Ad Hoc Nets - MAC layer

Part II – TDMA and Polling

More MAC Layer protocols

- Bluetooth Piconet: a polling/TDMA scheme
- Cluster TDMA: based on TDMA (with random access and reserved slots)
 - research protocol developed at UCLA for the DARPA-WAMIS project (1994)

Where does the name come from?

Bluetooth working group history

- February 1998: The Bluetooth SIG is formed
 - promoter company group: Ericsson, IBM, Intel, Nokia, Toshiba
- May 1998: Public announcement of the Bluetooth SIG
- July 1999: 1.0A spec (>1,500 pages) is published
- December 1999: ver. 1.0B is released
- December 1999: The promoter group increases to 9
 - 3Com, Lucent, Microsoft, Motorola
- March 2001: ver. 1.1 is released
- Aug 2001: There are 2,491+ adopter companies

What does Bluetooth do for you?

Synchronization

- Automatic synchronization of calendars, address books, business cards
- Push button synchronization
- Proximity operation

Cordless Headset

User benefits

- Multiple device access
- Cordless phone benefits
- Hands free operation

Putting it all together..

Example...

Early morning. Turning on the heat in the car from my bedroom window via Bluetooth.

4 1

Bluetooth Physical link

Point to point link

- master slave relationship
- radios can function as masters or slaves

Piconet

- Master can connect to 7 slaves
- Each piconet has max capacity =1 Mbps
- hopping pattern is determined by the master

Connection Setup

Inquiry - scan protocol

 to learn about the clock offset and device address of other nodes in proximity

Inquiry on time axis

Piconet formation

Addressing

Bluetooth device address (BD_ADDR)

48 bit IEEE MAC address

Active Member address (AM_ADDR)

- 3 bits active slave address
- all zero broadcast address

Parked Member address (PM_ADDR)

8 bit parked slave address

Bluetooth Piconet

Piconet MAC protocol : Polling

1600 hops/sec

Multi slot packets

FH/TDD

Data rate depends on type of packet

Physical Link Types

Synchronous Connection Oriented (SCO) Link

- slot reservation at fixed intervals
- Asynchronous Connection-less (ACL) Link

Polling access method

Packet Format

Access Code

Packet Header

Encode with 1/3 FEC to get 54 bits

Voice Packets (HV1, HV2, HV3)

Data rate calculation: DM1 and DH1

625 µs

Data rate calculation: DM3 and DH3

1875 µs

Data rate calculation: DM5 and DH5

3125 µs

Data Packet Types

mm	etric	Asymmetric			
	108.8	108.8	108.8		
	258.1	387.2	54.4		
	286.7	477.8	36.3		

ymn	etric	Asym	netric
	172.8	172.8	172.8
	390.4	585.6	86.4
	433.9	723.2	57.6

Inter piconet communication

Scatternet

Scatternet, scenario 2

Baseband: Summary

- TDD, frequency hopping physical layer
- Device inquiry and paging
- Two types of links: SCO and ACL links
- Multiple packet types (multiple data rates with and without FEC)

Link Manager Protocol

Setup and management of Baseband connections

- Piconet Management
- Link Configuration
- Security

Piconet Management

- Attach and detach slaves
- Master-slave switch
- Establishing SCO links
- Handling of low power modes (Sniff, Hold, Park)

Low power mode (Sniff)

Traffic reduced to periodic sniff slots

Low power mode (Park)

- Power saving + keep more than 7 slaves in a piconet
- Give up active member address, yet maintain synchronization
- Communication via broadcast LMP messages

Cluster Network Architecture (UCLA-WAMIS)

• Concept

create a cluster based TDM infrastructure which:

(a) enables guaranteed bandwidth for voice/video

(b) can support mobility

Approach

- distributed clustering algorithm
- time division slotting within each cluster
- slot reservation for real time traffic
- virtual circuits for real traffic; datagrams for data
- code separation across clusters
- slot synchronization

Combines cellular radio and traditional packet radio features.

Lowest-ID cluster-head election

Distributed Cluster algorithm (lowest-ID)

- Each node is assigned a distinct ID.
- Periodically, the node broadcast the list of nodes that it can hear.

• Properties

- No cluster heads are directly linked.
- In a cluster, any two nodes are at most two-hops away, since the CH is directly linked to any other node in the cluster.

RE: Emphremides, et al "A Design Concept for Reliable Mobile Radio Networks with Frequency Hopping Signaling" Proceedings of IEEE, Vol. 75, No.1, 1987

0

Cluster network architecture

- Dynamic, distributed clustering alg. partitions the system into clusters.
- Code separation among clusters.
- Local coordination provided within a cluster.
- Clusterhead acts as local coordinator to
 - resolve channel scheduling
 - provide power measurement/control
 - support virtual circuit setup for real time (voice and video) traffic
 - maintain synchronization
- Dynamic adaptation (via periodic updates)
 - mobility
 - failures
 - Interference
 - bandwidth requirements (B/W alloc.--TDMA slot assgn.)

