Indexing and Hashing

This chapter covers indexing techniques ranging from the most basic one to highly
specialized ones. Due to the extensive use of indices in database systems, this chapter
constitutes an important part of a database course.

A class that has already had a course on data-structures would likely be familiar
with hashing and perhaps even B*-trees. However, this chapter is necessary reading
even for those students since data structures courses typically cover indexing in main
memory. Although the concepts carry over to database access methods, the details
(e.g., block-sized nodes), will be new to such students.

The sections on B-trees (Sections 12.4), grid files (Section 12.9.3) and bitmap index-
ing (Section 12.9.4) may be omitted if desired.

Changes from 3"? edition:

The description of querying on B*-trees has been augmented with pseudo-code. The
pseudo-code for insertion on B*-trees has been simplified. The section on index defi-
nition in SQL (Section 12.8) is new to this edition, as is the coverage of bitmap indices
(Section 12.9.4).

Exercises

12.1 When is it preferable to use a dense index rather than a sparse index? Explain
your answetr.
Answer: It is preferable to use a dense index instead of a sparse index when
the file is not sorted on the indexed field (such as when the index is a secondary
index) or when the index file is small compared to the size of memory.

12.2 Since indices speed query processing, why might they not be kept on several
search keys? List as many reasons as possible.
Answer: Reasons for not keeping several search indices include:

141

142 Chapter 12 Indexing and Hashing

a. Every index requires additional CPU time and disk I/O overhead during
inserts and deletions.

b. Indices on non-primary keys might have to be changed on updates, al-
though an index on the primary key might not (this is because updates
typically do not modify the primary key attributes).

c. Each extra index requires additional storage space.

d. For queries which involve conditions on several search keys, efficiency
might not be bad even if only some of the keys have indices on them.
Therefore database performance is improved less by adding indices when
many indices already exist.

12.3 What is the difference between a primary index and a secondary index?
Answer: The primary index is on the field which specifies the sequential or-
der of the file. There can be only one primary index while there can be many
secondary indices.

12.4 Is it possible in general to have two primary indices on the same relation for
different search keys? Explain your answer.
Answer: In general, it is not possible to have two primary indices on the same
relation for different keys because the tuples in a relation would have to be
stored in different order to have same values stored together. We could accom-
plish this by storing the relation twice and duplicating all values, but for a
centralized system, this is not efficient.

12.5 Construct a B -tree for the following set of key values:
(2,3,5,7,11,17,19, 23,29, 31)

Assume that the tree is initially empty and values are added in ascending or-
der. Construct B*-trees for the cases where the number of pointers that will fit
in one node is as follows:

a. Four
b. Six
c. Eight

Answer: The following were generated by inserting values into the B*-tree in
ascending order. A node (other than the root) was never allowed to have fewer
than [n/2] values/pointers.

a. o[[11

AERIENI

L2 I8 [l [F=ls 7l [F=ulhr]] [F={l19]]2s]]

b.

Exercises 143

Lzlloll I I)

/
U llslls [[[z [[ulhr[[[| [F=il1o[[2s[l20[[s1]] |

c. [I T IT 11T 1]

/\
Lellsllsl[][[I 1| [F—={l]]sz]ho[l2s]]2o [[s1]]]]

12.6 For each BT-tree of Exercise 12.5, show the steps involved in the following
queries:

a. Find records with a search-key value of 11.
b. Find records with a search-key value between 7 and 17, inclusive.

Answer:

With structure 0.a:

a. Find records with a value of 11
i. Search the first level index; follow the first pointer.
ii. Search next level; follow the third pointer.
iii. Search leaf node; follow first pointer to records with key value 11.
b. Find records with value between 7 and 17 (inclusive)
i. Search top index; follow first pointer.
ii. Search next level; follow second pointer.
iii. Search third level; follow second pointer to records with key value 7,
and after accessing them, return to leaf node.
iv. Follow fourth pointer to next leaf block in the chain.
v. Follow first pointer to records with key value 11, then return.
vi. Follow second pointer to records with with key value 17.

With structure 0.b:

a. Find records with a value of 11
i. Search top level; follow second pointer.
ii. Search next level; follow second pointer to records with key value 11.
b. Find records with value between 7 and 17 (inclusive)
i. Search top level; follow second pointer.
ii. Search next level; follow first pointer to records with key value 7, then
return.
iii. Follow second pointer to records with key value 11, then return.
iv. Follow third pointer to records with key value 17.

With structure 0.c:

a. Find records with a value of 11
i. Search top level; follow second pointer.
ii. Search next level; follow first pointer to records with key value 11.
b. Find records with value between 7 and 17 (inclusive)

144 Chapter 12 Indexing and Hashing

i. Search top level; follow first pointer.
ii. Search next level; follow fourth pointer to records with key value 7,
then return.
iii. Follow eighth pointer to next leaf block in chain.
iv. Follow first pointer to records with key value 11, then return.
v. Follow second pointer to records with key value 17.

12.7 For each BT-tree of Exercise 12.5, show the form of the tree after each of the
following series of operations:

. Insert 9.
. Insert 10.
. Insert 8.
. Delete 23.
. Delete 19.

oD un T

Answer:
o With structure 0.a:

Insert 9:

Lol 1T 1]
(s [][]

e [[s || [F=lls Iz [lo =l [J—=tlo]]2s]]

Insert 10:

o[[1]
L5 [[o [11]] 2ol I 1]

U2 lls [I [F=ls [z [[F=lolloll [=lullw[[[F=loll2sl [F=l2e[las]] |]

Insert 8:

o[[1]
L5 [[o [11]] 2ol I 1]

L2 [ls][IF=ls [z [[s[F=lollwll [F=lullz]] [=lolles][[F=l2o]la]]][]

Delete 23:

Exercises 145

IR

Lo [lwo]] [F=lulfaz[[[F={l1o[]29 [[31]]

2

Delete 19:

] 1T 1]

Lo [lwo]] [F=lulliz]] [F={l2e][3t]]]

o With structure 0.b:
Insert 9:

Urlholl 111]
T2llslls 1l 1T [Tz 1To Muallir] T+{l1o[l2sll2e[[s1]] T]

Insert 10:

Urlholl 11 11]
T2l sl 1T [F=T71T9 Mrwoll1a]lrz [F={lro [2s[l20[[s1]]]

Insert 8:

L7l [o][[T 1]
Lellslls [l Il [F=lz1lslloll [[[F=lwo[luafhz[[[I [-={loll2s][2e][31][[]
Delete 23:
(L7110l [[]]

L20lslls [l [[[F=l7 [Is[loll I [F=thollulhz[l [I [}=hell2eflstl[[]

Delete 19:

Wz Lol I 1] 1]
/ \
Uzllslls [l [[[F=lzIlslloll [[[F+l10l[sa]lrr]20][s1]]

o With structure 0.c:

