# Estimating Bandwidth of Mobile Users

Sept 2003

Rohit Kapoor CSD, UCLA

#### Estimating Bandwidth of Mobile Users

- Mobile, Wireless User
  - Different possible wireless interfaces
    - Bluetooth, 802.11, 1xRTT, GPRS etc
    - Different bandwidths
    - Last hop bandwidth can change with handoff
- Determine bandwidth of mobile user
  - Useful to application servers: Video, TCP
  - Useful to ISPs

# Capacity Estimation

- Fundamental Problem: Estimate bottleneck capacity in an Internet path
  - Physical capacity different from available bandwidth

- Estimation should work end-to-end
  - Assume no help from routers

# Packet Dispersion

- Previous work mostly based on packet dispersion
- Packet Dispersion (pairs or trains)



Bandwidth = (Packet Size) / (Separation)

# Previous Work

- Packet Pairs
  - Select highest mode of capacity distribution derived from PP samples (Crovella)
    - Assumes that distribution will give capacity in correspondence to highest mode
  - Lai's potential bandwidth filtering
  - Both of these techniques assume unimodal distribution
- Paxson showed distribution can be multimodal
- Packet tailgating
- Pathchar

Calculates capacity for every link

# Previous Work

- Dovrolis' Work
  - Explained under/over estimation of capacity
  - Methodology
    - First send packet pairs
    - If multimodal, send packet trains
- Still no satisfactory solution!!!
  - Most techniques too complicated, time/bw-consuming, inaccurate and prone to choice of parameters
  - Never tested on wireless

#### Problems due to Cross-Traffic

Cross-traffic (CT) serviced between PP packets
 – Smaller CT packet size => More likely



• This leads to under-estimation of Capacity

#### Problems (cont)

- Compression of the packet pair
  - Larger CT packet size => More likely



• Over-estimation of Capacity

## Fundamental Queuing Observation

- Observation
  - When PP dispersion over-estimates capacity
    - *First packet* of PP must queue after a bottleneck link
    - *First packet* of PP must experience Cross Traffic (CT) induced queuing delay
  - When PP dispersion *under-estimates* capacity
    - Packets from cross-traffic are serviced between the two PP packets
    - *Second packet* of PP must experience CT induced queuing delay

### Fundamental Observation

- Observation (also proved)
  - When PP dispersion *over-estimates* capacity
    - First packet of PP must queue after a bottleneck link
  - When PP dispersion *under-estimates* capacity
    - Packets of cross-traffic are serviced between the two PP packets
    - *Second packet* of PP must experience CT induced queuing delay
  - Both *expansion* and *compression* of dispersion involve *queuing*

# Observation (cont)

- Expansion or Compression

   Sum of delays of PP packets > Minimum sum of delays
- When Minimum sum of delays?
  - Both packets do not suffer CT induced queuing
- If we can get one sample with no CT induced queuing
  - Dispersion is not distorted, gives "right" capacity
  - Sample can easily be identified since the sum of delays is the minimum

#### Our Methodology: CapProbe

- PP really has two pieces of information
  - Dispersion of packets
  - Delay of packets
- Combines both pieces of information
  - Calculate delay sum for each packet pair sample
  - Dispersion at minimum delay sum reflects capacity



# Requirements

- Sufficient but not necessary requirement
  - At least one PP sample where both packets experience *no CT induced queuing delay*.
- How realistic is this requirement?
  - Internet is reactive (mostly TCP): high chance of some probe packets not being queued
  - To validate, we performed extensive experiments
    - Simulations and measurements
    - Only cases where such samples are not obtained is when cross-traffic is UDP and very intensive (>75%)

# CapProbe

- Strength of CapProbe
  - Only one sample not affected by queuing is needed
- Simplicity of CapProbe
  - Only 2 values (minimum delay sum and dispersion) need storage
  - One simple comparison operation per sample
  - Even simplest of earlier schemes (highest mode) requires much more storage and processing

# Experiments

- Simulations, Internet, Internet2 (Abilene), Wireless
- Cross-traffic options: TCP (responsive), CBR (nonresponsive), LRD (Pareto)
- Wireless technologies tested: Bluetooth, IEEE 802.11, 1xRTT
- Persistent, non-persistent cross-traffic



#### Simulations

- 6-hop path: capacities {10, 7.5, 5.5, 4, 6, 8} Mbps
- PP pkt size = 200 bytes, CT pkt size = 1000 bytes
- Persistent TCP Cross-Traffic

**Bandwidth Estimate** 



#### Simulations

- PP pkt size = 500 bytes, CT pkt size = 500 bytes
- Non-Persistent TCP Cross-Traffic



