
Improving TCP Start-up
over High Bandwidth Delay Paths

Ren Wang, Giovanni Pau, M.Y. Sanadidi and Mario Gerla

UCLA Computer Science Department
www.cs.ucla.edu/NRL

March, 2003 UCLA Computer Science
Department

2

Motivation

• TCP Reno/Newreno Mechanism:
Ø Slow-start: cwnd grows exponentially until hit ssthresh
Ø Congestion-avoidance: cwnd grows linearly

• By setting initial ssthresh to an arbitrary value, TCP may suffer:
Ø ssthresh too high: multiple loss and coarse timeout
Ø ssthresh too low: premature exit of slow-start and low utilization

• Majority of TCP flows are short-lived
• The Bandwidth Delay Product(BDP)

has been growing fast, resulting in poor
utilization for short-lived connections

with current TCP implementation: 0

10
20
30

40
50
60

70
80
90

10 20 40 100 200

Bandwidth (Mbps)

U
ti

liz
at

io
n

 (%
)

Utilization during the first 20 seconds (RTT=100ms)

March, 2003 UCLA Computer Science
Department

3

Related Work

• Larger initial cwnd
ØGood for transfers with a few packets

• Fast Start
ØCached information may be stale

• Smooth Start
ØAssuming initial ssthresh is large enough

• Shared passive network discovery(SPANK)
ØNeeds leaky bucket pacing

• TCP Vegas
• Hoe’s Method

March, 2003 UCLA Computer Science
Department

4

TCP Vegas(1)

• Sender watches for sign that router’s queue is
building up and congestion will happen; e.g.,

§ RTT grows
§ sending rate flattens

• Sender lowers sending rate to avoid buffer overflow
• During Slow-start, Vegas doubles cwnd every other

RTT
• Until diff (between expected and achieved rate)

exceeds a threshold:

nRTT
cwnd

baseRTT
cwnd

diff −=

March, 2003 UCLA Computer Science
Department

5

TCP Vegas(2)

0

20

40

60

80

100

120

140

0 1 2 3 4 5

cw
nd

 in
 p

ac
ke

ts

Time (sec)

start of cwnd doubling period

queue length corresponding to measured RTT

Vegas cwnd
Instant Queue Length

• Problem: premature exit due to
RTT over-estimation, caused
by temporary queue buildup:

• Under-utilization becomes
severe when the bandwidth
delay product increases:

• Exit cwnd: the congestion window
when a connection exits slow start 0

0.05

0.1
0.15

0.2

0.25

0.3
0.35

0.4

0.45

10 20 4 0 80 150

Bandwidth (Mbps)

R
at

io
 o

f
ex

it
 c

w
n

d
 t

o
 id

ea
l

w
in

d
o

w

Ratio of Slow-start termination cwnd to the ideal window (=BDP) (RTT =100ms)

March, 2003 UCLA Computer Science
Department

6

Hoe’s method(1)
• Setting initial ssthresh to estimated BDP
Ø Bandwidth: packet pair bandwidth estimate
Ø RTT: measured RTT of the first segment transmitted

• May achieve high utilization, but not robust to buffer
variation and dynamic load during slow start phase

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

cw
nd

 in
 p

ac
ke

ts

Time (sec)

Ideal exit window =Path BDP = 500 packets

cwnd with large buffer (500)

March, 2003 UCLA Computer Science
Department

7

Hoe’s method(2)
• Problem:
Ø The bottleneck buffer is small compared to BDP
Ø Other large volume traffic join in during Slow-start phase

• èMultiple losses, timeout, and low utilization

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

cw
nd

 in
 p

ac
ke

ts

Time (sec)

Ideal exit window =min (BDP,2*buffersize)= 250

cwnd with small buffer (125)

0

100

200

300

400

500

600

0 2 4 6 8 10

cw
nd

 in
 p

ac
ke

ts

Time (sec)

20 Mbps CBR starts at 0.5sec

Multiple losses in Hoe's method

cwnd of Hoe's method

(a)Small buffer cause multiple losses (b) Traffic interference cause multiple losses

