Efficient Flooding in Ad Hoc Networks: a Comparative Performance Study

YJung and Mario Gerla University of California, Los Angeles

Introduction

- Flooding
 - □ The basic mechanism to propagate control messages
 - □ Ex. route query flooding of reactive routing scheme
- Blind flooding
 - □ All nodes in the network (re)-broadcast the packet
 - □ Inefficiency
 - Redundant and superfluous packets
 - High probability of collision and contention
 - Heavy congestion of wireless medium

Introduction (2)

- Efficient flooding
 - A subset of dominant neighbors re-broadcast the flood packet to guarantee complete flooding
- Contributions
 - We classify and evaluate existing efficient flooding schemes

Overview of Efficient Flooding

- Neighboring topology based protocol
- Source-tree based protocol
- Cluster-based protocol

Neighbor Topology based Protocol

- Multi-Point Relay (MPR)
 - Use neighbors' information within two hops
 - Selects a minimal subset of forwarding neighbors (MPRNs) that covers all the nodes two-hop away

GAF

- Use location information to choose minimal set of dominating nodes
- Excluded from our study due to the assumption of (extra) position information

node 2 as MPRN

- Builds a sh-path source-tree rooted at the flood initiator
- Rebroadcast if a node is on shortest path and non-leaf
- "Reverse Path Forwarding"

Blue nodes (non-leafs) rebroadcast

Cluster-based Protocol

- Clustering: grouping nodes into clusters
- Cluster head: a representative node of each group
- Gateway: a node connecting more than two clusters
- Ordinary nodes: Others
- Efficient Flooding: only cluster heads and gateways rebroadcast
- Two clustering mechanisms
 - Active clustering: builds the cluster structure proactively
 - Passive clustering: builds the clusters passively, using ongoing data traffic

- ClusterHead
- Gateway
- Ordinary Node

×

Simulation Study

- Environment
 - □ GloMoSim 2.0
 - Target protocols:
 - MPR (F-MPR)
 - Active clustering with Lowest ID algorithm (F-AC)
 - Passive clustering (F-PC)
 - Reverse path forwarding (source-tree based protocol) (F-RPF)
 - Blind flooding (F-BF)
 - Protocols
 - UDP/802.11 DCF/two-ray propagation model
 - BW: 2MBits/sec
 - Power Range: 250meters
 - □ Single source initiates flooding 4 times per second

Performance Test v.s. Density

- Delivery Ratio rank:
 - □ F-BF >> F-PC >> F-RPF >> F-AC >> F-MPR
- Flooding efficiency rank
 - □ F-RPF >> F-MPR >> F-AC >> F-PC >> F-BF
- MPR suffers due to inaccurate neighbor information -> insufficient # of dominating nodes are chosen
- RPF works the best. But RPF needs a complex extension to be applied to multiple floodings (multiple source trees)
- PC works overall okay

2

Performance v.s. Mobility

- Rank does not change from the previous results
- Passive clustering outperforms all (but BF): keep stable with increase of mobility

Applications: AODV

Efficient flooding improves AODV performance at heavy load MPR works better than Pass Clustering at heavy load; but, MPR requires periodic table exchange – unfit for on-demand rtng

M

Conclusion

- A comparative study of efficient flooding mechanisms
- Results:
 - Passive clustering performs well for a broad range of node mobility and network density values
 - Passive clustering is the most robust
 - Accurate neighbor information collection is very challenging due to unreliable pkt delivery
 - MPR, active clustering shows bad performance in high mobility
 - □ Each scheme has a different set of suitable applications
 - F-PC for reactive routing protocols
 - F-MPR, F-AC and F-RPF for proactive schemes