
CS143: Query processing and join algorithms

Book Chapters

(4th) Chapter 13.1-6
(5th) Chapter 13.1-6
(6th) Chapter 12.1-6

Things to Learn

• Join algorithms

Motivation

Student(sid, name, addr, age, GPA)
Enroll(sid, dept, cnum, sec)
B+tree index on sid, age of Student table

• Q: How do we process SELECT * FROM Student WHERE sid > 30?

• Q: How do we process SELECT * FROM Student WHERE sid > 30 AND age > 19?

• Q: How do we process SELECT * FROM Student S, Enroll E WHERE S.sid = E.sid?

• Joins can be very expensive (maybe ≈ |R| × |S|). How can we perform joins efficiently?

1

Join algorithms

(R and S example slide)

• Q: How to join R and S? What is the simplest algorithm? What if we have an index? Any
other ideas that we can use?

– Four join algorithms

∗ Nested-loop join

∗ Index join

∗ Sort-merge join

∗ Hash join

– We now learn how they work

1. Nested-Loop Join:

(nested-loop-join slide)

For each r in R do

For each s in S do

if r.C = s.C then output r,s pair

• Q: If R has 100,000 tuples, how many times the entire S table is scanned?

• The simplest algorithm. It works, but may not be efficient.

2. Index Join:

(index-join slide)

For each r in R do

X <- index-lookup(S.C, r.C)

For each s in X do

output (r,s)

• Look up index to find matching tuples from S.

• Q: Benefit of index join compared to nested-loop join?

3. Sort-Merge Join:

(Sort-merge-join slide)

• Main idea: If tables have been sorted by the join attribute, we need to scan each table
only once.

– Maintain one cursor per table and move the cursor forward.

• Sort tables and join them.

(sort-merge algorithm slide)

2

(1) if R and S not sorted, sort them

(2) i <- 1; j <- 1;

While (i <= |R|) AND (j <= |S|) do

if R[i].C = S[j].C then outputTuples

else if R[i].C > S[j].C then j <- j+1

else if R[i].C < S[j].C then i <- i+1

Procedure outputTuples

While (R[i].C = S[j].C) AND (i <= |R|) do

k <- j;

While (R[i].C = S[k].C) AND (k <= |S|) do

output R[i], S[k] pair;

k <- k + 1;

i <- i + 1;

4. Hash Join:

• Main idea: If hash values are different, the tuples will never join, i.e., if h(R.C) 6= h(S.C),
then R.C 6= S.C.

• Join two tuples only if their hash values are the same.

(hash-join algorithm slide)

(1) Hashing stage (bucketizing)

Hash R tuples into G1,...,Gk buckets

Hash S tuples into H1,...,Hk buckets

(2) Join stage

For i = 1 to k do

match tuples in Gi, Hi buckets

R S

G1

G2

H1

H2

Comparison of Join Algorithms

• Q: Which algorithm is better?

• Q: What do we mean by “better”?

3

Cost model

• The ultimate bottom-line:

– How long does it take for each algorithm to finish for a particular data?

• Need of cost model

– We need a “cost model” to estimate the performance of different algorithms

• Our cost model: Total number of disk blocks that have been read/written

– Not very realistic

∗ Ignore random, sequential IO issues, CPU cost, etc.

– Yet simple to analyze and doable in class

∗ More sophisticated models are too complex to analyze in class

– Good approximation given that disk IOs dominate the cost

∗ Most algorithms that we will study do mostly sequential scan

– A better algorithm = smaller number of disk block access

– Ignore the last IOs for result writing (the same for every algorithm)

Example to use

• Two tables R, S

• |R| = 1, 000 tuples, |S| = 10, 000 tuples, 10 tuples/block

• bR = 100 blocks, bS = 1,000 blocks

• Memory buffer for 22 blocks

Cost Formula (if bR < bS)

Nested Loop

Sort Merge

Hash

Index

Cost of join stage of sort-merge join

• Usage of main memory blocks for join

1. Available memory buffers. Disk blocks of each table

4

22 blocks

.... 100 blocksR

... 1000 blocksS

Memory

...

...

2. We need to read R table, S table and write the output.

– Disk transfer unit is one block

→ At least one memory buffer block to read R, read S and write output.

→ Three memory blocks used for these tasks.

R

...

....

Memory

output R

S S

3. We sequentially read R and S blocks one block at a time, and join them (using the join
algrothm)

• Q: How many disk IOs (block reads/writes) for R and S during join stage?

• Q: Under our cost metric, can we make it more efficient by allocating more buffers for reading
R and S? For example,

R....

...

Memory

output R

S

...

...

10 blocks per table?

S

Nested-Loop Join

(naive nested-loop join algorithm slide for reminder)

(join diagram)

5

R

...

....

Memory

output R

S S

• Q: How many disk blocks are read?

• Q: Can we do any better?

Optimization 1: Block-nested loop join

Once we read a block from R, join everything in the block in one scan of S.
→ reduces the number of scans of S table

• Q: What is the cost?

• Q: Can we do any better?

Optimization 2

Read as many blocks of R and join them togeter in one scan of S
→ reduces the number of scans of S table

• Q: What is the maximum # of blocks that we can read in one batch from R?

6

• Q: What is the cost?

• Q: What is general cost for bR, bS and M?