Channel Access

Within each cluster: time-slotted frame

<u>Control Phase:</u>

- clustering algorithm
- routing
- power measurement and control
- code and slot assignment
- VC setup
- acknowledgments

Data Phase:

- voice/video (PRMA)
- data (Random Access)

Virtual Circuit support in WAMIS

Multimedia Traffic (eg, voice, video):

- connection oriented;
- QoS based admission control
- VC based bandwidth allocation

We need:

- robust, QoS enabled routing
- "elastic", reconfigurable VCs

VC reconfiguration in Mobile Environment

- Conventional VC setup does not work (path breaks up too frequently)
- Proposed approach: Fast Reservations, like in PRMA (Packet Reservation Multi Access)

- Packet follow shortest path
- First packet reserves the slot(s) along the path
- When path changes, first packet competes again for slots on new path (voice/video rate reduced by low priority pkt drop)
- If no path, packet is dropped
- reservation released if slot is unused

Case study: compare Random Access and TDMA in Multimedia

C. Richard Lin and Mario Gerla Computer Science Department University of California, Los Angeles

CSMA : DARPA PRNET (1970's)

- Single channel
- Spatial reuse
- CSMA
- Implicit ACK (echo ACK)
- Retransmission (for datagrams only)
- Duct routing (for voice traffic)
 - Based on Bellman-Ford routing
 - Alternate routing: multiple paths used to carry multiple copies of a real-time packet to improve reliability
 - Carrier sense will limit the fan-out

• Limitation of PRNET

- no bandwidth reservations; no access control (for voice)
- "hidden terminal" problem

• Enter Cluster TDMA (1994)

- different codes in each cluster
- TDMA type MAC access in each cluster
- QoS routing; bdw reservation; access control
- Fast VC set up (soft state)

Problems of CLUSTER TDMA: cost and complexity

- global slot synchronization
- multiple codes
- initialization

Enter MACA/PR (1996)

(Multiple Access Collision Avoidance/Packet Reservations)

- no clustering; single code; easy initialization
- RTS/CTS dialog (to prevent "hidden terminal" problems)
- Packet Reservations (to support real time traffic)
- QoS routing; "standby" routs (for dynamic rerouting)

MACA/PR (cont'd)

Real Time Traffic Support: Bandwidth Reservation

- 1st packet is treated as a datagram packet
- After 1st successful transmission: piggyback reservation is honored for subsequent packets
- Bounded delay and no collision
- Real -time Traffic and datagram traffic are interleaved (with datagram deferring to real-time traffic)

Performance Comparison (parameters)

- A 100X100 feet area
- Number of radio station=20
- Frame size =100ms
- Tx range =40 feet
- VC end-to-end hop distance=3
- Maximum speed=8 feet/sec
- Data rate=800kbps
- Pkt size=4kbits; pkt acquisition=500bits
- Multiple VCs, datagram background traffic
- Tx rate = 1pkt/frame
- Call duration=180 seconds.

Performance Comparison of Various Schemes

Cluster TDMA	Cluster Token	MACA/PR	PRNET
Global	Cluster	Session	No
synchronization	synchronization	synchronization	synchronization

Overall Performance Comparison

	PRNET	MACA/ PR	Cluster Token	Cluster TDMA
avg VC thrput (pkts/sec)	4.6	9.69	9.88	9.97
total thrput (pkts/sec)	14.54	34.45	95.34	107.70
end-to-end delay (ms)	73.05	66.50	298.80	302.13
avg pkt loss per VC	64.30%	3.07%	1.18%	0.02%

PRNET

- No bandwidth reservation
- No acceptance control
- In heavy load: duct routing generates excessive number of "requests for alternate routes" (congestion)

• MACA/PR

- total VC throughput limited by lack of cluster/code separation

Cluster TOKEN and TDMA

- high end to end delay due to token/TDMA latency

Channel Propagation Models

- Radio channel propagation is characterized by three main parameters:
- Attenuation: free space loss, absorption by foliage, partitions
- Shadowing: obstacles between transmitter and receiver
- Multipath: due to the different phases on different paths

Simulator : Glomosim Channel Model

Channel Fading Model in Glomosim Simulator

 the Simulator utilizes the SIRCIM impulse response parameters to characterize the radio propagation model, i.e.: multipath, shadowing effect, spatial correlation

Radio Channel Simulation

 Effect of channel fading on received power and on cluster changes

models	free space	fading		
CH changes	0.013	0.538		
Cluster Switches	0.047	1.087		

20 nodes in 300m x 300m square; tx range = 150 m max speed = 22 km/hr, avg speed = 2.2 km/hr

VC Performance: free space vs fading model

propagation model	loop + rate free sp.	free e ctrl . fading	no rate free sp.	e ctrì fading	no loo free sp.	p free fading
pkts roved	99.8%	89.4%	81.2%	45.9%	99.6%	85.7%
pkts dropped	0.2%	10.6%	18.8%	55.1%	0.4%	14.3%
out of seq	1.0%	18.4%	0.6%	6.0%	0.7%	19, 8 %
fraction of time when rate was reduced by half	0.7%	16.4%	N/A	N/A	1.1%	16.3%
mean delay	1.17	2.70	3.11	9.22	1.03	2.47

20 nodes in a 300m X 300m square; tx range = 150 m max speed = 11 km/hr, avg. speed = 1.1 km/hr