March, 2003 UCLA Computer Science
Department

8

Adaptive Start (Astart) Approach

• Take advantage of Eligible Rate Estimation (ERE)
in TCP Westwood (TCPW)
Ø Adaptively and repeatedly reset ssthresh to estimated

bandwidth share or Eligible Rate Estimate, if appropriate

• Key idea in TCPW and ERE
Ø Enhance congestion control via the Eligible Rate Estimate

§ ERE is estimated at the sender by sampling and exponential filtering
measures from ACK stream

§ Samples are determined from ACK inter-arrival times and info
about bytes delivered

Ø after packet loss (ie, 3 DUPACKs, or Timeout), ERE is
used by sender to set cwnd, ssthresh=ERE x RTTmin

March, 2003 UCLA Computer Science
Department

9

TCP Westwood: the Control Algorithm

• TCPW Algorithm Outline:
ØWhen three duplicate ACKs are detected:
§ set ssthresh=ERE*RTTmin (instead of
ssthresh=cwin/2 as in Reno and NewReno)
§ if (cwin > ssthresh) set cwin=ssthresh

ØWhen a TIMEOUT expires:
§ set ssthresh=ERE*RTTmin (instead of
ssthresh=cwnd/2 as in Reno) and cwin=1

Note: RTTmin = min round trip delay experienced by the
connection

March, 2003 UCLA Computer Science
Department

10

ERE in TCPW

BE Sampling:
Packet pair, may overestimate (e.g. in

Congestion), effective in random loss

Tk

Congestion

Tk

No Congestion

RTT

d

k
RTTktjt

j

s
∑

= −>

RE Sampling:
Packet train, fair estimate in congestion, may

underestimate (e.g. in random loss)

)/(1−−= kkkk ttdS

•ERE estimate: adapt the sample interval Tk according to current measured congestion
level (Vegas measure of congestion level)
•Tk ranges from one ACK interarrival interval à RTT
•RE <= ERE <= BE

March, 2003 UCLA Computer Science
Department

11

Adaptive Start (Astart) (1)

Astart uses ERE to adaptively and repeatedly reset ssthresh during the
startup phase (connection startup and after a coarse timeout):

if (3 DUPACKS are received)
switch to congestion avoidance phase;

else (ACK is received)
if (ssthresh < (ERE*RTTmin)/seg_size)

ssthresh =(ERE*RTTmin)/seg_size;
endif
if (cwnd >ssthresh) /*mini congestion avoid. phase*/

increase cwnd by 1/cwnd;
else if (cwnd <ssthresh) /*mini slow start phase*/

increase cwnd by 1;
endif

endif

March, 2003 UCLA Computer Science
Department

12

Astart (2)

• Astart continuously uses ERE
• Contains mini slow-start and mini

congestion-avoidance phases
• cwnd grows slower as it approaches

BDP

(a)Big buffer (500 packets) BDP = 500 packets (b) Small buffer(125 packets)

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30

cw
nd

 in
 p

ac
ke

ts

Time (sec)

cwnd
Slow Start Threshold

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

cw
nd

 in
 p

ac
ke

ts

Time (sec)

cwnd
Slow Start Threshold

420

430

440

450

460

470

480

490

500

510

1.6 1.7 1.8 1.9 2 2.1 2.2

cw
nd

 in
 p

ac
ke

ts

Time (sec)

mini congestion avoidance phases

mini slow start phases

cwnd

(c)A closer look at Astart cwnd dynamic

March, 2003 UCLA Computer Science
Department

13

Astart (3)

Astart cwnd dynamic with 5 connections startup simultaneously

cwnd dynamic with UDP traffic joins in during startup phase (compare Astart and Hoe’s method)

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

cw
nd

 in
 p

ac
ke

ts

Time (sec)

cwnd (connection 1)
cwnd (connection 2)
cwnd (connection 3)
cwnd (connection 4)
cwnd (connection 5)

