim has

made further modifications to these libraries

for its purposes which is why the patched Xen

kernel and tools must be installed. The Fedora

installation worked fine and was capable of

creating virtual machine guests. It’s always a

good test to be able to create virtual machines

on the unmodified platform before making

changes and the virtual machines under hard-

ware simulation. By testing this process first,

later issues can be nailed down more quickly.

 In addition to trying Fedora, I installed

CentOS which also derives significantly from

the Fedora code base. Installation for CentOs

was the same as that for Fedora. As far as I can

tell from installation, the distributions are very

similar. After following the instructions in the

PTLsim manual with the exception of a few

name changes, the environment was set up for

simulation. It’s important to note that the ker-

nel that is built and patched by the operating

system installer and update manager was the

only compatible kernel that worked with Xen.

When trying to run the sample domain that is

provided, the same error as before was gener-

ated. This error was the kernel panic error

which results from the VFS failing at boot up.

This error also often occurred only seconds

before the machine would freeze and need to

be forcibly rebooted. Since hard reboots were

often required, I recommend using a file sys-

tem with journaling so as to avoid damaging

blocks in these systems.

 Given the similarity between Fedora

and CentOS, it is not entirely surprising that

they both failed. I decided after trying these

systems to implement Ubuntu which has

gained considerable favor with many Linux

users recently. The other benefit of Ubuntu is

that its code base is different from that of Suse

or Redhat. Working with both the desktop ver-

sion and the server version of the operating

system resulted in the same outcome. Ubuntu

will install and configure Xen during installa-

tion of the operating system. This makes it,

like the others, very easy to install Xen. Mak-

ing the changes to Xen however, proved to be

too challenging for me in my narrowing time

window. The Ubuntu installation with Xen in-

cludes the Xen modified glib libraries. These

libraries are not compatible with the package

manager which can install gcc. The GNU C

compiler is absolutely necessary for both

building the revised Xen kernel and the

PTLsim executable. Furthermore, installing

both sets of glib libraries was not acceptable to

Ubuntu and led me to give up and try Open-

Suse again, this time with success.

 When I came back around to Open-

Suse, considerable work had been done on the

bug that I had earlier discovered. The solution

to the bug was to zero out all the disks on the

drive which would effectively erase the meta-

data that caused the segmentation fault. After

several attempts at this, I discovered that disk

meta-data is stored at the very end of a disk

and so skipping to the end and then writing

zeros is a very efficient way of preparing the

disk for installation. With this change in effect,

the installation of OpenSuse 10.2 succeeded

exactly as it should.

 Following the installation, the steps in

the online manual were followed as closely as

possible. The kernel that is provided with

PTLsim was installed to the necessary direc-

tory but failed to boot. Constructing an ram

disk for boot up and providing that as a pa-

rameter for the kernel in Grub, also did not

help. Both of these components are used later

however and so should be held on to. The ker-

nel that is installed with Yast is not compatible

with the changes that are made to Xen. The

problems observed were that the Yast configu-

ration tool for virtual machines constantly re-

ported no memory available in the computer

and virtual machines that were started would

silently fail in a process that degraded the sta-

bility of the machine. The kernel that finally

did work was custom built from the patched

sources that are provided on the PTLsim web

site. The configuration file for building the ker-

nel was based off the previous configuration

file that is created during the initial installation.

Additionally, conservative options were

marked when configuring modules that were

not already accounted for in the previous ker-

nel configuration. The main goal of the final

environment is stability and so including noth-

ing experimental and everything recommended

worked as it should. An initial ram disk for this

kernel also had to be created using the initrd

command.

 Booting the PTLsim patched Xen ker-

nel with the modified Xen tools and custom

built Linux kernel with ram disk worked suc-

cessfully. The resulting machine had all the

features of OpenSuse 10.2 including the ability

to manage software repositories with Yast. The

only failed module at boot up was the AppAr-

mor module which is not included in the kernel

that is provided on the PTLsim web site. This

failure did not affect the system. The process

of starting virtual machines requires a lot of

command line work. I tried repeatedly to port

virtual machines that I had developed in other

environments to this test machine unsuccess-

fully. For some reason, both fully virtualized

and paravirtualized machines would fail si-

lently. It is important to note that at the time of

this writing, the PTLsim patches do not sup-

port fully virtualized machines and so trying to

do so will result in a machine that freezes dur-

ing boot. This also implies that PTLsim cannot

be used to simulate Windows environments

which would require full virtualization. The

only effective way that was found to create

paravirtualized machines was to do it the basic

way. This involves creating an image file in

the Dom0 domain and then copying over the

disk from a working bootable system. Oddly,

the kernel that was used to boot Dom0 was not

able to boot the paravirtualized machine. In-

stead, the kernel that was provided on the site

along with the initial ram disk that was made

for it were able to.

 With the ability to boot a working envi-

ronment and start virtual machines under simu-

lation, the three hardware profiles could be

tested.

[This part is not finished in the research.]

 Having created the three necessary en-

vironments for the research the tests were car-

ried out successfully and have produced the

results described next.

RESULTS
 Figures 1, 2, and 3 display the profiles

of their respective systems.

ANALYSIS
[Still preliminary]

 The data gained from the first part of

the research shows that the processor is over

burdened by the work that needs to be done.

Furthermore, the results show that the problem

is not necessarily with speed. Rather, the issue

is that there are more processes ready to run

than there are processors on which to run them.

Even when Hyperthreading is turned on in the

processor, the report states that the machine

would benefit from more processors. This pro-

vides evidence in favor of the idea that com-

puters would benefit from co-processing units.

 The second set of data gathered is dis-

played in the graph as

[This part is not finished in the research.]

 In the third part of the research, runtime

profiles were gathered with the system under

different loads.

[This part is not finished in the research.]

CONCLUSION
 [Data conclusion not complete yet.]

 The virtualization technologies used in

this research are very promising in their capac-

Operating System Successes Failures Notes

OpenSuse 10.2 Boots to working environment. Raid does not work. This is the best choice.

OpenSuse 10.1 Xen started properly. Could not start virtual machines. Use the newer version.

Fedora Core 6 Could start virtual machines. Froze when changes were applied. Good back up.

Ubuntu 6 Xen started properly. Could not get necessary tools. Good for learning Xen.

CentOS 5 Could start virtual machines. Silently failed after changes. Resilient to failure.

Results

Part 2 - Still pending.

Part 3 - Still pending.

ity to model hardware and gauge the effective-

ness of changes. The environment in which

this is done however, is overly complicated.

Getting the three different kernels to work to-

gether with PTLsim is a challenging task. The

recent advances in kernels is extremely impor-

tant and differences between changes made

even within a few weeks can make big differ-

ences in virtualization software now. Future

techniques will probably use the newer kernel

based virtual machine in which the Linux ker-

nel developers are building in support. This

should make things significantly easier for the

user as less issues are bound to occur between

fewer kernels. This technology, known as

KVM, is actually what PTLsim will use by the

end of the year. Hopefully, this will make

hardware simulation with virtualization easier

and more popular.

REFERENCES
Yourst, Matt. "x86-64 Cycle Accurate

Processor Simulation Design Infrastruc-

ture" 2006. 8 Oct. 1997 <http://

www.ptlsim.org>.

http://www.ageia.com/

http://www.xensource.com/

http://www.cl.cam.ac.uk/research/srg/

netos/xen/

[Not exhaustive list. Cleanup required.]