• Q: What if we read S first? Would it be any different?

→ Use smaller table for the outer loop.

• Summary

– Always use block nested loop (not the naive algorithm)

– Read as many blocks as we can for the left table in one iteration

– Use the smaller table on the left (or outer loop)

Hash Join

(hash join slide for reminder. two stages: hashing stage and join stage)

• Hashing stage: Read R (or S) table and hash them into different buckets.

Gi

....

...

R

buckets

– Q: One block for reading R, other blocks for bucketizing. How many buckets?

7

– Q: Assuming random hashing, how many blocks per bucket?

– Q: During bucketizing, R table is read once and written once. How many disk IOs (read
or write)?

– Repeat the same for S

• Join stage: Join H1 with G1

H1 from S

48 blocks5 blocks

G1 from R

– Q: 5 blocks for G1, 48 blocks for H1. How should we join G1 and H1?

– Q: How many disk IOs?

– Q: Total disk IOs?

– Q: What if R is large and G1 > 20?

Recursive partitioning

8

∗ # of bucketizing steps:

⌈
logM−1

(
bR

M − 2

)⌉
∗ General hash join cost (bR < bS):

2(bR + bS)

⌈
logM−1

(
bR

M − 2

)⌉
+ (bR + bS)

Index join

(index-join slide for reminder)

• Q: How many disk IOs?

• Q: What should the system do to perform index join?

Index join cost:

– IO for R scanning

– IO for index look up

– IO for tuple read from S.

• Example 1

– 15 blocks for index

∗ 1 root, 14 leaf

– On average, 1 matching S tuples per an R tuple.

Q: How many disk IOs? How should we use memory?

Q: Any better way?

9

• Example 2

– 40 blocks for index

∗ 1 root, 39 leaf

– On average, 10 matching tuples in S.

Q: How many disk IOs? How should we use memory?

• General cost: bR + |R| · (C + J)

– C average index look up cost

– J matching tuples in S for every R tuple

– |R| tuples in R

• Q: How can we compute J?

– Example: R ./R.C=S.C S. |S| = 10, V (C,R) = 1, 000. Uniform distribution for C
values. How many tuples in S with C = c?

Sort-Merge Join

• Two stage algorithm:

1. Sort stage: Sort R and S

2. Merge stage: Merge sorted R and S

• # of disk IOs during merge stage: bR + bS = 100 + 1, 000 = 1, 100.

• Q: How many disk IOs during sort stage?

Merge sort algorithm

R

100 blocks

10

• Q: How many blocks can we sort in main memory?

– Q: Do we need to allocate one block for output?

• Q: How many sorted runs after sorting R in chunk of 22 blocks?

R

100 blocks

22 blocks

22 blocks

?

sorted runs

• Q: What should we do with 5 sorted-runs?

• Q: How many disk IOs?

– Q: During first-stage sorting?

– Q: During second-stage merging?

Repeat it for S table of 1,000 blocks. Show that now we need three stages.

• In general, the number of passes for bR and M : (dlogM−1(bR/M)e+ 1)

– Verify it at home on your own.

– Total # of IOs for sorting: 2 · bR(dlogM−1(bR/M)e+ 1)

11

Total sort-merge join cost

• In total: 400 + 6,000 + 1,100 = 7,500

• In general: 2bR(dlogM−1(bR/M)e+ 1) + 2bS(dlogM−1(bS/M)e+ 1) + (bR + bS) IOs

Summary of join algorithms

• Nested-loop join ok for “small” relations (relative to memory size)

• Hash join usually best for equi-join

– if relations not sorted and no index

• Merge join for sorted relations

– Sort merge join good for non-equi-join

• Consider index join if index exists

• To pick the best, DBMS maintains statistics on data

High-level query optimization

Tables: R(A,B), S(B,C), T (C,D)

• Q: How can we process the following query?

SELECT * FROM R, S, T

WHERE R.B = S.B AND S.C = T.C AND R.A = 10 AND T.D < 30

– Many different ways. (Show a couple of logical query trees)

• Q: For now, focus on R ./ S ./ T . How many different ways to execute it?

12

• In general, for n way joins, (2(n−1))!
(n−1)! ways.

– Study why this is the case at home.

– For n = 3, 4!/2! = 12

– For n = 5, 8!/4! = 1680

– For n = 10, 18!/9! = 17× 109

• DBMS tries to pick the best based on statistics

– In reality, picking the best is too difficult

∗ For n = 10, it is clearly impossible to examine all 17 billion plans

– DBMS tries to avoid “obvious mistakes” using a number of heuristics to examine only
the ones that are likely to be reasonable

• Read the PDF file on databse tuning and optimization

– For 90% of the time, DBMS picks a good plan

– To optimize the remaning 10%, companies pay big money to datbase consultants

Statistics collection commands on DBMS

• DBMS has to collect statistics on tables/indexes for optimal performance

– Without stats, DBMS does stupid things

• DB2

– RUNSTATS ON TABLE <userid>.<table> AND INDEXES ALL

• Oracle

– ANALYZE TABLE <table> COMPUTE STATISTICS

– ANALYZE TABLE <table> ESTIMATE STATISTICS (cheaper than COMPUTE)

• Run the command after major update/index construction

• Does not matter for MySQL. No optimization based on actual data. Only rule-based opti-
mizer.

13