#### Simulations

• Non-Persistent UDP CBR Cross-Traffic

#### **Bandwidth Estimate**



- Only case where CapProbe does not work
  - UDP (non-responsive), extremely intensive
  - No correct samples are obtained

#### Internet Measurements



Laptop2 Cross-Traffic

Laptop1

• Each experiment

- 500 PP at 0.5s intervals
- 100 experiments for each {Internet path, nature of CT narrow link capacity}
- OS also induces inaccuracy

| ſ | DummyNet        | % Measurements | % Measurements | % Measurements |
|---|-----------------|----------------|----------------|----------------|
|   | Capacity        | Within 5% of   | Within 10% of  | Within 20% of  |
|   |                 | Capacity       | Capacity       | Capacity       |
|   | 500 kbps Yahoo  | 100            | 100            | 100            |
| I | 1 mbps Yahoo    | 95             | 95             | 100            |
|   | 5 mbps Yahoo    | 100            | 100            | 100            |
|   | 10 mbps Yahoo   | 60             | 100            | 100            |
| ſ | 20 mbps Yahoo   | 75             | 100            | 100            |
| ſ | 500 kbps Google | 100            | 100            | 100            |
|   | 1 mbps Google   | 100            | 100            | 100            |
|   | 5 mbps Google   | 95             | 100            | 100            |
| I | 10 mbps Google  | 80             | 95             | 100            |
| Г |                 |                | 100            | 1 0 0          |

#### Wireless Measurements



- Experiments for 802.11b, Bluetooth, 1xRTT
- Clean, noisy channels
  - Bad channel → retransmission
     →larger dispersions →lower estimated capacity

Laptop2 Cross-Traffic

•Results for Bluetooth-interfered 802.11b, TCP cross-traffic

•http://www.uninett.no/wlan/throughput.html : IP throughput of 802.11b is around 6Mbps

| Experiment No. | Capacity        | Capacity Estimated |
|----------------|-----------------|--------------------|
|                | Estimated by    | by strongest mode  |
|                | CapProbe (kbps) | (kbps)             |
| 1              | 5526.68         | 4955.02            |
| 2              | 5364.46         | 462.8              |
| 3              | 5522.26         | 4631.76            |
| 4              | 5369.15         | 5046.62            |
| 5              | 5409.85         | 449.73             |

## Probability of Obtaining Sample



- Assuming PP samples arrive in a Poisson manner
- Product of probabilities
  - No queue in front of first packet:  $p(0) = 1 ?/\mu$
  - No CT packets enter between the two packets (worst case)
    - Only dependent on arrival process
- Analyzed with Poisson Cross-Traffic

$$- p = p(0) * e^{-?L/\mu} = (1 - ?/\mu) * e^{-?L/\mu}$$

## Sample Frequency

- Average number of Samples required to obtain the no-queuing sample
  - Analytical

| ?/µ | 1   | 2    | 3     | 4     | 5      |
|-----|-----|------|-------|-------|--------|
| 0.1 | 1.1 | 1.2  | 1.4   | 1.5   | 1.7    |
| 0.2 | 1.3 | 1.6  | 2.0   | 2.4   | 3.1    |
| 0.3 | 1.4 | 2.0  | 2.9   | 4.2   | 6.0    |
| 0.4 | 1.7 | 2.8  | 4.6   | 7.7   | 12.9   |
| 0.5 | 2.0 | 4.0  | 8.0   | 16.0  | 32.1   |
| 0.6 | 2.5 | 6.3  | 15.7  | 39.2  | 97.9   |
| 0.7 | 3.3 | 11.1 | 37.1  | 123.8 | 413.0  |
| 0.8 | 5.0 | 25.0 | 125.3 | 627.0 | 3137.5 |

- Poisson cross traffic is a bad case
- Bursty Internet traffic has more "windows"

## Sample Frequency

- Simulations: mix of TCP, UDP, Pareto cross traffic
- Results for number of samples required

| Load/Links | 3  | 6   |  |
|------------|----|-----|--|
| 0.2        | 2  | 2   |  |
| 0.4        | 6  | 8   |  |
| 0.6        | 21 | 35  |  |
| 0.8        | 37 | 144 |  |

- Internet
  - In most experiments, first 20 samples contained the minimum delay sample

## Conclusion

- CapProbe
  - Simple capacity estimation method
  - Works accurately across a wide range of scenarios
  - Only cases where it does not estimate accurately
    - Non-responsive intensive CT
    - This is a failure of the packet dispersion paradigm

- Useful application
  - Use a passive version of CapProbe with "modern"
     TCP versions, such as Westwood