Enabling Conferencing Applications on the Internet using an Overlay Multicast Architecture

Yang-hua Chu, Sanjay Rao, Srini Seshan and Hui Zhang

Carnegie Mellon University

Supporting Multicast on the Internet

At which layer should multicast be implemented?

Internet architecture

IP Multicast

- Highly efficient
- Good delay

End System Multicast

Potential Benefits over IP Multicast

- Quick deployment
- All multicast state in end systems
- Computation at forwarding points simplifies support for higher level functionality

Concerns with End System Multicast

- Challenge to construct efficient overlay trees
- Performance concerns compared to IP Multicast
 - Increase in delay
 - Bandwidth waste (packet duplication)

Past Work

- Self-organizing protocols
 - Yoid (ACIRI), Narada (CMU), Scattercast (Berkeley),
 Overcast (CISCO), Bayeux (Berkeley), ...
 - Construct overlay trees in distributed fashion
 - Self-improve with more network info

- Performance results showed promise, but...
 - Evaluation conducted in simulation
 - Did not consider impact of network dynamics on overlay performance

Focus of This Paper

- Can End System Multicast support real-world applications on the Internet?
 - Study in context of conferencing applications
 - Show performance acceptable even in a dynamic and heterogeneous Internet environment

• First detailed Internet evaluation to show the feasibility of End System Multicast

Why Conferencing?

- Important and well-studied
 - Early goal and use of multicast (vic, vat)
- Stringent performance requirements

 High bandwidth, low latency
- Representative of interactive apps
 - E.g., distance learning, on-line games

Roadmap

- Enhancing self-organizing protocols for conferencing applications
- Evaluation methodology
- Results from Internet experiments

Supporting Conferencing in ESM (End System Multicast)

- Framework
 - Unicast congestion control on each overlay link
 - Adapt to the data rate using transcoding
- Objective
 - High bandwidth and low latency to all receivers along the overlay

Enhancements of Overlay Design

- Two new issues addressed
 - Dynamically adapt to changes in network conditions
 - Optimize overlays for multiple metrics
 - Latency and bandwidth
- Study in the context of the Narada protocol (Sigmetrics 2000)
 - Techniques presented apply to all self-organizing protocols

Adapt to Dynamic Metrics

- Adapt overlay trees to changes in network condition
 - Monitor bandwidth and latency of overlay links (note: CAPprobe gives both)
- Link measurements can be noisy
 - Aggressive adaptation may cause overlay instability transient: persistent:

Capture the long term performance of a link

 Exponential smoothing, Metric discretization

Optimize Overlays for Dual Metrics

- Prioritize bandwidth over latency
- Break tie with shorter latency

Example of Protocol Behavior

- All members join at time 0
- Single sender, CBR traffic

Evaluation Goals

- Can ESM provide application level performance comparable to IP Multicast?
- What network metrics must be considered while constructing overlays?
- What is the network cost and overhead?

Evaluation Overview

- Compare performance of our scheme with
 - Benchmark (IP Multicast)
 - Other overlay schemes that consider fewer network metrics
- Evaluate schemes in different scenarios
 - Vary host set, source rate
- Performance metrics
 - Application perspective: latency, bandwidth
 - Network perspective: resource usage, overhead

Benchmark Scheme

- IP Multicast not deployed (Mbone is an overlay)
- Sequential Unicast: an approximation
 - Bandwidth and latency of unicast path from source to each receiver
 - Performance similar to IP Multicast with ubiquitous (well spread out) deployment

Overlay Schemes

Overlay Scheme	Choice of Metrics	
	Bandwidth	Latency
Bandwidth-Latency		
Bandwidth-Only		X
Latency-Only	×	
Random	X	X

Experiment Methodology

- Compare different schemes on the Internet
 - Ideally: run different schemes concurrently
 - Interleave experiments of schemes
 - Repeat same experiments at different time of day
 - Average results over 10 experiments
- For each experiment
 - All members join at the same time
 - Single source CBR traffic with **TFRC** adaptation
 - Each experiment lasts for 20 minutes

Application Level Metrics

- Bandwidth (throughput) observed by each receiver
- RTT between source and each receiver along overlay

These measurements include queueing and processing delays at end systems

Performance of Overlay Scheme

"Quality" of overlay tree produced by a scheme

- Sort ("rank") receivers based on performance
- Take mean and std. dev. on performance of same rank across multiple experiments
- Std. dev. shows variability of tree quality

Factors Affecting Performance

- Heterogeneity of host set
 - *Primary Set*: 13 university hosts in U.S. and Canada
 - *Extended Set*: 20 hosts, which includes hosts in Europe, Asia, and behind ADSL
- Source rate
 - Fewer Internet paths can sustain higher source rate
 - More intelligence required in overlay constructions

Three Scenarios Considered

(lower) \leftarrow "stress" to overlay schemes \rightarrow (higher)

- Does ESM work in different scenarios?
- How do different schemes perform under various scenarios?

Naïve scheme performs poorly even in a less "stressful" scenario

RTT results show similar trend

Scenarios Considered

 $(lower) \leftarrow "stress" to overlay schemes \rightarrow (higher)$

- Does an overlay approach continue to work under a more "stressful" scenario?
- Is it sufficient to consider just a single metric? - Bandwidth-Only, Latency-Only

RTT, Extended Set, 2.4Mbps

Summary so far...

- For best application performance: adapt dynamically to **both latency and bandwidth** metrics
- *Bandwidth-Latency* performs comparably to IP Multicast (*Sequential-Unicast*)

• What is the network cost and overhead?

Resource Usage (RU)

Captures consumption of network resource of overlay tree

- Overlay link RU = propagation delay
- Tree RU = sum of link RU

Scenario: Primary Set, 1.2 Mbps (normalized to IP Multicast RU)

IP Multicast	1.0
Bandwidth-Latency	1.49
Random	2.24
Naïve Unicast	2.62

Efficient (RU = 42ms)

Inefficient (RU = 80ms)

Protocol Overhead

Protocol overhead = total non-data traffic (in bytes) total data traffic (in bytes)

- Results: Primary Set, 1.2 Mbps
 - Average overhead = 10.8%
 - 92.2% of overhead is due to bandwidth probe
- Current scheme employs active probing for available bandwidth
 - Simple heuristics to eliminate unnecessary probes
 - Focus of our current research

Contribution

- First detailed Internet evaluation to show the feasibility of End System Multicast architecture
 - Study in context of a/v conferencing
 - Performance comparable to IP Multicast
- Impact of metrics on overlay performance
 For best performance: use both latency and bandwidth
- More info: http://www.cs.cmu.edu/~narada