
Web-Scale
Recommendation

Engines
CS130 Fall 2012

Andrew Look
Senior Software Engineer

Shopzilla

About Shopzilla

● Comparison Shopping Engine
● Lots of traffic

○ > 200 million products
○ > 100 million impressions / day
○ > 8000 searches / second
○ > 30M unique visitors / month

● Operate web properties in US, Europe
○ Shopzilla.com
○ Bizrate.com
○ Beso.com

Beso.com

http://www.nytimes.com/2012/10/03/business/media/shopping-sites-pay-contributors-who-drive-traffic-to-retailers.html?_r=0
http://www.nytimes.com/2012/10/03/business/media/shopping-sites-pay-contributors-who-drive-traffic-to-retailers.html?_r=0

Beso.com: Personalization

● Focused on personalization for users
● Users can pick favorite..

○ Brands
○ Stores
○ Products

What's missing?

● Recommendations
● Relevancy
● ...but we have data!

Recommender: System Overview

Extracting User Preferences

● Shopzilla Engineers built this component
● Important in tuning recommender algorithm

Extracting User Preferences
--which brands did each user favorite?

SELECT user_id, brand_id

FROM favorites

--which brands did they click on?

SELECT C.user_id, P.brand_id

FROM clicks C, products P

WHERE C.product_id = P.id

Recommendations: Overview

● I like a brand. Which other brands do i like?
● Use latest available user data to answer this

Recommender: What will you learn?

● Leverage Machine Learning at scale
● Use Hadoop on BigData
● How to evaluate solutions to data problems

Ex. Recommendations With Hadoop Streaming

http://andrewlook.com/post/23233884933/recommendation-engines-with-python-and-hadoop-streaming

Recommender: Why is it cool?

● Run recommender on cluster of 332 CPU's
● Patterns emerge from behavioral data

○ Nike <---> Adidas, Reebok
○ Prada <---> Gucci, Louis Vuitton
○ Levi <---> Wrangler, Lee'

● Data from 100's of millions of users
● Creative ways to represent user preferences

Web Service: Overview

● Load recs into NoSQL cache
● Build web service for recs
● Build client for Beso.com

Web Service: What will you learn?

● Build a high-performance web service
○ 100's of requests per second

● Learn enterprise Java best practices
● Understand Service-Oriented Architecture

Web Service: Why is it cool?

● Scaling
○ how many servers do we need?
○ how fast does cache need to be?
○ how much storage do we need?

● NoSQL Technology selection
○ read/write performance
○ reliability
○ availability
○ consistency

● See evolving data affect web layer

Evaluation Tool: Overview

● Build UI to compare algorithms side-by-side

Evaluation Tool: What will you
learn?

● Build enterprise Java webapp from scratch
● Use frontend technologies (CSS/JS/AJAX)
● Consuming web services using REST client

Evaluation Tool: Why is it cool?

● Like CS144, with modern Java webapp tools
● Visualizing data problems
● Inform recommendation tuning process

Logistics

● Pre-configured VM to get you started
● Knowledgeable project mentors

○ available for questions / help daily
● Agile Tracking system
● Github / Continuous Integration build

Schedule

● Week 1: bootcamp
● Week 2: technology selection
● Week 3: interface definition
● Week 4: mock implementation
● Week 5: component buildout
● Week 6: component integration
● Week 7: hardening, performance
● Week 8: deployment

Big Picture

● Technology selection & platform rollout
● Mirrors process used by Shopzilla's Senior

Architects and Engineers
● Program designed to teach enterprise

engineering techniques
● Equips you with skills for your first job

Questions?

alook [at] shopzilla [dot] com
@andrewlook