0

100

200

300

400

500

600

0 2 4 6 8 10

cw
nd

 in
 p

ac
ke

ts

Time (sec)

cwnd of Astart

20 Mbps CBR starts at 0.5sec

Multiple losses in Hoe's method

cwnd of Hoe's method

March, 2003 UCLA Computer Science
Department

14

Throughput Comparison
Throughput vs. Bottleneck Capacity (During first 20

seconds) (RTT =100ms, Buffer size =BDP)

Throughput vs. Bottleneck Buffer size (During first 20
seconds) (RTT =100ms, Bottleneck =40 Mbps)

Throughput vs. Two-way Propagation
Time (During first 20 seconds)
(Bottleneck capacity = 40 Mbps,
Buffer size =BDP)

Results summary
• Scaling with Capacity
• Robust to buffer size
• Scaling with Propagation time

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Two-way Propagation Time (msec)

NewReno with Hoe's change
AStart
Vegas

NewReno

0

5

10

15

20

25

30

35

40

100 120 140 160 180 200 220 240 260

Th
ro

ug
hp

ut
 (M

bp
s)

BOttleneck buffer size (Segments)

NewReno with Hoe's change
Astart
Vegas

NewReno

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (

M
bp

s)

bottleneck Capacity (Mbps)

NewReno with Hoe's change
Astart
Vegas

NewReno

March, 2003 UCLA Computer Science
Department

15

Efficiency/Friendliness
• Use Efficiency/Friendliness Tradeoff Graph
Ø X-axis represents friendliness
Ø Y-axis represents efficiency

1

2

3

4

5

6

0.85 0.9 0.95 1 1.05 1.1

U
til

iz
at

io
n

R
at

io
 G

 (
E

ffi
ci

en
cy

)

Throughput Ratio L (Friendliness)

BDP=500

BDP=625

BDP=750

Astart vs. NewReno

Simulation setup:
Ø Bottleneck: 40 Mbps
Ø BDP: Varies with RTT
Ø Two connections start

up at the same time
Ø Record the throughput

during first 5 seconds
Ø Calculate Utilization

ratio and throughput
ratio

March, 2003 UCLA Computer Science
Department

16

Summary

• Reviewed and evaluated Vegas, Hoe’s method
• Presented Astart, a new approach based on TCPW ERE
• Compared throughput, scaling with BDP, and robustness

to buffer and load variations
• Hoe’s method provides high throughput, but Astart comes

very close, AND is robust to buffer size and dynamic load
• Astart is another illustration of the benefits of pursuing

estimates of bandwidth measures to improve congestion
control in TCP

March, 2003 UCLA Computer Science
Department

17

References
• The papers about TCP Westwood, TCP Westwood CRB and ABSE

can be found in the papers section of the TCP Westwood Web Page:
http://www.cs.ucla.edu/NRL/hpi/tcpw/

• TCP Vegas: New Techniques for Congestion Detection and
Avoidance. Lawrence Brakmo, Sean O'Malley, and Larry Peterson. In
ACM SIGCOMM, pages 24-35, August 1994

• Hoe’s Method: J. C. Hoe, “Improving the Start-up Behavior of A
Congestion Control Scheme for TCP”, Proc. ACM SIGCOMM ’96.

• Fast Start: V.N. Padmamabhan and R.H. Katz, “TCP Fast Start: A
Technique for Speeding Up Web Transfers”, Proceedings of IEEE
globecom’98, Sydney, Australia, Nov. 1998.

• Smooth Start: H. Wang, H. Xin, D.S. Reeves and K.G. Shin "A Simple
Refinement of Slow Start of TCP Congestion Control", In proceedings
of ISCC’00, Antibes, France, 2000

• Large initial window: M. Allman, S. Floyd and C. Patridge,
“Increasing TCP’s initial Window”, INTERNET DRAFT, April 1998

• SPANK: Y. Zhang, L. Qiu and S. Keshav, “Optimizing TCP Start-up
Performance”, Cornell CSD Technical Report, February, 1999

