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Motivation 

• TCP Reno/Newreno Mechanism:
Ø Slow-start: cwnd grows exponentially until hit ssthresh
Ø Congestion-avoidance: cwnd grows linearly 

• By setting initial ssthresh to an arbitrary value, TCP may suffer: 
Ø ssthresh too high: multiple loss and coarse timeout
Ø ssthresh too low: premature exit of slow-start and low utilization

• Majority of TCP flows are short-lived
• The Bandwidth Delay Product(BDP) 

has been growing fast, resulting in poor 
utilization for short-lived connections 

with current TCP implementation: 0
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Related Work

• Larger initial cwnd
ØGood for transfers with a few packets

• Fast Start
ØCached information may be stale 

• Smooth Start
ØAssuming initial ssthresh is large enough

• Shared passive network discovery(SPANK)
ØNeeds leaky bucket pacing

• TCP Vegas
• Hoe’s Method
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TCP Vegas(1)

• Sender watches for sign that router’s queue is 
building up and congestion will happen; e.g.,

§ RTT grows
§ sending rate flattens

• Sender lowers sending rate to avoid buffer overflow
• During Slow-start, Vegas doubles cwnd every other 

RTT
• Until diff (between expected and achieved rate) 

exceeds a threshold:

nRTT
cwnd

baseRTT
cwnd

diff −=
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TCP Vegas(2)
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• Problem: premature exit due to 
RTT over-estimation, caused 
by temporary queue buildup:

• Under-utilization becomes 
severe when the bandwidth 
delay product increases:

• Exit cwnd: the congestion window 
when a connection exits slow start 0
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Hoe’s method(1)
• Setting initial ssthresh to estimated BDP
Ø Bandwidth: packet pair bandwidth estimate
Ø RTT: measured RTT of the first segment transmitted 

• May achieve high utilization, but not robust to buffer 
variation and dynamic load during slow start phase
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Hoe’s method(2)
• Problem:
Ø The bottleneck buffer is small compared to BDP
Ø Other large volume traffic join in during Slow-start phase 

• èMultiple losses, timeout, and low utilization  
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Adaptive Start (Astart) Approach

• Take advantage of Eligible Rate Estimation (ERE) 
in TCP Westwood (TCPW)
Ø Adaptively and repeatedly reset ssthresh to estimated 

bandwidth share or Eligible Rate Estimate, if appropriate

• Key idea in TCPW and ERE
Ø Enhance congestion control via the Eligible Rate Estimate

§ ERE is estimated at the sender by sampling and exponential filtering 
measures from ACK stream

§ Samples are determined from ACK inter-arrival times and info 
about bytes delivered

Ø after packet loss (ie,  3 DUPACKs, or Timeout), ERE is 
used by sender to set cwnd, ssthresh=ERE x RTTmin
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TCP Westwood: the Control Algorithm

• TCPW Algorithm Outline:
ØWhen three duplicate ACKs are detected:
§ set ssthresh=ERE*RTTmin (instead of 
ssthresh=cwin/2 as in Reno and NewReno)
§ if (cwin > ssthresh) set cwin=ssthresh

ØWhen a TIMEOUT expires:
§ set ssthresh=ERE*RTTmin (instead of 
ssthresh=cwnd/2 as in Reno) and cwin=1

Note: RTTmin = min round trip delay experienced by the 
connection
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ERE in TCPW

BE Sampling:
Packet pair, may overestimate ( e.g. in

Congestion), effective in random loss
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RE Sampling:
Packet train, fair estimate  in congestion, may 

underestimate (e.g. in random loss)

)/( 1−−= kkkk ttdS

•ERE estimate: adapt the sample interval Tk according to current measured congestion 
level (Vegas measure of congestion level)
•Tk ranges from    one ACK interarrival interval    à RTT
•RE  <=  ERE <= BE
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Adaptive Start (Astart) (1)

Astart uses ERE to adaptively and repeatedly reset ssthresh during the 
startup phase (connection startup and after a coarse timeout):

if ( 3 DUPACKS are received)
switch to congestion avoidance phase;

else (ACK is received)
if (ssthresh < (ERE*RTTmin)/seg_size)

ssthresh =(ERE*RTTmin)/seg_size;
endif
if (cwnd >ssthresh)  /*mini congestion avoid. phase*/

increase cwnd by 1/cwnd;
else if (cwnd <ssthresh)  /*mini slow start phase*/  

increase cwnd by 1;
endif

endif
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Astart (2)

• Astart continuously uses ERE
• Contains mini slow-start and mini 

congestion-avoidance phases
• cwnd grows slower as it approaches 

BDP

(a)Big buffer (500 packets)           BDP = 500 packets         (b) Small buffer(125 packets)
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Astart (3)

Astart cwnd dynamic with 5 connections startup simultaneously   

cwnd dynamic with UDP traffic joins in during startup phase  (compare Astart and Hoe’s method)
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Throughput Comparison
Throughput vs. Bottleneck Capacity (During first 20 

seconds) (RTT =100ms, Buffer size =BDP)

Throughput vs. Bottleneck Buffer size (During first 20 
seconds) (RTT =100ms, Bottleneck =40 Mbps)

Throughput vs. Two-way Propagation 
Time (During first 20 seconds) 
(Bottleneck capacity = 40 Mbps, 
Buffer size =BDP)

Results summary
• Scaling with Capacity
• Robust to buffer size
• Scaling with Propagation time
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Efficiency/Friendliness
• Use Efficiency/Friendliness Tradeoff Graph 
Ø X-axis represents friendliness
Ø Y-axis represents efficiency 
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Simulation setup:
Ø Bottleneck: 40 Mbps
Ø BDP: Varies with RTT
Ø Two connections start 

up at the same time 
Ø Record the throughput 

during first 5 seconds
Ø Calculate Utilization 

ratio and throughput 
ratio 
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Summary

• Reviewed and evaluated Vegas, Hoe’s method 
• Presented Astart, a new approach based on TCPW ERE
• Compared throughput, scaling with BDP, and robustness 

to buffer and load variations
• Hoe’s method provides high throughput, but Astart comes 

very close, AND is robust to buffer size and dynamic load
• Astart is another illustration of the benefits of pursuing 

estimates of bandwidth measures to improve congestion 
control in TCP 
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